More than two fifths of the zeros of the Riemann zeta function are on the critical line

By J. B. Conrey*) at Stillwater

1. Introduction

In this paper we show that at least $2 / 5$ of the zeros of the Riemann zeta-function are simple and on the critical line. Our method is a refinement of the method Levinson [11] used when he showed that at least $1 / 3$ of the zeros are on the critical line (and are simple, as observed by Heath-Brown [10] and, independently, by Selberg). The main new element here is the use of a mollifier of length $y=T^{\theta}$ with $\theta=4 / 7-\varepsilon$ whereas in Levinson's theorem the mollifier has $\theta=1 / 2-\varepsilon$. The work [6] of Deshouillers and Iwaniec on averages of Kloosterman sums is what allows us to use a longer mollifier. In fact, in their paper [7], they obtain an upper bound of essentially the right magnitude for an integral of the modulus squared of the zeta function multiplied by a mollifier of length $T^{4 / 7}$.

In order to obtain our result, we need asymptotic formulas; obtaining these involves technical but familiar details. In fact, this paper is essentially a synthesis of three papers: Balasubramanian, Conrey, and Heath-Brown [2], Conrey [3], and Deshouillers and Iwaniec [7].

The first paper has the analytic machinery which reduces the integral in question to a main term involving a sum of coefficients of the mollifier and an error term involving sums of incomplete Kloosterman sums; the second paper has the arithmetic machinery for giving an asymptotic formula for the main term; the third paper has the key lemma for bounding the error term.

We mention also that in [3], it is shown that at least 0.365 of the zeros are on the critical line. This paper uses a mollifier with $\theta=1 / 2-\varepsilon$ as in Levinson, but the coefficients are more elaborate. Levinson uses

$$
b(n)=\mu(n)\left(\frac{\log y / n}{\log y}\right)
$$

[^0]whereas in [3] and here we will use
\[

$$
\begin{equation*}
b(n, P)=\mu(n) P\left(\frac{\log y / n}{\log y}\right) \tag{1}
\end{equation*}
$$

\]

where P is a polynomial with $P(0)=0, P(1)=1$ which can be chosen optimally by the calculus of variations at the end of the argument. Also in [3], we start from a somewhat more general situation than in Levinson [11]. Levinson's first step is to observe that if the proportion of zeros of

$$
\zeta(s)+a(s) \zeta^{\prime}(s)
$$

to the right of the critical line is $\leqq p$, then the proportion of zeros of $\zeta(s)$ on the critical line is $\geqq 1-2 p$. Here $a(s)$ is a simple function which is essentially $\left(\log \frac{s}{2 \pi}\right)^{-1}$. In [3] we make the same observation about a more general combination

$$
\sum a_{n}(s) \zeta^{(n)}(s)
$$

with simple functions a_{n} which can be chosen with a certain amount of freedom. Here we use this more general treatment, but we approach it in an easier way as outlined in [5].

2. Background material and statement of theorem

We recall some basic information about the Riemann zeta-function $\zeta(s)$, where $s=\sigma+i t$ (see Titchmarsh [15]). It is defined for $\sigma>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}
$$

and has a meromorphic continuation to the whole plane with its only pole, a simple pole at $s=1$ with residue 1 . It satisfies the functional equation

$$
\begin{equation*}
\xi(s)=\xi(1-s) \tag{2}
\end{equation*}
$$

where the entire function $\xi(s)$ is defined by

$$
\begin{equation*}
\xi(s)=H(s) \zeta(s) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
H(s)=(1 / 2) s(s-1) \pi^{-s / 2} \Gamma(s / 2) . \tag{4}
\end{equation*}
$$

In asymmetrical form, the functional equation is

$$
\begin{equation*}
\zeta(s)=\chi(s) \zeta(1-s) \tag{5}
\end{equation*}
$$

where, because of familiar properties of the Γ-function,

$$
\begin{equation*}
\chi(s)^{-1}=\chi(1-s)=2(2 \pi)^{-s} \Gamma(s) \cos \frac{\pi s}{2} \tag{6}
\end{equation*}
$$

Because of the Euler-product representation (for $\sigma>1$),

$$
\begin{equation*}
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1} \tag{7}
\end{equation*}
$$

$\zeta(s)$ has no zeros in $\sigma>1$. By (5) and (6) it is seen that $\zeta(s)$ has simple zeros at

$$
s=-2,-4,-6, \ldots
$$

and nowhere else in $\sigma<0$. Hadamard and de la Vallée-Poussin showed, independently in 1885, that $\zeta(s)$ has no zeros on $\sigma=1$; hence all the non-real zeros of $\zeta(s)$ are in the critical strip $0<\sigma<1$. The zeros of $\zeta(s)$ in the critical strip are denoted by $\varrho=\beta+i \gamma$. Von Mangoldt proved that

$$
\begin{align*}
N(T) & =\#\{\varrho: 0<\gamma<T\} \tag{8}\\
& =\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+O(\log T) .
\end{align*}
$$

If we let

$$
\begin{equation*}
N_{0}(T)=\#\{\varrho: 0<\gamma<T \quad \text { and } \quad \beta=1 / 2\}, \tag{9}
\end{equation*}
$$

then Riemann [13] conjectured that $N_{0}(T)=N(T)$ for all T; i.e., that all the zeros are on $\sigma=1 / 2$. Hardy was the first to show that $N_{0}(T)$ goes to infinity with T; later he and Littlewood showed [9] that $N_{0}(T) \gg T$. Selberg [14] was the first to prove that $N_{0}(T) \gg T \log T$ i.e., that

$$
\begin{equation*}
\kappa=\liminf _{T \rightarrow \infty} \frac{N_{0}(T)}{N(T)}>0 \tag{10}
\end{equation*}
$$

We call κ the proportion of zeros on the critical line. Let now

$$
\begin{equation*}
N_{0}^{*}(T)=\#\left\{\varrho: 0<\gamma<T, \beta=1 / 2, \zeta^{\prime}(\varrho) \neq 0\right\} \tag{11}
\end{equation*}
$$

be the number of simple zeros on the critical line up to a height T, and let

$$
\begin{equation*}
\kappa^{*}=\liminf _{T \rightarrow \infty} \frac{N_{0}^{*}(T)}{N(T)} . \tag{12}
\end{equation*}
$$

Then the work of Levinson [11] implies that

$$
\begin{equation*}
\kappa^{*} \geqq 0.3474 \tag{13}
\end{equation*}
$$

In Conrey [3] it was shown that

$$
\begin{equation*}
\kappa \geqq 0.3658 \tag{14}
\end{equation*}
$$

and in [4] that

$$
\begin{equation*}
\kappa^{*} \geqq 0.3485 \tag{15}
\end{equation*}
$$

Anderson showed in [1] that

$$
\begin{equation*}
\kappa^{*} \geqq 0.3532 \tag{16}
\end{equation*}
$$

Here we prove
Theorem 1. With the above notation, $\kappa \geqq 0.4077$ and $\kappa^{*} \geqq 0.401$. In particular, at least $2 / 5$ of the zeros of $\zeta(s)$ are simple and on the critical line.

3. Beginning of the proof

It follows from (2) that $\xi^{(n)}(s)$ is real for $s=1 / 2+i t$ when n is even and is purely imaginary when n is odd. Let $g_{n}, n \geqq 0$, be complex numbers with g_{n} real if n is odd and g_{n} purely imaginary if n is even. Let $g \neq 0$ be real. Let T be a large parameter (we will be working with the strip $0<t \leqq T$) and let

$$
\begin{equation*}
L=\log T \tag{17}
\end{equation*}
$$

Now define

$$
\begin{equation*}
\eta(s)=g \xi(s)+\sum_{n=0}^{N} g_{n} \xi^{(n)}(s) L^{-n} \tag{18}
\end{equation*}
$$

for some fixed N. Then, for $s=1 / 2+i t$,

$$
\begin{equation*}
g \xi(s)=\operatorname{Re} \eta(s) \tag{19}
\end{equation*}
$$

so that $\xi(s)=0$ on $\sigma=1 / 2$ if and only if $\operatorname{Re} \eta(s)=0$. The idea, then, is to show that $\operatorname{Re} \eta(1 / 2+i t)$ vanishes at least

$$
\begin{equation*}
(\kappa+o(1)) \frac{T}{2 \pi} \log T \tag{20}
\end{equation*}
$$

times for t in [$0, T$]. We do this by showing that the change in argument of $\eta(1 / 2+i t)$ as t varies from 0 to T is at least

$$
\begin{equation*}
(\kappa+o(1)) \frac{T}{2} \log T \tag{21}
\end{equation*}
$$

since for every change of π in the argument of some function $f(z)$ it must be the case that $\operatorname{Re} f(z)$ has at least one zero.

To estimate the change in argument of $\eta(s)$ on the $1 / 2$-line, we let $\eta(s)=H(s) V_{1}(S)$ where H is defined in (4) and

$$
\begin{equation*}
V_{1}(s)=g \zeta(s)+\sum_{n=0}^{N} \frac{g_{n}}{L^{n}} \sum_{k=0}^{n}\binom{n}{k} \frac{H^{(n-k)}(s)}{H(s)} \zeta^{(k)}(s) . \tag{22}
\end{equation*}
$$

By Lemma 1 of [3], for $|t| \geqq 2$,

$$
\begin{equation*}
\frac{H^{(m)}}{H}(s)=(1 / 2 \log s /(2 \pi))^{m}(1+O(1 /|t|)) \tag{23}
\end{equation*}
$$

so that

$$
\begin{align*}
V_{1}(s) & =g \zeta(s)+\sum_{n=0}^{N} g_{n}\left(\frac{\log s /(2 \pi)}{2 L}+\frac{1}{L} \frac{d}{d s}\right)^{n} \zeta(s)(1+O(1 /|t|)) \tag{24}\\
& =\left(Q_{1}\left(\frac{\log s /(2 \pi)}{2 L}+\frac{1}{L} \frac{d}{d s}\right) \zeta(s)\right)(1+O(1 /|t|))
\end{align*}
$$

where

$$
\begin{equation*}
Q_{1}(x)=g+\sum_{n=0}^{N} g_{n} x^{n} . \tag{25}
\end{equation*}
$$

A useful approximation to $V_{1}(s)$ in $0<t<T,|\sigma| \ll 1$, is given by

$$
\begin{equation*}
V(s)=Q\left(-\frac{1}{L} \frac{d}{d s}\right) \zeta(s) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x)=Q_{1}(1 / 2-x) . \tag{27}
\end{equation*}
$$

Note that for $\sigma>1$,

$$
\begin{equation*}
V(s)=\sum_{n=1}^{\infty} \frac{Q(\log n / L)}{n^{s}} \tag{28}
\end{equation*}
$$

Also, the condition that $g_{2 n}$ is imaginary and $g_{2 n+1}$ is real is equivalent to $\operatorname{Re} Q_{1}(i x)=g$ for real x or $\operatorname{Re} Q(1 / 2+i x)=g$ for real x. Equivalently,

$$
\begin{equation*}
Q(z)+\bar{Q}(1-z) \equiv g . \tag{29}
\end{equation*}
$$

By Lemma 1 of [3],

$$
\begin{equation*}
\arg H(1 / 2+i t)=\frac{t}{2} \log \frac{|t|}{2 \pi e}+O(1) \tag{30}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left.\Delta \arg \eta(1 / 2+i t)\right|_{2} ^{T}=\frac{T}{2} \log T+\left.\Delta \arg V_{1}(1 / 2+i t)\right|_{2} ^{T}+O(T) \tag{31}
\end{equation*}
$$

Now if $Q(0)=1$ (i.e. $Q_{1}(1 / 2)=1$), then it is not hard to show (see Conrey [3], Section 4) using the argument principle and standard estimates that

$$
\begin{equation*}
\left.\Delta \arg V_{1}(1 / 2+i t)\right|_{2} ^{T}=-2 \pi N_{V_{1}}^{*}(T)+O(T) \tag{32}
\end{equation*}
$$

where $N_{V_{1}}^{*}(T)$ is the number of zeros of $V_{1}(s)$ with $\sigma \geqq 1 / 2$ and $0<t<T$ counted with multiplicity, except that zeros on $\sigma=1 / 2$ only count with weight $1 / 2$ (times their multiplicity). We need an upper bound for $N_{V_{1}}^{*}(T)$.

We introduce the mollifier

$$
\begin{equation*}
B(s, P)=\sum_{n \leqq y} \frac{b(n, P) n^{\sigma_{0}-1 / 2}}{n^{s}} \tag{33}
\end{equation*}
$$

where $\sigma_{0}=1 / 2-R / L$ with $R>0$ a free parameter; also

$$
\begin{equation*}
y=T^{\theta} \tag{34}
\end{equation*}
$$

(and eventually $\theta=4 / 7-\varepsilon$) and $b(n, P)$ is defined in (1). (Recall that P denotes a polynomial with $P(0)=0$ and $P(1)=1$ so that $b(1, P)=1$ and $b(n, P) \rightarrow 0$ as $n \rightarrow y$.)

Then

$$
\begin{equation*}
N_{V_{1}}^{*}(T) \leqq N_{V_{1} B}^{*}(T) \tag{35}
\end{equation*}
$$

where $N_{V_{1} B}^{*}(T)$ is the number of zeros of $V_{1} B$ in $0<t \leqq T, \sigma \geqq \frac{1}{2}$ counted with multiplicity, except that zeros on the $1 / 2$-line have only one-half their usual weight.

Now, as above

$$
\begin{equation*}
\sigma_{0}=1 / 2-R / L \tag{36}
\end{equation*}
$$

where R is a positive real number, $R \ll 1$. Then by Littlewood's lemma and the arith-metic-mean, geometric-mean inequality exactly as in Levinson [11] or Conrey [3],

$$
\begin{equation*}
2 \pi N_{V_{1} B}(T) \leqq \frac{T L}{2 R} \log \left(\frac{1}{T} \int_{1}^{T}\left|V_{1} B\left(\sigma_{0}+i t\right)\right|^{2} d t\right)+O(T) \tag{37}
\end{equation*}
$$

where $N_{V_{1} B}(T)$ is the number of zeros of $B V_{1}(s)$ in $0<t \leqq T, \sigma \geqq 1 / 2$ counted with multiplicity (and no convention about zeros on the $1 / 2$-line). This leads to

$$
\begin{equation*}
\kappa \geqq 1-\frac{1}{R} \log \left(\frac{1}{T} \int_{1}^{T}\left|V_{1} B\left(\sigma_{0}+i t\right)\right|^{2} d t\right)+o(1) \tag{38}
\end{equation*}
$$

We will prove an asymptotic formula for the integral here. In fact, such a formula will follow by an integration by parts from an asymptotic formula for

$$
\int_{1}^{T}\left|V B\left(\sigma_{0}+i t\right)\right|^{2} d t
$$

Thus,

$$
\begin{equation*}
\kappa \geqq 1-\frac{1}{R} \log \left(\frac{1}{T} \int_{1}^{T}\left|B V\left(\sigma_{0}+i t\right)\right|^{2} d t\right)+o(1) \tag{39}
\end{equation*}
$$

where $R>0, \sigma_{0}=1 / 2-R / L, \quad V(s)=Q\left(-\frac{1}{L} \frac{d}{d s}\right) \zeta(s)$ where Q is a polynomial satisfying $Q(0)=1$ and $Q(z)+\bar{Q}(1-z) \equiv g$ for some real number g; and $B(s)=\sum_{n \leqq y} b(n, P) n^{-s+\sigma_{0}-1 / 2}$ with $b(n, P)=\mu(n) P\left(\frac{\log y / n}{\log y}\right)$ where P is a polynomial with $P(0)=0$ and $P(1)=1$.

Regarding simple zeros, we note that our argument thus far has shown that

$$
\begin{align*}
\left.\frac{1}{\pi} \Delta \arg \eta(1 / 2+i t)\right|_{2} ^{T} & =\frac{T L}{2 \pi}-2 N_{V_{1}}^{*}(T)+O(T) \tag{40}\\
& \geqq \frac{T L}{2 \pi}-2 N_{V_{1} B}^{*}(T)+O(T) \\
& \geqq \frac{T L}{2 \pi}-2 N_{V_{1} B}(T)+N_{0, V_{1}}(T)+O(T)
\end{align*}
$$

where $N_{0, V_{1}}(T)$ is the number of zeros of $V_{1}(s)$ (or equivalently of $\eta(s)$) on the half-line. Thus, we actually have

$$
\begin{align*}
\left.\frac{1}{\pi} \Delta \arg \eta(1 / 2+i t)\right|_{2} ^{T}-N_{0, \eta}(T) & \geqq \frac{T L}{2 \pi}-2 N_{V_{1} B}(T)+O(T) \tag{41}\\
& \gtrsim \frac{T L}{2 \pi}\left(1-\frac{1}{R} \log \frac{1}{T} \int_{1}^{T}\left|B V\left(\sigma_{0}+i t\right)\right|^{2} d t\right)
\end{align*}
$$

Now the left hand side here is a lower bound for the number of t in $(2, T)$ for which $\operatorname{Re} \eta(1 / 2+i t)=0$ but $\eta(1 / 2+i t) \neq 0$. In the event that

$$
\begin{equation*}
\eta(s)=g \xi(s)+g_{0} \xi(s)+g_{1} \xi^{\prime}(s) L^{-1} \tag{42}
\end{equation*}
$$

we have $\operatorname{Re} \eta(1 / 2+i t)=g \xi(1 / 2+i t)$ so that $\operatorname{Re} \eta(1 / 2+i t)=0$ but $\eta(1 / 2+i t) \neq 0$ implies that $\xi(1 / 2+i t)=0$ but $\xi^{\prime}(1 / 2+i t) \neq 0$, i.e., that $1 / 2+i t$ is a simple zero of ξ.

Hence we have

$$
\begin{equation*}
\kappa^{*} \geqq 1-\frac{1}{R} \log \left(\left.\frac{1}{T} \int_{2}^{T} \right\rvert\, V B\left(\sigma_{0}+i t\right)^{2} d t\right)+o(1) \tag{43}
\end{equation*}
$$

subject to all the conditions on R, V, B, and Q mentioned above and with the additional condition that Q be a polynomial of degree 1 .

4. The mean value theorem

Apart from some numerical calculations, Theorem 1 will be a consequence of the following mean value theorem.

Theorem 2. Let $B(s, P)$ be as in (1), (33), and (34). Suppose that $R \ll 1$ and $\sigma_{0}=1 / 2-R / L$. Let $V(s)=Q\left(-\frac{1}{L} \frac{d}{d s}\right) \zeta(s)$ for some polynomial Q. If $\theta<4 / 7$, then

$$
\int_{2}^{T}\left|V B\left(\sigma_{0}+i t\right)\right|^{2} d t \sim c(P, Q, R) T
$$

as $T \rightarrow \infty$ where

$$
\begin{aligned}
c(P, Q, P) & =|P(1) Q(0)|^{2}+\left.\frac{1}{\theta} \int_{0}^{1} \int_{0}^{1}\left|\frac{d}{d u}\left(e^{R(y+\theta u)} Q(y+\theta u) P(x+u)\right)\right|_{u=0}\right|^{2} d x d y \\
& =|P(1) Q(0)|^{2}+\frac{1}{\theta} \int_{0}^{1} \int_{0}^{1} e^{2 R y}\left|Q(y) P^{\prime}(x)+\theta Q^{\prime}(y) P(x)+\theta R Q(y) P(x)\right|^{2} d x d y
\end{aligned}
$$

To deduce Theorem 1 from Theorem 2, we make our choices for P, Q, and R. For the moment, let

$$
\begin{equation*}
w(y)=e^{R y} Q(y) \tag{44}
\end{equation*}
$$

Then

$$
\begin{align*}
c(P, Q, R) & =|w(0)|^{2}+\left.\frac{1}{\theta} \int_{0}^{1} \int_{0}^{1}\left|\frac{d}{d u}(w(y+\theta u) P(x+u))\right|_{u=0}\right|^{2} d x d y \tag{45}\\
& =|w(0)|^{2}+\frac{1}{\theta} \int_{0}^{1} \int_{0}^{1}\left|w(y) P^{\prime}(x)+\theta w^{\prime}(y) P(x)\right|^{2} d x d y
\end{align*}
$$

The double integral here is

$$
I(P)=A \int_{0}^{1}\left|P^{\prime}(x)\right|^{2} d x+2 \operatorname{Re}\left(B \int_{0}^{1} P^{\prime}(x) \bar{P}(x) d x\right)+C \int_{0}^{1}|P(x)|^{2} d x
$$

where

$$
\begin{equation*}
A=\int_{0}^{1}|w(y)|^{2} d y, \quad B=\theta \int_{0}^{1} w(y) \bar{w}^{\prime}(y) d y, \quad C=\theta^{2} \int_{0}^{1}\left|w^{\prime}(y)\right|^{2} d y . \tag{46}
\end{equation*}
$$

By the Euler-Lagrange equations, $I(P)$ will be minimized by a function P satisfying

$$
\begin{equation*}
A P^{\prime \prime}-(B-\bar{B}) P^{\prime}-C P=0, \quad P(0)=0, \quad P(1)=1 . \tag{47}
\end{equation*}
$$

By an integration by parts,

$$
\int_{0}^{1}\left|P^{\prime}(x)\right|^{2} d x=\left.\bar{P} P^{\prime}(x)\right|_{0} ^{1}-\int_{0}^{1} \bar{P}(x) P^{\prime \prime}(x) d x .
$$

We use (47) here to substitute for $P^{\prime \prime}$; then by (46) and an easy calculation,

$$
I(P)=A P^{\prime}(1)+\bar{B} 2 \operatorname{Re} \int_{0}^{1} P(x) \bar{P}^{\prime}(x) d x
$$

But

$$
\int_{0}^{1} P(x) \bar{P}^{\prime}(x) d x+\int_{0}^{1} \bar{P}(x) P^{\prime}(x)=\left.P(x) \bar{P}(x)\right|_{0} ^{1}=1
$$

whence

$$
I(P)=A P^{\prime}(1)+\bar{B} .
$$

The solution of (47) is easily seen to be

$$
P(x)=\frac{e^{r x}-e^{s x}}{e^{r}-e^{s}}
$$

where r and s are roots of $A z^{2}-(B-\bar{B}) z-C=0$. (Although P is not a polynomial it can be uniformly approximated by polynomials of the right sort.) Solving for r and s we may write

$$
P(x)=\frac{e^{i \beta x}}{e^{i \beta}} \frac{e^{\alpha x}-e^{-\alpha x}}{e^{\alpha}-e^{-\alpha}}
$$

where

$$
\begin{equation*}
\alpha=\frac{\left((B-\bar{B})^{2}+4 A C\right)^{1 / 2}}{2 A}, \quad i \beta=\frac{B-\bar{B}}{2 A} . \tag{48}
\end{equation*}
$$

Then

$$
P^{\prime}(1)=\alpha \frac{e^{\alpha}+e^{-\alpha}}{e^{\alpha}-e^{-\alpha}}+i \beta
$$

from which we see from (48) that

$$
\begin{aligned}
I(P)=A P^{\prime}(1)+\bar{B} & =A \alpha \operatorname{coth} \alpha+\frac{B+\bar{B}}{2} \\
& =A \alpha \operatorname{coth} \alpha+\frac{\theta}{2}\left(|w(1)|^{2}-|w(0)|^{2}\right)
\end{aligned}
$$

since

$$
2 \operatorname{Re} B=\theta\left(\int_{0}^{1} w \bar{w}^{\prime}+\int_{0}^{1} \bar{w} w^{\prime}\right)=\left.\theta|w|^{2}\right|_{0} ^{1} .
$$

By (45) we now have

$$
\begin{equation*}
c=c(Q, R)=1 / 2\left(|w(0)|^{2}+|w(1)|^{2}\right)+\frac{A \alpha \operatorname{coth} \alpha}{\theta} . \tag{49}
\end{equation*}
$$

We illustrate the computation in the case of simple zeros. We are forced here to take

$$
Q(z)=1+\lambda z
$$

for some real number λ. Then

$$
A=\int_{0}^{1}|w(y)|^{2} d y=\int_{0}^{1} e^{2 R y}(1+\lambda y)^{2} d y=\lambda^{2} I_{2}+2 \lambda I_{1}+I_{0}
$$

where

$$
I_{n}=\int_{0}^{1} e^{2 R y} y^{n} d y
$$

Also, $B=0$,

$$
C=\theta^{2} \int_{0}^{1} e^{2 R y}(R(1+\lambda y)+\lambda)^{2} d y=\theta^{2}\left((R+\lambda)^{2} I_{0}+2 R \lambda(R+\lambda) I_{1}+R^{2} \lambda^{2} I_{2}\right)
$$

and

$$
\alpha=(C / A)^{1 / 2}
$$

Then with $\theta=4 / 7, R=1.2, \lambda=-1.02$ we get (using $I_{0}=\left(e^{2 R}-1\right) /(2 R), I_{1}=\left(e^{2 R}-I_{0}\right) /(2 R)$, and $\left.I_{2}=\left(e^{2 R}-2 I_{1}\right) /(2 R)\right), \quad I_{0}=4.17 \ldots, \quad I_{1}=2.85 \ldots, \quad I_{2}=2.21 \ldots, \quad A=0.66 \ldots, \quad B=0$, $C=0.71 \ldots, \alpha=1.04 \ldots, \operatorname{coth} \alpha=1.28 \ldots$,

$$
c=(1 / 2)\left(1+e^{2 R}(1+\lambda)^{2}\right)+\frac{A}{\theta} \alpha \operatorname{coth} \alpha=2.05 \ldots
$$

and $1-(\log c) / R=0.4013 \ldots$ The 0.4077 result arises from choosing $Q(y)$ as the $\varphi(y)$ in Conrey [3], Section 7, with $m=0$.

5. The proposition

In this section, we deduce our mean value theorem, Theorem 2, from the following
Proposition. Let $a, b \in \mathbb{C}$ with $a, b \ll 1$, and put $\alpha=a / L, \beta=b / L$ where $L=\log T$. Let $s_{0}=1 / 2+i w$ with $T \leqq w \leqq 2 T$. Suppose that $\delta>0, \Delta=T^{1-\delta}$ and that $y=T^{\theta}$ with $0<\theta<4 / 7$. Let

$$
\begin{aligned}
& g\left(a, b, w, P_{1}, P_{2}\right) \\
& \qquad=\frac{1}{i \Delta \pi^{1 / 2}} \int_{(1 / 2)} e^{\left(s-s_{0}\right)^{2} \Delta^{-2}} \zeta(s+\alpha) \zeta(1-s+\beta) \mathscr{B}\left(s, P_{1}\right) \mathscr{B}\left(1-s, P_{2}\right) d s
\end{aligned}
$$

where (c) denotes the straight line path from $c-i \infty$ to $c+i \infty$ and where

$$
\mathscr{B}\left(s, P_{i}\right)=\sum_{n \leqq y} \frac{b\left(n, P_{i}\right)}{n^{s}}=B\left(s+\sigma_{0}-1 / 2, P_{i}\right)
$$

with $P_{i}(0)=0$ for $i=1,2$. Then

$$
\begin{aligned}
& g\left(a, b, w, P_{1}, P_{2}\right) \\
& \qquad \begin{aligned}
& \left.\frac{1}{\theta} \int_{0}^{1} e^{-(b+a) y} d y \frac{\partial}{\partial u} \frac{\partial}{\partial v} e^{-a \theta u-b \theta v} \int_{0}^{1} P_{1}(x+u) P_{2}(x+v) d x\right|_{u=v=0} \\
& +P_{1}(1) P_{2}(1)+o_{\delta}(1)
\end{aligned}
\end{aligned}
$$

uniformly in a, b, and w.
Proof of Theorem 2. To prove Theorem 2 it suffices to show, in the notation of Theorem 2, that

$$
\begin{equation*}
\frac{1}{\Delta \pi^{1 / 2}} \int_{-\infty}^{\infty} e^{-(t-w)^{2} \Delta^{-2}}\left|V B\left(\sigma_{0}+i t\right)\right|^{2} d t=c(P, Q, R)+o_{\delta}(1) \tag{50}
\end{equation*}
$$

uniformly for $T \leqq w \leqq 2 T$, with $\Delta=T^{1-\delta}$. For then Theorem 2 follows exactly as in Section 3 of Balasubramanian, Conrey, and Heath-Brown [2]. To prove (50) we write the left side as a complex integral

$$
\frac{1}{i \Delta \pi^{1 / 2}} \int_{(1 / 2)} e^{\left(s-s_{0}\right)^{2} \Delta^{-2}} V B\left(s+\sigma_{0}-1 / 2\right) \overline{V B}\left(1-s+\sigma_{0}-1 / 2\right) d s
$$

where $s_{0}=1 / 2+i w ;$ by (26) this is

$$
\begin{aligned}
&=Q\left(\frac{-d}{d a}\right) \bar{Q}\left(\frac{-d}{d b}\right) \\
& \quad\left(\left.\frac{1}{i \Delta \pi^{1 / 2}} \int_{(1 / 2)} e^{\left(s-s_{0}\right)^{2} \Delta^{-2}} \zeta(s+\alpha) \zeta(1-s+\beta) \mathscr{B}(s, P) \mathscr{B}(1-s, \bar{P}) d s\right|_{a=b=-R}\right)
\end{aligned}
$$

where $\alpha=a / L$ and $\beta=b / L$. In the notation of the proposition, this is

$$
=\left.Q\left(\frac{-d}{d a}\right) \bar{Q}\left(\frac{-d}{d b}\right) g(a, b, w, P, \bar{P})\right|_{a=b=-R}
$$

Thus, by the proposition, the left side of (50) is

$$
\begin{aligned}
&=Q\left(\frac{-d}{d a}\right) \bar{Q}\left(\frac{-d}{d b}\right) \\
&\left.\left(|P(1)|^{2}+\left.\frac{1}{\theta} \frac{\partial}{\partial u} \frac{\partial}{\partial v} \int_{0}^{1} e^{-a(y+\theta u)-b(y+\theta v)} d y \int_{0}^{1} P(x+u) \bar{P}(x+v) d x\right|_{u=v=0}+o_{\delta}(1)\right)\right|_{a=b=-R} .
\end{aligned}
$$

Clearly, g is analytic in the complex variables a and b if $a, b \ll 1$. Thus, we may use Cauchy's integral formula and the fact that

$$
\begin{equation*}
\left.Q\left(\frac{-d}{d a}\right) e^{-a y}\right|_{a=-R}=Q(y) e^{R y} \tag{51}
\end{equation*}
$$

to conclude that the left side of (50) is

$$
\begin{aligned}
= & |Q(0) P(1)|^{2} \\
& +\left.\frac{1}{\theta} \frac{\partial}{\partial u} \frac{\partial}{\partial v} \int_{0}^{1} \int_{0}^{1} P(x+u) \bar{P}(x+v) e^{2 R y} Q(y+\theta u) \bar{Q}(y+\theta v) d x d y\right|_{u=v=0}+o_{\delta}(1) .
\end{aligned}
$$

Equation (50) easily follows from this.

6. Initial Lemmas

In this section we prove that the proposition is a consequence of the following two lemmas.

Lemma 1. Suppose that $y=T^{\theta}, 0<\theta<1, P_{1}$ and P_{2} are polynomials with $P_{1}(0)=P_{2}(0)=0$,

$$
b(n, P)=\mu(n) P\left(\frac{\log y / n}{\log y}\right)
$$

$L=\log T, \alpha=a / L, \beta=b / L$ with $a, b \ll 1$ and

$$
\Sigma\left(\alpha, \beta, P_{1}, P_{2}\right)=\sum_{h, k \leqq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{h^{1+\alpha} k^{1+\beta}}(h, k)^{1+\alpha+\beta} .
$$

Then, as $T \rightarrow \infty$

$$
\begin{aligned}
\Sigma\left(\alpha, \beta, P_{1}, P_{2}\right) & \left.\sim \frac{1}{\theta L} \frac{\partial}{\partial u} \frac{\partial}{\partial v} e^{a \theta u+b \theta v} \int_{0}^{1} P_{1}(x+u) P_{2}(x+v) d x\right|_{u=v=0} \\
& =\frac{1}{\theta L} \int_{0}^{1}\left(P_{1}^{\prime}(x)+a \theta P_{1}(x)\right)\left(P_{2}^{\prime}(x)+b \theta P_{2}(x)\right) d x
\end{aligned}
$$

Proof. We give a sketch, as this sort of mean is worked out in Conrey [3], Section 6, using Lemmas 10 and 11 of that paper. We write

$$
\begin{aligned}
(h, k)^{1+\alpha+\beta} & =\sum_{\substack{d|h \\
d| k}} \sum_{e \mid d} \mu(e)\left(\frac{d}{e}\right)^{1+\alpha+\beta} \\
& =\sum_{\substack{d|h \\
d| k}} d^{1+\alpha+\beta} F(d, 1+\alpha+\beta)
\end{aligned}
$$

where

$$
F(d, s)=\prod_{p \mid d}\left(1-p^{-s}\right)
$$

Next we change the order of summation, so that the sum over d is on the outside and on the inside we have a product of a sum over $h^{\prime}=h / d$ and a sum over $k^{\prime}=k / d$. The sums over h^{\prime} and k^{\prime} are evaluated using Lemma 10 and the result is evaluated using Lemma 11. After some simplification, we have our result. (More details may be found in Section 6 of Conrey [3].)

Lemma 2. Let g be as in the proposition and let Σ be as in Lemma 1. Assume the hypotheses of the proposition. Then

$$
g\left(a, b, w, P_{1}, P_{2}\right)=\frac{\sum\left(b, a, P_{1}, P_{2}\right)-e^{-a-b} \sum\left(-a,-b, P_{1}, P_{2}\right)}{\alpha+\beta}+o_{\delta}(1)
$$

uniformly in a, b, and w.
Proof of the proposition. Let

$$
\sigma\left(a, b, P_{1}, P_{2}\right)=\frac{1}{\theta} \int_{0}^{1}\left(P_{1}^{\prime}(x)+a \theta P_{1}(x)\right)\left(P_{2}^{\prime}(x)+b \theta P_{2}(x)\right) d x
$$

so that by Lemma 1 ,

$$
\begin{equation*}
\Sigma\left(a, b, P_{1}, P_{2}\right) \sim \frac{1}{L} \sigma\left(a, b, P_{1}, P_{2}\right) \tag{52}
\end{equation*}
$$

Then

$$
\begin{align*}
\sigma\left(a, b, P_{1}, P_{2}\right)-\sigma\left(-b,-a, P_{1}, P_{2}\right) & =(a+b) \int_{0}^{1}\left(P_{1}^{\prime}(x) P_{2}(x)+P_{1}(x) P_{2}^{\prime}(x)\right) d x \tag{53}\\
& =\left.(a+b) P_{1}(x) P_{2}(x)\right|_{0} ^{1}=(a+b) P_{1}(1) P_{2}(1)
\end{align*}
$$

for any a and b. Thus, by Lemma 2 and (52) and (53),

$$
\begin{aligned}
g & \sim(a+b)^{-1}\left[\sigma(-a,-b)+(a+b) P_{1}(1) P_{2}(1)-e^{-a-b} \sigma(-a,-b)\right] \\
& =\frac{1-e^{-a-b}}{a+b} \sigma\left(-a,-b, P_{1}, P_{2}\right)+P_{1}(1) P_{2}(1) \\
& =\left.\int_{0}^{1} e^{-(a+b) y} d y \frac{1}{\theta} \frac{\partial}{\partial u} \frac{\partial}{\partial v} e^{-a \theta u-b \theta v} \int_{0}^{1} P_{1}(x+u) P_{2}(x+v) d x\right|_{u=v=0}+P_{1}(1) P_{2}(1)
\end{aligned}
$$

as stated in the proposition.

7. The main term

In this section, we produce the main term of g in Lemma 2 after some preparatory lemmas.

Lemma 3. Suppose that $1<c<2$ and as usual,

$$
\chi(1-s)=2(2 \pi)^{-s} \Gamma(s) \cos \frac{\pi s}{2}
$$

Let

$$
J\left(y, s_{0}, \delta, \Delta\right)=\frac{1}{i \Delta \pi^{1 / 2}} \int_{(c)} e^{\left(s-s_{0}\right)^{2} \Delta^{-2}} \chi(1-s+\beta) y^{-s} d s
$$

Then

$$
J=y^{-\beta} \int_{0}^{\infty} v^{s_{0}-\beta} \exp \left(-\frac{\Delta^{2} \log ^{2} v}{4}\right)(e(-y v)+e(y v)) \frac{d v}{v}
$$

for any $y \neq 0, \Delta>0, s_{0}$ and β with $\operatorname{Re} \beta<c$.
Proof. By a change of variables,

$$
J=\frac{y^{-\beta}}{i \Delta \pi^{1 / 2}} \int_{(c-\operatorname{Re} \beta)} e^{\left(s+\beta-s_{0}\right)^{2} \Delta^{-2}} \chi(1-s) y^{-s} d s
$$

The lemma now follows from Lemma 2 of Balasubramanian, Conrey, and HeathBrown [2].

Lemma 4. Let

$$
D(s, \alpha, \beta, H / K)=\sum_{m, n} m^{-s-\alpha} n^{-s-\beta} e(m n H / K)
$$

where H, K are integers $(K \geqq 1)$ with $(H, K)=1$ and $\alpha, \beta, s \in \mathbb{C}$. Then

$$
D(s, \alpha, \beta, H / K)-K^{1-\alpha-\beta-2 s} \zeta(s+\alpha) \zeta(s+\beta)
$$

is an entire function of s. Also, D satisfies the functional equation

$$
\begin{aligned}
D(s, \alpha, \beta, H / K)=-2\left(\frac{K}{2 \pi}\right)^{1-2 s-\alpha-\beta} & \Gamma(1-s-\alpha) \Gamma(1-s-\beta) \\
& {\left[\cos \frac{\pi}{2}(2 s+\alpha+\beta) D\left(1-s,-\alpha,-\beta, \frac{-\bar{H}}{K}\right)-\cos \frac{\pi}{2}(\alpha-\beta) D\left(1-s,-\alpha,-\beta, \frac{\bar{H}}{K}\right)\right] . }
\end{aligned}
$$

Moreover, if $\alpha, \beta \ll(\log K)^{-1}$, then $D(0, \alpha, \beta, H / K) \ll_{\varepsilon} K^{1+\varepsilon}$ for any $\varepsilon>0$.
All of these assertions are easily proven using the techniques of Estermann's original paper [8]. Basically, one uses the fact that

$$
D(s, \alpha, \beta, H / K)=\sum_{a=1}^{K} \zeta(s+\alpha, a, K) \zeta(s+\beta, a H / K)
$$

where

$$
\zeta(s, a, K)=\sum_{n \equiv a \bmod K} n^{-s}
$$

and

$$
\zeta(s, a / K)=\sum_{n=1}^{\infty} e(a n / K) n^{-s} .
$$

These functions satisfy the functional equations

$$
\zeta(s, a, K)=G(s) K^{-s}\left[e^{\pi i s / 2} \zeta(1-s, a / K)-e^{-\pi i s / 2} \zeta(1-s,-a / K)\right]
$$

and

$$
\zeta(s, a / K)=G(s) K^{1-s}\left[e^{\pi i s / 2} \zeta(1-s,-a, K)-e^{-\pi i s / 2} \zeta(1-s, a, K)\right]
$$

where

$$
G(s)=-i(2 \pi)^{s-1} \Gamma(1-s) .
$$

The details are in Estermann's paper [8].
Lemma 5. Let H and K be relatively prime integers with $K>0$. Suppose that $\alpha, \beta, x \in \mathbb{C}$ with $\operatorname{Im} x>0$ and let

$$
S(x, \alpha, \beta, H / K)=\sum_{m, n} m^{-\alpha} n^{-\beta} e(m n H / K) e(m n x)
$$

If $c>1$, then

$$
\begin{aligned}
& S(x, \alpha, \betaH / K) \\
&= \zeta(1-\alpha+\beta) K^{-1+\alpha-\beta} z^{-1+\alpha} \Gamma(1-\alpha)+\zeta(1-\beta+\alpha) K^{-1+\beta-\alpha} z^{-1+\beta} \Gamma(1-\beta) \\
&+D(0, \alpha, \beta, H / K)+\frac{1}{\pi i} \int_{(c)} z^{s-1} \Gamma(1-s) \Gamma(s-\alpha) \Gamma(s-\beta)(K / 2 \pi)^{2 s-1-\alpha-\beta} \\
& \times[\cos \pi / 2(2 s+\alpha+\beta) D(s,-\alpha,-\beta,-\bar{H} / K) \\
&\quad+\cos \pi / 2(\alpha-\beta) D(s,-\alpha,-\beta, \bar{H} / K)] d s .
\end{aligned}
$$

Proof. By Mellin's formula,

$$
S=\sum_{m, n} m^{-\alpha} n^{-\beta} e(m n H / K) \frac{1}{2 \pi i} \int_{(c)} \Gamma(s)(-2 \pi i m n x)^{-s} d s
$$

where we take $c>1$. Thus,

$$
S=\frac{1}{2 \pi i} \int_{(c)} D(s, \alpha, \beta, H / K) \Gamma(s) z^{-s} d s
$$

where $z=-2 \pi i x$. We move the path of integration to $(1-c)$ and then make the change of variable $s \rightarrow 1-s$. Thus, by Cauchy's theorem and Lemma 4,

$$
\begin{aligned}
S= & \zeta(1-\alpha+\beta) K^{-1+\alpha-\beta} z^{-1+\alpha} \Gamma(1-\alpha) \\
& +\zeta(1-\beta+\alpha) K^{-1+\beta-\alpha} z^{-1+\beta} \Gamma(1-\beta) \\
& +D(0, \alpha, \beta, H / K)+\frac{1}{\pi i} \int_{(c)} z^{s-1} \Gamma(1-s) \Gamma(s-\alpha) \Gamma(s-\beta)(K / 2 \pi)^{2 s-1-\alpha-\beta} \\
& \times[\cos \pi / 2(2 s+\alpha+\beta) D(s,-\alpha,-\beta,-\bar{H} / K) \\
& +\cos \pi / 2(\alpha-\beta) D(s,-\alpha,-\beta, \bar{H} / K)] d s
\end{aligned}
$$

which completes the proof of the lemma.
Lemma 6. Let w be real with $T \leqq w \leqq 2 T$ and let $s_{1}=1 / 2+\beta+i w$ where $\beta=b / L$ with $b \in \mathbb{C}, b \ll 1$. Let $\delta>0, \pi / 2>\lambda>0, \Delta=T^{1-\delta}$, and $\alpha=a / L$ with $a \in \mathbb{C}, \mathrm{a} \ll 1$. Define

$$
r\left(s_{1}, a\right)=\int_{L_{\lambda}} v^{s_{1}} \exp \left(-\Delta^{2}\left(\log ^{2} v\right) / 4\right)(v-1)^{-1+\alpha} d v / v
$$

where L_{λ} is the half-line $L_{\lambda}=\left\{r e^{i \lambda}: r \geqq 0\right\}$. Then

$$
r\left(s_{1}, a\right)=-\pi i e^{-a}+o_{\delta}(1)
$$

as $T \rightarrow \infty$, uniformly in a and s_{1}.
Proof. We change the path of integration to the positive real axis except for a small semicircular indentation into the upper half-plane centered at $v=1$. Now let $v=e^{x}$. Writing $w=\omega T, \alpha=a / L, \beta=b / L$, and $\Delta=T^{1-\delta}$, we have

$$
r\left(s_{1}, a\right)=\int_{\&} e^{b x / L} e^{i \omega T x} \exp \left(-\frac{T^{2-2 \delta} x^{2}}{4}\right)\left(e^{x}-1\right)^{a / L} \frac{d x}{2 \sinh x / 2}
$$

where \mathscr{C} is the path consisting of the entire real axis from $-\infty$ to ∞ apart from a small semicircular indentation into the upper half plane centered at $x=0$. Now let

$$
R\left(s_{1}, a\right)=\int_{\mathscr{C}} e^{b x / L} e^{i \omega T x} \exp \left(-\frac{T^{2-2 \delta} x^{2}}{4}\right) x^{a / L} d x / x
$$

and consider $r\left(s_{1}, a\right)-R\left(s_{1}, a\right)$. Since

$$
q(a, x, T)=\frac{\left(e^{x}-1\right)^{a / L}}{2 \sinh x / 2}-\frac{x^{a / L}}{x} \ll|x|^{a / L}
$$

as $|x| \rightarrow 0$, it follows that

$$
R\left(s_{1}, a\right)-r\left(s_{1}, a\right)=\lim _{\eta \rightarrow 0^{+}} \int_{-\infty}^{-\eta}+\int_{-\eta}^{\infty} e^{b x / L} e^{i \omega T x} \exp \left(-\frac{T^{2-2 \delta} x^{2}}{4}\right) q(a, x, T) d x
$$

The convergence is uniform in T, ω, b, and a for $T \geqq 1$, and $a, b, \omega \ll 1$. Taking the limit as $T \rightarrow \infty$, we get 0 for the right side whence

$$
r\left(s_{1}, a\right)=R\left(s_{1}, a\right)+o_{\delta}(1)
$$

uniformly in ω, b, and a. In the integral defining R let $y=T x$. Then

$$
R\left(s_{1}, a\right)=e^{-a} \int_{\boldsymbol{\&}} e^{b y / T L} e^{i \omega y} \exp \left(-\frac{T^{2-2 \delta} x^{2}}{4}\right) y^{a / L} d y / y
$$

Again, for fixed $\delta>0$ the convergence is uniform in a, b, and $\omega \ll 1$. Letting $T \rightarrow \infty$ we have, by the residue theorem,

$$
\lim _{T \rightarrow \infty} R\left(s_{1}, a\right)=e^{-a} \int_{\mathscr{C}} e^{i \omega y} d y / y=e^{-a} \int_{\mathscr{C}} e^{i y} d y / y=-\pi i e^{-a}
$$

Thus, $R\left(s_{1}, a\right)=-\pi i e^{-a}+o_{\delta}(1)$ whence the lemma follows.
Now we begin the proof of Lemma 2. First of all we move the path of integration in the definition of g to (c) where $c=1+\eta$ with $\eta>0$ small and fixed. Since $\alpha, \beta \ll 1 / L$ it will be the case that $|\alpha|,|\beta|<\eta$ if T is sufficiently large. Thus, in moving the path of integration we cross a pole at $s=1-\alpha$. The contribution from the residue is negligible since for $s \ll 1$,

$$
\begin{equation*}
\exp \left(\left(s-s_{0}\right)^{2} \Delta^{-2}\right) \ll \exp \left(T^{-2 \delta}\right) \ll T^{-20} \tag{54}
\end{equation*}
$$

because of the definition of Δ and s_{0}. We use the functional equation (5) on $\zeta(1-s+\beta)$; then we interchange summation and integration and have

$$
\begin{aligned}
g & =\sum_{h, k \leqq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{k} \sum_{m, n} m^{-\alpha} n^{\beta} J\left(m n h / k, s_{0}, \beta, \Delta\right)+o_{\delta}(1) \\
& =\sum_{h, k \leqq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{k^{1-\beta} h^{\beta}} \sum_{m, n} m^{-\alpha-\beta} \int_{0}^{\infty} v^{s_{0}-\beta} \exp \left(\frac{-\Delta^{2} \log ^{2} v}{4}\right) \\
& \times\left(e\left(\frac{m n h v}{k}\right)+e\left(-\frac{m n h v}{k}\right)\right) \frac{d v}{v}+o_{\delta}(1) .
\end{aligned}
$$

We express the integral as a sum of two integrals and use Cauchy's theorem to move one path to L_{λ} and the other to $L_{-\lambda}$ where $\lambda>0$ is small and L_{λ} is the half-line $\left\{r e^{i \lambda}: r \geqq 0\right\}$. We interchange summation over m and n with the integration and have

$$
\begin{equation*}
g=\sum_{h, k \leqq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{k^{1-\beta} h^{\beta}}\left(I_{1}+I_{2}\right)+o_{\delta}(1) \tag{55}
\end{equation*}
$$

where, in the notation of Lemma 5,

$$
\begin{equation*}
I_{1}=\int_{L_{\lambda}} v^{s_{1}} \exp \left(\frac{-\Delta^{2} \log ^{2} v}{4}\right) S(h / k(v-1), \alpha+\beta, 0, h / k) \frac{d v}{v} \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\int_{L-\lambda} v^{s_{1}} \exp \left(\frac{-\Delta^{2} \log ^{2} v}{4}\right) S(-h / k(v-1), \alpha+\beta, 0, h / k) \frac{d v}{v} \tag{57}
\end{equation*}
$$

Then, by Lemma 5, with $H=h /(h, k)$ and $K=k /(h, k)$,

$$
\begin{equation*}
I_{1}=M_{1}+R_{1}+E_{1} \tag{58}
\end{equation*}
$$

where

$$
\begin{align*}
M_{1}= & \int_{L_{\lambda}} v^{s_{1}} \exp \left(\frac{-\Delta^{2} \log ^{2} v}{4}\right) \tag{59}\\
& \times\left[\zeta(1-\alpha-\beta) \Gamma(1-\alpha-\beta) K^{-1+\alpha+\beta}\left(-2 \pi i \frac{h}{k}(v-1)\right)^{-1+\alpha+\beta}\right. \\
& \left.+\zeta(1-\alpha-\beta) K^{-1-\alpha-\beta}(-2 \pi i h / k(v-1))^{-1}\right] \frac{d v}{v} \\
& R_{1}=D(0, \alpha+\beta, H / K) \int_{L_{\lambda}} v^{s_{1}} \exp \left(\frac{-\Delta^{2} \log ^{2} v}{4}\right) \frac{d v}{v} \tag{60}
\end{align*}
$$

and

$$
\begin{equation*}
E_{1}=\int_{L_{\lambda}} v^{s_{1}} \exp \left(\frac{-\Delta^{2} \log ^{2} v}{4}\right) F_{1}(v) \frac{d v}{v} \tag{61}
\end{equation*}
$$

with

$$
\begin{align*}
F_{1}(v)= & \frac{1}{\pi i} \int_{(c)}(-2 \pi i h / k(v-1))^{s-1} \Gamma(1-s) \Gamma(s-\alpha-\beta) \Gamma(s)\left(\frac{K}{2 \pi}\right)^{2 s-1-\alpha-\beta} \tag{62}\\
& \times[\cos (\pi / 2(2 s+\alpha+\beta)) D(s,-\alpha-\beta, 0,-\bar{H} / K) \\
& +\cos (\pi / 2(\alpha+\beta)) D(s,-\alpha-\beta, 0, \bar{H} / K)] d s
\end{align*}
$$

There are similar expressions for $I_{2}=M_{2}+R_{2}+E_{2}$.
Now in the notation of Lemma 6,

$$
\begin{align*}
M_{1}= & \zeta(1-\alpha-\beta) \Gamma(1-\alpha-\beta)(-2 \pi i)^{-1+\alpha+\beta} H^{-1+\alpha+\beta} r\left(s_{1}, \alpha+\beta\right) \tag{63}\\
& +\zeta(1+\alpha+\beta)(-2 \pi i)^{-1} H^{-1} K^{-\alpha-\beta} r\left(s_{1}, 1\right)
\end{align*}
$$

Now $\zeta(s) \sim 1 /(s-1)$ for s near 1 and $\Gamma(1)=1$. Thus, by Lemma 6,

$$
\begin{align*}
& \sum_{h, k \leqq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{k^{1-\beta} h^{\beta}} M_{1} \tag{64}\\
& \quad=\frac{-1}{2(\alpha+\beta)}\left(e^{-a-b} \Sigma\left(-a,-b, P_{1}, P_{2}\right)-\Sigma\left(b, a, P_{1}, P_{2}\right)\right)(1+o(1))
\end{align*}
$$

We get exactly the same expression for the sum of the M_{2}. Thus, from the terms with M_{1} and M_{2} we get the main term of g in Lemma 2.

8. The error terms

In this section we complete the proof of Lemma 2 which completes the proofs of the theorems. This section is where the important work of Deshouiller and Iwaniec on averages of Kloosterman sums enters.

It remains to bound

$$
\begin{equation*}
\sum_{h, k \leq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{h^{\beta} k^{1-\beta}}\left(R_{i}+E_{i}\right) \tag{65}
\end{equation*}
$$

for $i=1$ and 2 . As the situation is identical for $i=2$ we deal with $i=1$ only. As far as R_{i} is concerned, since, by Lemma 4 of [2]

$$
\begin{equation*}
\int_{L_{\lambda}} v^{s_{1}} \exp \left(-\Delta^{2} \frac{\log ^{2} v}{4}\right) \frac{d v}{v}=\frac{2 \pi^{1 / 2}}{\Delta} \exp \left(\frac{s_{1}^{2}}{\Delta^{2}}\right) \ll \exp \left(T^{-2 \delta}\right) \tag{66}
\end{equation*}
$$

it follows from Lemma 4 that

$$
R_{1} \ll T^{-20}
$$

whence the contribution to (65) from R_{1} is $\ll T^{-10}$.

Now by (61) and (62), the part of (65) which involves E_{i} may be written as a sum of two terms, one of which is

$$
\begin{equation*}
Z=\int_{L_{\lambda}} \int_{(c)} G\left(\alpha+\beta, v, s_{1}, \Delta, s\right) \mathscr{M}(\alpha, \beta, s) d s d v \tag{67}
\end{equation*}
$$

where

$$
\begin{align*}
G\left(\alpha, v, s_{1}, \Delta, s\right)= & -i v^{s_{1}} \exp \left(-\Delta^{2} \frac{\log ^{2} v}{4}\right) \Gamma(s) \Gamma(1-s) \Gamma(s-\alpha)(2 \pi)^{\alpha-s} \tag{68}\\
& \times \cos (\pi / 2(2 s+\alpha)) e^{-\pi i s / 2}(v-1)^{s-1} v^{-1}
\end{align*}
$$

and

$$
\begin{equation*}
\mathscr{M}(\alpha, \beta, s)=\sum_{m, n} m^{\alpha+\beta-s} n^{-s} \sum_{h, k \leqq y} \frac{b\left(h, P_{1}\right) b\left(k, P_{2}\right)}{h^{1-s+\beta} k^{1-s+\alpha}}(h, k)^{1-2 s+\alpha+\beta} e\left(\frac{m n \bar{H}}{K}\right) \tag{69}
\end{equation*}
$$

where $H=h /(h, k)$ and $K=k /(h, k)$. The other term is slightly less complicated and may be treated the same way as this one will be. Replacing $m n$ by n and arranging the sums over h and k according to the g.c.d. of h and k we get

$$
\begin{equation*}
\mathscr{M}(\alpha, \beta, s)=\sum_{g \leq y} 1 / g \sum_{N, U, V} \mathscr{M}(N, U, V, \alpha, \beta, g, s) \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{M}(N, U, V, \alpha, \beta, g, s)=\sum_{n \sim N} \frac{\delta(n)}{n^{s}} \sum_{\substack{u \sim U \\(u, v)=1}} \sum_{v \sim V} \frac{b\left(u g, P_{1}\right) b\left(v g, P_{2}\right)}{u^{1-s+\beta} v^{1-s+\alpha}} e\left(\frac{n \bar{u}}{v}\right) \tag{71}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta(n)=\sum_{d \mid n} d^{\alpha+\beta} \tag{72}
\end{equation*}
$$

and where the notation $x \sim X$ means $X<x \leqq 2 X$, and the sums on U and V have $\ll \log y$ terms with $U, V \ll y / g$ and the sum on N is for $N=2^{J}, J=0,1,2, \ldots$. Now Z is a sum of terms of the shape

$$
\begin{equation*}
Z(N, U, V)=\int_{L_{\lambda}} \int_{(c)} G\left(\alpha+\beta, v, s_{1}, \Delta, s\right) \mathscr{M}(N, U, V, \alpha, \beta, g, s) d s d v \tag{73}
\end{equation*}
$$

If $U V \geqq T N$, then we move the s path of integration to $s=\eta+i t$; otherwise we leave it at $s=c+i t=1+\eta+i t$. (Recall that $\eta>0$ is fixed, to be chosen at the end of the proof in terms of ε.) In moving the path of integration, we cross a pole at $s=1$ with residue

$$
\begin{gather*}
\Gamma(1-\alpha)(2 \pi)^{\alpha-1} \cos (\pi / 2(2+\alpha)) \mathscr{M}(N, U, V, \alpha, \beta, g, 1) \tag{74}\\
\int_{L_{\lambda}} v^{s_{1}} \exp \left(-\Delta^{2} \frac{\log ^{2} v}{4}\right) \frac{d v}{v} \ll{ }_{\delta} T^{-10}
\end{gather*}
$$

by (66). To complete the proof we require two lemmas.

Lemma 7. Let G be as in (68) with the usual conventions about s_{1}, Δ, and α. Suppose that $c=\eta$ or $c=1+\eta$ where $\eta>0$ is a small fixed number. Let $\lambda=1 / T$. Then

$$
\int_{L_{\lambda}} \int_{(c)}(1+|s|)\left|G\left(\alpha, v, s_{1}, \Delta, s\right) d s d v\right|<_{\varepsilon, \eta} \Delta^{-c-5 / 2} T^{5 / 2+\eta+\varepsilon}
$$

for any $\varepsilon>0$, uniformly in α and s_{1}.
The proof is exactly the same as that of Lemma 5 of [2].
Lemma 8. Let $\mathscr{M}(N, U, V, \alpha, \beta, g, s)$ be as in (71). Suppose that $y \leqq T^{8 / 13} ; 1 \leqq U$, $V \leqq y ; \eta>0$ and $s=c+i t$ with $c=\eta$ if $U V \geqq T N$ and $c=1+\eta$ if $U V<T N$. Then

$$
\mathscr{M}(N, U, V, \alpha, \beta, g, s)<_{\varepsilon, \eta}(1+|s|)(T N)^{\varepsilon} y^{2 \eta} T^{c} N^{-\eta}\left(T^{-1 / 2} y^{7 / 8}+T^{-1} y^{7 / 4}\right)
$$

uniformly for $a, b \ll 1$, all t, and all $g \ll y / V$.
Before giving the proof of Lemma 8 we complete the proof of Lemma 2. We have by Lemmas 7 and 8

$$
\begin{align*}
& Z=\sum_{g \leqq y} \frac{1}{g} \sum_{N, U, V} Z(N, U, V) \tag{75}\\
& \lll \varepsilon, \eta \\
& \Delta^{-7 / 2} T^{5 / 2+2 \varepsilon} y^{2 \eta+\varepsilon}\left(T^{1 / 2} y^{7 / 8}+y^{7 / 4}\right) \sum_{N, U, V} N^{\varepsilon-\eta}+\sum_{\substack{N, U, V \\
N T \leqq U V}} T^{-1} \\
& \ll{ }_{\varepsilon} \Delta^{-7 / 2} T^{5 / 2+2 \varepsilon} y^{3 \varepsilon}\left(T^{1 / 2} y^{7 / 8}+y^{7 / 4}\right)
\end{align*}
$$

on taking $\eta=\varepsilon / 2$. Since $\theta<7 / 4$, this is $o_{\varepsilon}(1)$ as $T \rightarrow \infty$ if δ and ε are sufficiently small.
Proof of Lemma 8. Initially we use the fact that the variable g can be separated from u and from v since, for example,

$$
P\left(\frac{\log y /(u g)}{\log y}\right)
$$

is a sum of $\ll 1$ terms of the shape a constant times

$$
\left(1-\frac{\log u+\log g}{\log y}\right)^{k}
$$

which is itself a sum of $\ll 1$ terms of the shape

$$
\left(\frac{\log u}{\log y}\right)^{k_{1}}\left(\frac{\log g}{\log y}\right)^{k_{2}}
$$

Also, $\mu(u g)=\mu(u) \mu(g)$ if $(u, g)=1$ and $\mu(u g)=0$ if $(u, g)>1$. Thus, $\mathscr{M}(N, U, V, \alpha, \beta, g, s)$ is a sum of $\ll 1$ terms that are themselves

$$
\ll N^{-c}(U V)^{1-c}|S|
$$

where

$$
\begin{equation*}
S=\sum_{n \sim N} r(n) \sum_{\substack{u \sim U \\(u, v g)=1}} \sum_{v \sim V} \mu(u) r^{*}(u) r(v) e\left(\frac{n \bar{u}}{v}\right) \tag{76}
\end{equation*}
$$

Here the functions r may be different at each occurrence; but they all may be described as follows: $r()$ depends on its argument as well as $g, s, \alpha, \beta, N, U$, and V and $r(n) \ll_{\varepsilon} n^{\varepsilon}$ for any $\varepsilon>0$ uniformly in $g, s, \alpha, \beta, N, U$, and V. In addition, r^{*} is an r function which is smooth in its dependency on u, satisfying

$$
\begin{equation*}
\frac{d}{d u} r^{*}(u) \ll(1+|s|) u^{-1} r(u) \tag{77}
\end{equation*}
$$

for some $r(u)$, and having the property of separability, i.e.,

$$
\begin{equation*}
r^{*}(a b)=r^{*}(a) r^{*}(b) \tag{78}
\end{equation*}
$$

where the r^{*} 's here are not necessarily the same at each occurrence.
We now use Vaughan's identity to get a new expression for $\mu(n)$; equating coefficients on both sides of the identity $1 / \zeta=1 / \zeta(1-\zeta M)^{2}+2 M-\zeta M^{2}$ where

$$
\begin{equation*}
M=M(s)=\sum_{n \leqq W} \mu(n) n^{-s}, \quad W=U^{1 / 4} \tag{79}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\mu(u)=c_{1}(u)+c_{2}(u)+c_{3}(u) \tag{80}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{1}(u)=\sum_{\substack{\alpha \beta \gamma=u \\ \alpha \geqq W, \beta \geqq W}} \mu(\gamma) c_{4}(\alpha) c_{4}(\beta) \tag{81}
\end{equation*}
$$

with

$$
\begin{align*}
& c_{4}(\alpha)=-\sum_{\substack{d_{1} d_{2}=\alpha \\
d_{1} \leqq W}} \mu\left(d_{1}\right) ; \tag{82}\\
& c_{2}(u)=\left\{\begin{array}{lll}
2 \mu(u) & \text { if } \quad u \leqq W, \\
0 & \text { if } & u>W ;
\end{array}\right. \tag{83}\\
& c_{3}(u)=-\sum_{\substack{\alpha \beta \beta=u \\
\alpha \leqq W \\
\beta \leqq W}} \mu(\alpha) \mu(\beta) . \tag{84}
\end{align*}
$$

This leads to $S=S_{1}+S_{2}+S_{3}$ where

$$
\begin{equation*}
S_{i}=\sum_{n \sim N} r(n) \sum_{\substack{u \sim U \\(u, v g)=1}} \sum_{v \sim V} c_{i}(u) r^{*}(u) r(v) e\left(\frac{n \bar{u}}{v}\right) \tag{85}
\end{equation*}
$$

for $i=1,2$, and 3 . We treat each of these sums in a slightly different way. We note also that it suffices to show that for any $\varepsilon>0$,

$$
\begin{equation*}
S_{i} \ll \varepsilon_{\varepsilon}(y N)^{\varepsilon} \max (T N, U V) y^{7 / 8} T^{-1 / 2} \tag{86}
\end{equation*}
$$

the lemma then follows with a different value of ε.
We start with S_{2} which is trivially estimated by

$$
\begin{align*}
S_{2} & <_{\varepsilon}(y N)^{\varepsilon} N W V<_{\varepsilon}(y N)^{\varepsilon}(T N) T^{-1} U^{1 / 4} V \tag{87}\\
& <_{\varepsilon}(y N)^{\varepsilon}(T N) T^{-1} y^{5 / 4}
\end{align*}
$$

Thus S_{2} satisfies (86) since $y \leqq T^{4 / 3}$. Next we consider S_{1}. Grouping together γ and the larger of α and β in (81) into a variable b and calling the other variable a, we see that S_{1} can be split into $<_{\varepsilon} y^{\varepsilon}$ sums of the shape

$$
\begin{equation*}
S_{1}^{\prime}=\sum_{n \sim N} r(n) \sum_{\substack{\alpha \sim A A \\ b \sim B \sim V \\(a b, v)=1}} \sum_{v \sim V} r(a) r(b) r(v) e\left(\frac{n \bar{a} \bar{b}}{v}\right) \tag{88}
\end{equation*}
$$

where $U \ll A B \ll U$ and $W \leqq A \leqq B$. Now we have the following lemma, which is a case of Lemma 1 of Deshouillers and Iwaniec [7].

Lemma 9. Suppose that $|c(a, n)| \leqq 1$ and $U \ll A B \ll U$. Then for any $\varepsilon>0$

$$
\begin{gathered}
\sum_{\substack{v \sim V \\
(b, v)=1}} \sum_{b \sim B}\left|\sum_{n \sim N} \sum_{\substack{\sim \sim A \\
(a, v)=1}} c(a, n) e\left(\frac{n \bar{a} \bar{b}}{v}\right)\right| \\
<_{\varepsilon}(N U V)^{1 / 2+\varepsilon}\left\{\left(U V A^{-1}\right)^{1 / 2}+(A+N)^{1 / 4}\left[U V A^{-1}(N+A)\left(V+A^{2}\right)+N U^{2}\right]^{1 / 4}\right\} .
\end{gathered}
$$

Using the fact that $x^{a}+y^{a} \ll(x+y)^{a} \ll x^{a}+y^{a}$ for $a \geqq 0$ and $x, y \geqq 1$ it is not hard to see that the right hand side of the relation in the proposition is

$$
\begin{equation*}
<_{\varepsilon}(N y)^{\varepsilon}\left(\sum_{(a, n, u, v) \in E} A^{a} N^{n} U^{u} V^{v}\right)^{1 / 4} \tag{89}
\end{equation*}
$$

for any $\varepsilon>0$ where

$$
\begin{gather*}
E=\{(-2,2,4,4),(-1,4,3,4),(1,4,3,3),(1,2,3,4), \tag{90}\\
(3,2,3,3),(0,4,4,2),(1,3,4,2)\} .
\end{gather*}
$$

Clearly, the fact that our coefficients $r(n)$ satisfy

$$
r(n) \ll_{\varepsilon} n^{\varepsilon}
$$

for any $\varepsilon>0$ does not affect the use of the bound (89) for S_{2}^{\prime}. We now show how to bound $A^{a} N^{n} U^{u} V^{v}$ for (a, n, u, v) $\in E$, and $U^{1 / 4} \ll A \ll U^{1 / 2}$.

We have two cases to deal with: $a \geqq 0$ and $a<0$. If $a \geqq 0$ then

$$
\begin{align*}
A^{a} N^{n} U^{u} V^{v} & \ll(T N)^{n}(U V)^{4-n} T^{-n} U^{a / 2+n+u-4} V^{n+v-4} \tag{91}\\
& \ll(\max \{T N, U V\})^{4} T^{-n} y^{2 n+u+v-8+a / 2}
\end{align*}
$$

since for all $(a, n, u, v) \in E, n+u \geqq 4$ and $n+v \geqq 4$ so that we may use $U, V \ll y$. Now we have to show that

$$
\begin{equation*}
T^{-n} y^{2 n+u+v-8+a / 2} \ll T^{-2} y^{7 / 2} \tag{92}
\end{equation*}
$$

for all $(a, n, u, v) \in E$ with $a \geqq 0$. The terms we get for the left side are

$$
T^{-4} y^{13 / 2}, T^{-2} y^{7 / 2}, T^{-2} y^{7 / 2}, T^{-4} y^{6}, \text { and } T^{-3} y^{9 / 2}
$$

Clearly (92) holds since $y \ll T^{2 / 3}$. For $a<0$ we use

$$
\begin{align*}
A^{a} N^{n} U^{u} V^{v} & \ll(T N)^{n}(U V)^{4-n} T^{-n} U^{a / 4+n+u-4} V^{n+v-4} \tag{93}\\
& \ll(\max \{T N, U V\})^{4} T^{-n} y^{2 n+u+v-8+a / 4}
\end{align*}
$$

since for all $(a, n, u, v) \in E$ with $a<0$ we have $a / 4+n+u-4 \geqq 0$. Now we have to show that

$$
\begin{equation*}
T^{-n} y^{2 n+u+v-8+a / 4} \ll T^{-2} y^{7 / 2} \tag{94}
\end{equation*}
$$

for both $(a, n, u, v) \in E$ with $a<0$. The terms we get for the left side are

$$
\begin{equation*}
T^{-2} y^{7 / 2} \quad \text { and } \quad T^{-4} y^{27 / 4} \tag{95}
\end{equation*}
$$

and so (94) holds since $y \ll T^{8 / 13}$. It follows now that

$$
\begin{equation*}
S_{1}^{\prime}<_{\varepsilon} \max (T N, U V)(y N)^{\varepsilon} T^{-1 / 2} y^{7 / 8} \tag{96}
\end{equation*}
$$

Finally, we consider S_{3}. Grouping together α and β into a variable a and replacing γ by b we see that S_{3} can be split into $<_{\varepsilon} y^{\varepsilon}$ sums of the shape

$$
\begin{equation*}
S_{3}^{\prime}=\sum_{v \sim V} r(v) \sum_{\substack{b \sim B \\(b, v g)=1}} r^{*}(b) \sum_{n \sim N} r(n) \sum_{\substack{a \sim A \\(a, v)=1}} r(a) e\left(\frac{n \bar{a} \bar{b}}{v}\right) \tag{97}
\end{equation*}
$$

where $U \ll A B \ll U$ and $A \ll W^{2}=U^{1 / 2}$. Now if $A \gg U^{1 / 4}$, then the treatment is exactly as with S_{2} above using Lemma 9. If $A \ll U^{1 / 4}$, then we sum over b first using Weil's bound for the Kloosterman sum. Thus, Weil's bound implies that

$$
\begin{equation*}
\sum_{\substack{B \leq b<B+x \\(b, v g)=1}} e\left(\frac{l \bar{b}}{v}\right)<_{\varepsilon} v^{1 / 2}(v g)^{\varepsilon}(l, v)\left(1+B v^{-1}\right) \tag{98}
\end{equation*}
$$

so that by a summation by parts (using the bound in (77) for $\frac{d}{d x} r^{*}(x)$) we get

$$
\begin{align*}
S_{3}^{\prime} & <_{\varepsilon}(1+|s|)(y N)^{\varepsilon} A V^{1 / 2}\left(1+B V^{-1}\right) \sum_{n \sim N} \sum_{v \sim V}(n, v) \tag{99}\\
& <_{\varepsilon}(1+|s|)(y N)^{\varepsilon} A N V^{1 / 2}(V+B) \\
& <_{\varepsilon}(1+|s|)(y N)^{\varepsilon}\left(A N V^{3 / 2}+U N V^{1 / 2}\right) .
\end{align*}
$$

If $A \ll U^{1 / 4}$, then

$$
\begin{aligned}
A N V^{3 / 2}+U N V^{1 / 2} & \ll N y^{7 / 4} \\
& \ll \max \{T N, U V\} T^{-1} y^{7 / 4} .
\end{aligned}
$$

Thus, in any event

$$
S_{3}<_{\varepsilon}(1+|s|) \max \{T N, U V\}(y N)^{\varepsilon}\left(T^{-1} y^{7 / 4}+T^{-1 / 2} y^{7 / 8}\right)
$$

This completes the proof of the lemma and the theorems.
Note added in proof. We can improve Theorem 1 slightly. With $R=1.28$ and

$$
\begin{aligned}
Q(x)= & 0.492+0.602(1-2 x)-0.08(1-2 x)^{3} \\
& -0.06(1-2 x)^{5}+0.046(1-2 x)^{7}
\end{aligned}
$$

we have $\kappa \geqq 0.4088$.

References

[1] R. J. Anderson, Simple zeros of the Riemann zeta-function, J. Number Theory 17 (1983), 176-182.
[2] R. Balasubramanian, J. B. Conrey and D. R. Heath-Brown, Asymptotic mean square of the product of the Riemann zeta-function and a Dirichlet polynomial, J. reine angew. Math. 357 (1985), 161-181.
[3] J. B. Conrey, Zeros of derivatives of Riemann's xi-function on the critical line, J. Number Theory 16 (1983), 49-74.
[4] J. B. Conrey, Zeros of derivatives of Riemann's xi-function on the critical line, II, J. Number Theory 17 (1983), 71-75.
[5] J. B. Conrey, On the distribution of the zeros of the Riemann zeta-function, Topics in Analytic Number Theory, Austin 1985.
[6] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
[7] J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta function II, Acta Arith. 48 (1984), 305-312.
[8] T. Estermann, On the representation of a number as the sum of two products, P.L.M.S. (2) 31 (1930), 123-133.
[9] G. H. Hardy and J. E. Littlewood, The zeros of Riemann's zeta-function on the critical line, M.Z. 10 (1921), 283-317.
[10] D. R. Heath-Brown, Simple zeros of the Riemann zeta-function on the critical line, B.L.M.S. 11 (1979), 17-18.
[11] N. Levinson, More than one third of the zeros of Riemann's zeta-function are on $\sigma=1 / 2$, Adv. Math. 13 (1974), 383-436.
[12] N. Levinson, Deduction of semi-optional mollifier for obtaining lower bounds for $N_{0}(T)$ for Riemann's zeta function, Proc. Nat. Acad. Sci. USA 72 (1975), 294-297.
[13] B. Riemann, Über die Anzahl der Primzahlen unter eine gegebener Grösse, Monatsber. Akad. Berlin (1859), 671-680.
[14] A. Selberg, On the zeros of Riemann's zeta-function, Skr. Norske Vid. Akad. Oslo 10 (1942), 1-59.
[15] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second Ed., Oxford 1986.

Oklahoma State University, Stillwater, OK 74078, USA
Eingegangen 18. Januar 1988

[^0]: *) The author is currently at the Institute for Advanced Study, Princeton, where he is supported by a fellowship from the Alfred P. Sloan foundation and by a grant from NSF.

