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More than two fifths of the zeros
of the Riemann zeta function

are on the critical line
By J. B. Conrey*) at Stillwater

1. Introduction

In this paper we show that at least 2/5 of the zeros of the Riemann zeta-function
are simple and on the critical line. Our method is a refinement of the method Levinson
[11] used when he showed that at least 1/3 of the zeros are on the critical line (and are
simple, äs observed by Heath-Brown [10] and, independently, by Seiberg). The main
new element here is the use of a mollifier of length y=Te with = 4/7 — whereas in
Levinson's theorem the mollifier has 0 = 1/2 — . The work [6] of Deshouillers and
Iwaniec on averages of Kloosterman sums is what allows us to use a longer mollifier.
In fact, in their paper [7], they obtain an upper bound of essentially the right
magnitude for an integral of the modulus squared of the zeta function multiplied by a
mollifier of length T4/7.

In order to obtain our result, we need asymptotic formulas; obtaining these
involves technical but familiär details. In fact, this paper is essentially a synthesis of
three papers: Balasubramanian, Conrey, and Heath-Brown [2], Conrey [3], and
Deshouillers and Iwaniec [7].

The first paper has the analytic machinery which reduces the integral in question
to a main term involving a sum of coefficients of the mollifier and an error term
involving sums of incomplete Kloosterman sums; the second paper has the arithmetic
machinery for giving an asymptotic formula for the main term; the third paper has
the key lemma for bounding the error term.

We mention also that in [3], it is shown that at least 0.365 of the zeros are on the
critical line. This paper uses a mollifier with 0 = 1/2 — äs in Levinson, but the co-
efficients are more elaborate. Levinson uses

(*) =/ )
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2 Conrey, Zeros of the Riemann zeta function

whereas in [3] and here we will use

,„ »M,.,«,
where P is a polynomial with P(0) = 0, P(l) = l which can be chosen optimally by the
calculus of variations at the end of the argument. Also in [3], we start from a somewhat
more general Situation than in Levinson [11]. Levinson's first step is to observe that if
the proportion of zeros of

to the right of the critical line is ig p, then the proportion of zeros of ζ (s) on the critical
/

line is Ξ> l — 2p. Here α (s) is a simple function which is essentially l log
V 2

make the same observation about a more general combination

with simple functions an which can be chosen with a certain amount of freedom. Here
we use this more general treatment, but we approach it in an easier way s outlined
in [5].

2. Background material and Statement of theorem

We 'recall some basic Information about the Riemann zeta-function £(s), where
s = σ 4- / 1 (see Titchmarsh [15]). It is defined for σ > l by

and has a meromorphic continuation to the whole plane with its only pole, a simple
pole at s = l with residue 1. It satisfies the functional equation

(2) {(S) = {(1-5)

where the entire function ξ (s) is defined by

(3)

with

(4) Η(5)

In asymmetrical form, the functional equation is
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Conrey, Zeros of the Riemann zeta function

(5) C(S) = je

where, because of famili r properties of the Γ-function,

(6) X(S)-1 = ̂ (l-S) -

Because of the Euler-product representation (for σ > 1),

ζ (s) has no zeros in a> 1. By (5) and (6) it is seen that ζ (s) has simple zeros at

s=-2, -4, -6,...

and nowhere eise in σ<0. Hadamard and de la Vallee-Poussin showed, independently in
1885, that ζ (s) has no zeros on σ = 1; hence all the non-real zeros of ζ (s) are in the
critical strip 0«τ<1. The zeros of ζ (s) in the critical strip are denoted by ρ =
Von Mangoldt proved that

(8)

= — log— - + 0(logT).2n 2ne

If we let

(9) ΛΓ 0 (Γ)=#{ρ:0<7<Τ and 0 = 1/2},

then Riemann [13] conjectured that Ν0(Τ) = Ν(Γ) for all T; i.e., that all the zeros are
on σ = 1/2. Hardy was the first to show that JV0(T) goes to infinity with T; later he and
Littlewood showed [9] that N0(T)^>T. Seiberg [14] was the first to prove that
NO (T) :» T log T i.e., that

(10) .
N(T)

We call κ the proportion of zeros on the critical line. Let now

(11) Ν0*(Γ)=#{ρ:0<7<7; 0 = 1/2, ζ'(ρ)Φθ}

be the number of simple zeros on the critical line up to a height T, and let
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4 Conrey, Zeros of the Riemann zeta function

Then the work of Levinson [11] implies that

(13) κ*^ 0.3474.

In Conrey [3] it was shown that

(14) κ ̂ 0.3658

and in [4] that

(15) κ* ̂ 0.3485.

Anderson showed in [1] that

(16) κ* ̂ 0.3532.

Here we prove

Theorem 1. With the above notation, κ^ 0.4077 and κ*^ 0.401. In particular, at
least 2/5 of the zeros of ζ (s) are simple and on the critical line.

3. Beginning of the proof

It follows from (2) that £(n)(s) is real for s = l/2 + ii when n is even and is purely
imaginary when n is odd. Let gn, n^O, be complex numbers with gn real if n is odd and
gn purely imaginary if n is even. Let g Φ 0 be real. Let T be a large parameter (we will
be working with the strip 0< t ̂  T) and let

(17) L = log T.

Now define

(18) η(s)

for some fixed N. Then, for s = 1/2 + i i,

(19)

so that £(5) = 0 on σ = 1/2 if and only if Re^(s) = 0. The idea, then, is to show that
Re*/(l/2 + i t) vanishes at least

(20) (κ + 0(1))^ log T

times for t in [0, T]. We do this by showing that the change in argument of η(1/2 + ίί)
s t varies from 0 to Γ is at least
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Conrey, Zeros of the Riemann zeta function 5

(21) (κ + o(l)) | log T

since for every change of π in the argument of some function /(z) it must be the case
that Re/(z) has at least one zero.

To estimate the change in argument of ?/(s) on the 1/2-line, we let 77(5) = H(s) Vi(S)
where H is defined in (4) and

N g n /n\ H(n~k}(s)(22) Fl(S)=gC(s)+ Σ | Σ
„ = 0 ̂  fc =

By Lemma l of [3], for |f| ̂  2,

ii(m)

(23) —- (5) = (1/2 1οΕ5/(2π)Γ (l + 0(l/|t|))
n

so that

(24) Fi(s) = gC(s)+ Σ

where

(25) iW = g+ Σ

A useful approximation to Fx (5) in 0 < t < T, |σ| «: l, is given by

(26) V(s) = L ds
where

(27) β(χ) = ρ1

Note that for σ > l,

(28, K(S)- £
n = l

Also, the condition that g2n is imaginary and g2„ + i is real is equivalent to ReQ!(ix)
for real χ or Re 6(1/2 -h ix) = g for real x. Equivalently,

(29)

By Lemma l of [3],
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6 Conrey, Zeros of the Riemann zeta function

(30)

so that

(31)

Now if (0) = l (i.e. 0^1/2) = 1), then it is not hard to show (see Conrey [3], Section 4)
using the argument principle and Standard estimates that

(32) zlaΓgF1(l/2 + ίί)|ϊ=-2π^1(Γ) + 0(Γ)

where N^(T) is the number of zeros of V1(s) with σ ̂ 1/2 and 0<i<T counted with
multiplicity, except that zeros on σ = 1/2 only count with weight 1/2 (times their multi-
plicity). We need an upper bound for

We introduce the mollifier

b(n Ρ)ησ°~1/2

(33) B(s,P)=^^^ --
n^y n

where σ0 = 1/2 — R/ L with JR > 0 a free parameter ; also

(34) y=Te

(and eventually 0 = 4/7 — ε) and b(n, P) is defined in (1). (Recall that P denotes a
polynomial with P(0) = 0 and P(l) = l so that b(l, P) = l and b(n, P) -* 0 s n —> y.)

Then

(35) N^(T)^N^iB(T)

where N$lB(T) is the number of zeros ofF 1 i n O < i ^ 7 ^ σ ^ — counted with multi-

plicity, except that zeros on the 1/2-line have only one-half their usual weight.

Now, s above

(36) a0 = l/2

where R is a positive real number, R<^:1. Then by Littlewood's lemma and the arith-
metic-mean, geometric-mean inequality exactly s in Levinson [11] or Conrey [3],

T L (\ T \
(37) 2nNViB(T)^— log - J I^BK + ii)!2^ +0(T)

2K \1 ± J

where NVlB(T) is the number of zeros of BV^s) in Q<t<*T9 σ^ί/2 counted with
multiplicity (and no convention about zeros on the 1/2-line). This leads to

(38) ΚΪ1---log - (|Κ,Β(σ0 + ί()Ι2Λ +0(1).
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Conrey, Zeros of the Riemann zeta function 7

We will prove an asymptotic formula for the integral here. In fact, such a formula will
follow by an Integration by parts from an asymptotic formula for

Thus,

(39)

/ l d\where 1?>0, σ0 = 1/2 — /L, V(s) = Q\ -— — K (-s) where β is a polynomial satisfying\ L s/
(0) = l and Q(z) + (l-z) = g for some real number g; and B(s)= £ fc(n, P)n~s+<T°~1/2

/loevMwith b(n, P) = μ(η) Ρ t where P is a polynomial with P(0) = 0 and P(l) = 1.
\ loor i> /

Regarding simple zeros, we note that our argument thus far has shown that

(40) ^ατ8ι,(1/2 + ί Ο Ι Ϊ = ̂

TL

where N0>Vl(T) is the number of zeros of ^(s) (or equivalently of ^(s)) on the half-line.
Thus, we actually have

(41)
n

l l T

-—log— f \BR T j

Now the left hand side here is a lower bound for the number of t in (2, T) for which
i t) = 0 but 77(1/2 -f i ί) Φ 0. In the event that

(42) ηίς\ — ~Ρ(*\ ι ~ P(«\ L Λ £ ' / ^Γ-Ι

we have Reη(l/2 + it) = gξ(l/2 + ίt) so that Re^(l/2 + ii) = 0 but ι/(1/2 + ίί)Φθ implies
that ξ(1/2 + ίί) = 0 but £'(1/2 + i t) Φ 0, i.e., that 1/2 + it is a simple zero of ξ.

Hence we have
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Conrey, Zeros of the Riemann zeta function

(43)
R

subject to all the conditions on JR, K B, and Q mentioned above and with the additional
condition that Q be a polynomial of degree 1.

4. The mean value theorem

Apart from some numerical calculations, Theorem l will be a consequence of the
following mean value theorem.

Theorem!. Lei B (s, P) be s in (1), (33), and (34). Suppose that #<?
( l d\σ0 = 1/2 - R/L. Let V(s) = Q[ -- — l ζ (s) for some polynomial Q.If θ< 4/7, then
\ L d s j

and

as T —» oo where

"Πν Ο Ο

d_
fa M = 0 dxdy

= |P(1) (0)I2
o o

To deduce Theorem l from Theorem 2, we make our choices for P, , and jR.
For the moment, let

(44)

Then

(45) - f f
θ o o

A
~au dxdy

0 0

The double integral here is
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Conrey, Zeros of the Riemann zeta function

$\P'(x)\2dx + 2RQ(B$ P'(x)P(x)dx) + c]\P(x)\2dx
0 0 0

where

(46) A=]\w(y)\2dy, B = e]w(y)*'(y)dy9 C = 02] \w'(y)\2dy.
0 0 0

By the Euler-Lagrange equations, /(P) will be minimized by a function P satisfying

(47) v4P"-(ß-ß)P'-CP = 0, P(0) = 0, P(l) = l.

By an Integration by parts,

]\P'(x)\2dx = PP'(x)\*-]p(x)P''(x)dx.
0 0

We use (47) here to substitute for P"; then by (46) and an easy calculation,

/(P) = ,4P'(l) + ß2Re $ P(x) P'(x)dx.
o

But

whence

The solution of (47) is easily seen to be

r* _ sx

P(x) P'(x)dx + P(x) P'(x) = P(x) P(x)\l
ö =

0 0

where r and s are roots of Az2 — (B — B) z — C = 0. (Although P is not a polynomial it
can be uniformly approximated by polynomials of the right sort.) Solving for r and s we
may write

where

Then
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10 Conrey, Zeros of the Riemann zeta function

from which we see from (48) that

2

= Aa coth α + ~ (|w(l)|2 - |w(0)|2)

since

Ί i
2ReJ5 = M ww' + J w w ' ) = 0|w|

o o
|2

0

By (45) we now have

(49)

We illustrate the computation in the case of simple zeros. We are forced here to take

for some real number λ. Then

where

Also, B = 0,

and

Then with 0 = 4/7, R = L2, λ= -1.02 we get (using I0 = (e2R-l)/(2R), I^e1* -
and I2 = (e2R-2I1)/(2R)), /0 = 4.17..., /! = 2.85..., 72 = 2.21..., ^ = 0.66..., = 0,
C = 0.71..., α = 1.04..., cotha = 1.28...,

u

and 1-(1ο§ο)/Α = 0.4013.... The 0.4077 result arises from choosing Q(y) s the (p(y) in
Conrey [3], Section 7, with m = 0.
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Conrey, Zeros of the Riemann zeta function 1 1

5. The proposition

In this section, we deduce our mean value theorem, Theorem 2, from the following

Proposition. Let a,beC with a, b «: l, and put a = a/L, β = b/L where L = log T.
Lei s0 = l/2 + iw with T^w^2T. Suppose that <5>0, Δ = Τι~δ and that y=Te with
0<0<4/7. Let

g(a, i>, w, Pl9 P2)

ί e ( s - o s + a - s
(1/2)

where (c) denotes the straight line path from c — ico to c + iao and where

®(s, Pi) = Σ
nSy

νν/ίΛ Ρ((0) = 0 for i = l, 2. Then

g (a, &, w, P„ P2)

=1 } e~(b
σ o

+ Λ(1)

uniformly in a, b, and w.

Proof of Theorem 2. To prove Theorem 2 it suffices to show, in the notation of
Theorem 2, that

uniformly for T^w^IT, with Δ = Τ1~δ. For then Theorem 2 follows exactly s in
Section 3 of Balasubramanian, Conrey, and Heath-Brown [2]. To prove (50) we write
the left side s a complex integral

_ J ^
ιΔπι/2

 (1;2)

where s0 = 1/2 + i w; by (26) this is

(1/2)
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12 Conrey, Zeros of the Riemann zeta function

where α = α/L and β = b/L. In the notation of the proposition, this is

Thus, by the proposition, the left side of (50) is

^ -j- £- } e
U CU UV o

Clearly, g is analytic in the complex variables a and b if a, b<^l. Thus, we may use
Cauchy's integral formula and the fact that

(51)

to conclude that the left side of (50) is

= l (0)P(l)l2

Equation (50) easily follows from this.

6. Initial Lemmas

In this section we prove that the proposition is a consequence of the following two
lemmas.

Lemma l . Suppose that y=Te, 0<0<1, P1 and P2 are polynomials with

L = log T, α = α/L, β = b/L with a, b «: l and

ϊ<*ΑΛ.Λ>- Σ
A,fc^

s T —^ oo
Unauthenticated | 223.241.42.191
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Conrey, Zeros of the Riemann zeta function 13

β, Plt P2)~~ A A

Proof. We give a sketch, s this sort of mean is worked out in Conrey [3],
Section 6, using Lemmas 10 and 11 of that paper. We write

d\h e\d
d\k

where

Next we change the order of summation, so that the sum over d is on the outside and
on the inside we have a product of a sum over h' = h/d and a sum over k' = k/d. The
sums over h' and fc' are evaluated using Lemma 10 and the result is evaluated using
Lemma 11. After some simplification, we have our result. (More details may be found in
Section 6 of Conrey [3].)

Lemma 2. Lei g be s in the proposition and let Σ be s in Lemma 1. Assume the
hypotheses of the proposition. Then

uniformly in a, fr, and w.

Proof of the proposition. Let

σ(α, fr, P1?P2) = -f (P{
0 o

so that by Lemma l,

(52) Σ (a, fr, P1? P2)~j- σ(α, fr, Pl5 P2).

Then

(53) σ(α, fr, Pl5 P2) - σ(- fr, - a, Pl5 P2) = (a 4- fr) f (P{ (x).
o

= (a + b) P,(x) P2(x)|J = (a + b) Pt (1) P2(l)
Unauthenticated | 223.241.42.191
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14 Conrey, Zeros of the Riemann zeta function

for any α and b. Thus, by Lemma 2 and (52) and (53),

g-^ + b)'1 [σ(-α, -b) + (a + b)P1(l)P2(l)-e-a'"ff(-a,

~" " σ(-α, -b,P1,P2) + P1(l)P2(l)

s stated in the proposition.

7. The main term

In this section, we produce the main term of g in Lemma 2 after some preparatory
lemmas.

Lemma 3. Suppose that \<c<2 and s usual,

-

Lei

(c)

Then

for any y Φ Ο, Δ > 0, s0 and β with Re β < c.

Proof. By a change of variables,

*^π (c-Rc )

The lemma now follows from Lemma 2 of Balasubramanian, Conrey, and Heath-
Brown [2].

Lemma 4. Lei

D(s, α, β, Η/Κ)=Σ m~s~*n-s- e(mnH/K)
m, n

wfcm? H, K are iniegers (X ̂  1) ννιίΛ (ίί, Χ) = l and a, β, s E C. Then
Unauthenticated | 223.241.42.191
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Conrey, Zeros of the Riemann zeta function 15

D(s, α, β,

is an entire function of s. Also, D satisfies the functional equation

D(s,a, /f/K)=-2(^Y\2π

Moreover, if α, ̂ (logK)'1, then £>(0, a, β, Η/Κ)<^εΚ1+ε for any e>0.

All of these assertions are easily proven using the techniques of Estermann's
original paper [8]. Basically, one uses the fact that

D(s, a, , H/K) = | C(s + a, a, K) C(s + j5, aff/X)

where

and

These functions satisfy the functional equations

ζ(5, α, K) = G(S) X-s[^is/2C(l~s, α/Χ)-^-π^2ζ(1-5, -a/K)]

and

C(s, a/K) = G(s) Κ*-·[β***Ι2ζ(1-8, -α, K)-e-^/2C(l-s9 α,

where

The details are in Estermann's paper [8].

LeminaS. Lei H and K be relatively prime integer s with K>0. Suppose that
a, , χ e C with Imx>0 and let

S(x, a, β H/X)= X m-*n- e(mnH/K] e(mnx).
mtn
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16 Conrey, Zeros of the Riemann zeta function

S(x, a, , H/K)

J ζ*-1Γ(1-πι (c)

χ [cos π/2 (2 s + a + 0)0 (s, -a, - , -H/K)
+ cos π/2 (a -0) D (s, -a, - , H/K)]ds.

Proof. By Mellin's formula,

S=X m-'n-pe(mnH/K)^—. J r(s)(-2nimnx)-sds
m,n 2 πΐ (c)

where we take l. Thus,

S = ̂ -7 J D(s, a, H/K) r(S)z~sds

where z= —2 nix. We move the path of Integration to (l — c) and then make the change
of variable s — » l — s. Thus, by Cauchy's theorem and Lemma 4,

J ζ5-1Γ(ί-ι (c)

χ [cos π/2 (25 + α 4- j8) D(s, -a, - , -H/K)
, -α, - ,

which completes the proof of the lemma.

Lemma 6. Lei w be real with T g w g 2 T and fei st = 1/2 + 4- i w w/iere = b/L
with fceC, &<:!. Lei 5>0, π/2>Α>0, J = T1~i, and a = a/L wii/z a e C, a<cl.
De ne

r(sl9 a)= f i;
LA

A Ϊ5 the half-line LA = {rea : r ̂  0}.

s T — * oo, uniformly in a and s^.

Proof. We change the path of Integration to the positive real axis except for a
small semicircular indentation into the upper half-plane centered at t? = l. Now let
v = e

x. Writing w = ωΤ, α = α/L, 0 = &/£> and J = Γ1"^, we have
Unauthenticated | 223.241.42.191
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Conrey, Zeros of the Riemann zeta function 17

dx/ Τ2-2δ 2\
r(sl9 a) = f ebxlLeinTx exp (ex - l)fl/L

* V 4 / 2sinhx/2

where ̂  is the path consisting of the entire real axis from — oo to oo apart from a small
semicircular indentation into the upper half plane centered at χ = 0. Now let

R(s1? a) = f ebx/Leio>Tx €χρ(-Γ
 Λ * } x°ILdx/x,

and consider r(s1? a) — R(sl9 a). Since

as |x| — > 0, it follows that

R(SI, a) - r(sl9 a) = lim f + f e
bx'LeiwTx exp - - q( 9 x, T)dx.

- * +
* f

-n

The convergence is uniform in 7^ ω, b, and a for T^ l, and a, b, ω<^: 1. Taking the limit
as T — » oo, we get 0 for the right side whence

uniformly in ω, b, and a. In the integral defining R let y = Γχ. Then

R(sl9 a) = e'a f ebylTLei(oy exp ( - T * ) ya/Ldy/y.
v V ^ /

Again, for fixed <5>0 the convergence is uniform in a, fc, and ω<^: 1. Letting T — * oo we
have, by the residue theorem,

lim R(Sl,a) = e-a J eim'dy/y = e- f eiyd);/j; = -πί^0.
T~* oo <g> ^

Thus, (5!, a)= —iiie~a + od(l) whence the lemma follows.

Now we begin the proof of Lemma 2. First of all we move the path of Inte-
gration in the definition of g to (c) where € = 1 + η with η>0 small and fixed. Since
a, /?<^c l/L it will be the case that |α|, \β\ <η if T is sufficiently large. Thus, in moving the
path of Integration we cross a pole at s = l — a. The contribution from the residue is
negligible since for s <^c l,

(54) --20

because of the definition of A and s0. We use the functional equation (5) on ζ (l-s 4- j8);
then we interchange summation and Integration and have
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18 Conrey, Zeros of the Riemann zeta function

g= Σ ̂  Pl\b(k' f2) Σ m-'n"J(mnh/k, s0, ,

m-.- ^.
έ, Γ P

dv

We express the integral s a sum of two integrals and use Cauchy's theorem to move
one path to LA and the other to L_A where >l>0 is small and LA is the half-line
[τβίλ : r ̂ 0}. We interchange summation over m and n with the Integration and have

,55, t. Σ
/i .fc^y

where, in the notation of Lemma 5,

(56) Λ = J vs> exp i~A2^2v\ s(h/k(v _ 1λ α + o, A/fc) ̂
L*. \ /

and

(57) J2 = f i;s^ exp (^-^'^Λ S(_ fc/fc(l? _ ι)? α + ft 0, fc/k) — .
L-Λ \ 4 / Γ

Then, by Lemma 5, with H = /i/i/i, k) and X = fe/(/i, fc),

(58) /! = M! H- i + Ej

where

(59) Mt-I

[ / L \
C(l-a-/Or(l-a-j8)K-1+ '+" -2π/-(ι>-1)

\ K /

(60)

and
t Λ 9 1 9 \ J— A log t? \ dv

with
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Conrey, Zeros of the Riemann zeta function 19

l , , /JO(62) Fx(t;)=:— J (-2πί/ϊ/fe(ι;-l))s~1Γ(l~5)Γ(s-α-j8)Γ(5)( —πι
x[
+ cos (π/2 (α + )?)) D(s,-m- , 0, fl/K)] ds.

There are similar expressions for /2 = M2 + R2 + E2 .

Now in the notation of Lemma 6,

(63)
Η-1Κ-'-Ι>Γ(81, 1).

Now C(s) ~ l/(s — 1) for s near l and Γ(1) = 1. Thus, by Lemma 6,

b ( h , P 1 ) b ( k , P 2 ) i i f(64) Σ - τ

We get exactly the same expression for the sum of the M2. Thus, from the terms with
M! and M2 we get the main term of g in Lemma 2.

8. The error terms

In this section we complete the proof of Lemma 2 which completes the proofs of
the theorems. This section is where the important work of Deshouiller and Iwaniec on
averages of Kloosterman sums enters.

It remains to bound

Υ b(h,P,)b(k,P2]
L

for i = l and 2. As the Situation is identical for i = 2 we deal with i = l only. As far s JRf
is concerned, since, by Lemma 4 of [2]

(661 , „
LA

it follows from Lemma 4 that

whence the contribution to (65) from R! is <c T~10.
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20 Conrey, Zeros of the Riemann zeta function

Now by (61) and (62), the part of (65) which involves £, may be written s a sum
of two terms, one of which is

(67) Z = J J G(a + j9, v, sl9 A, s) Jt(a, , s)dsdv
LA (c)

where

(68) G(oc, v, sl9 A, s)=-ivs* expf- A2 ̂ |-̂  J F(s) r(l-s) T(s-a) (2π)α~δ

χ cos (π/2 (2 s + α)) «Γ«1"2 (υ - 1)5'1 1?'1

and

(69, urfcM-Σ -"'"»" Σ

where H = h/(h, k) and K = k/(h, k). The other term is slightly less complicated and may
be treated the same way s this one will be. Replacing mn by n and arranging the sums
over h and k according to the g.c.d. of h and k we get

(70) Jffa , s) = £ l/g Χ ΛΤ(Ν, 17, K a, JS, g, s)
N, 17, V

where

rm MiKi TT j/ R \ V V V(71) Jf(N, l / ,K«, g,s)= Σ -ir Σ Σ
n ~ N w K-17 i;- K

with

(72)
d\n

and where the notation x~X means X<x^2X, and the sums on U and V have
«:logy terms with 17, V <zylg and the sum on N is for JV = 2J, J = 0, l, 2, .... Now Z is
a sum of terms of the shape

(73) Z(N9 t/, F)= J f G(<x + A r, slf J, 5) Jl(N9 17, K a, ft g,
LA (c)

If 17 F^ TJV, then we move the s path of Integration to s = f/ + ii; otherwise we leave it
at s = c + i t = l -h η -f- i i. (Recall that */ >0 is fixed, to be chosen at the end of the proof in
terms of ε.) In moving the path of Integration, we cross a pole at s = l with residue

(74) Γ(1-α)(2π)α-1 cos (π/2 (2 + α)) Jl (N, 17, Κ, α, , g, 1)

by (66). To complete the proof we require two lemmas.
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Conrey, Zeros of the Riemann zeta function - 21

Lemma 7. Let G be s in (68) with the usual conventions about s1? A9 and a.
Suppose that c = ηorc = l + η where η >0 is a small flxed number. Let λ = l/T. Then

f J (l + |s|)|G(a,t;,s1, A, s)dsdv\<^^A-c-^2T^2 + ̂ E

Lj, (c)

for any ε>0, uniformly in a and s^.

The proof is exactly the same s that of Lemma 5 of [2].

Lemma 8. Let Jt(N, U, V, a, , g, s) be s in (71). Suppose that y ̂  T8/13; l ̂  17,
η>0 and s = c + it mth ο = η if UV^TN and € = 1 + η if UV<TN. Then

Ji(N, U, V, a, ft g, s) <cetlf (l + |s|) (TNYy^rN^T'^y^ +

uniformly for a, fe <c l, a// i, and all g <^c .

Before giving the proof of Lemma 8 we complete the proof of Lemma 2. We have
by Lemmas 7 and 8

(75) Z = X - Σ Z(N,U,V)
g^y % N,U,V

) Χ #'-'+ Χ Τ'1
N,i/,F NtU,V

οη taking η = ε/2. Since < 7/4, this is o£(l) s T — > οο if δ and ε are sufficiently small.

Proof of Lemma 8. Initially we use the fact that the variable g can be separated
from u and from v since, for example,

is a sum of «: l terms of the shape a constant times

log u + log g V
/

which is itself a sum of «: l terms of the shape

/logtA*1
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22 » Conrey, Zeros of the Riemann zeta function

Also, /i(«g) = μ(«) M(g) if (M, g) = l and /i(ug) = 0 if (u, g) > 1. Thus, Jt(N, U, V, a, , g, s)
is a sum of <c l terms that are themselves

where

(76) s = ΣΝ Φ) Σ^ Σγ /Φ) '*(Ό Φ) * (^) ·

Here the functions r may be different at each occurrence; but they all may be described
s follows: r( ) depends on its argument s well s g, s, a, /?, N, t/, and F and r(n)<^ene

for any ε > 0 uniformly in g, 5, a, , N, U, and F In addition, r* is an r function which is
smooth in its dependency on u, satisfying

(77)

for some r (M), and having the property of separability, i.e.,

(78)

where the r*'s here are not necessarily the same at each occurrence.

We now usfc Vaughan's identity to get a new expression for μ (n); equating
coefficients on both sides of the identity l/ζ = !/£(! - CM)2 + 2 M - ζΜ2 where

(79) M = M(s)= Χ μ(η)η'\ W=Ui/4

we find that

(80) μ(«) = *ιΜ

where

(81) ^(11)= Σ My)c4(«)c4(/J)

with

(82) c4(a)=- Σ

(2μ(ιι) if u < l
(83) c2(*0 = <! V «/""10 if w > W:

(84) C3(u)=- Ι μ(α)Αΐ(/ϊ).
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Conrey, Zeros of the Riemann zeta function 23

This leads to S = Si + S2 + S3 where

(85) St= Σ r(n) Σ Σ Ci(u)r*(u)r(v) e(—
n~N w ~ l 7 t > ~ K \ V

(M, i?0) = l

for i = l, 2, and 3. We treat each of these sums in a slightly different way. We note also
that it suffices to show that for any ε > 0,

(86) St^:e(yN)£ max(7W,

the lemma then follows with a different value of ε.

We start with S2 which is trivially estimated by

(87) S2<

Thus S 2 satisfies (86) since y^ T4/3. Next we consider St. Grouping together γ and the
larger of α and β in (81) into a variable b and calling the other variable a, we see that S1
can be split into <zeye sums of the shape

(88) S;= Σ r (n) Σ Σ r(a)r(b)r(v) e(—}
n~N a~A v~V \ V /

b~B
(ab,v)

where U<^:AB<zU and W^A^B. Now we have the following lemma, which is a case
of Lemma l of Deshouillers and Iwaniec [7].

Lemma 9. Suppose that \c(a, n)\ ̂  l and U<zAB<3zU. Then for any ε>0

Σ Σ
v~V b~B

(n T)\
Σ Σ Φ, η)* l —l
~Ν α~Λ \ υ /

Using the fact that xa + / «: (χ + y)fl «: χα + / for α ̂  0 and x, y ̂  l it is not hard to see
that the right band side of the relation in the proposition is

(89) <MW( Σ AaNnUuVv)i/4

(a,n,u,v)eE

for any ε>0 where

(90) E = {(- 2, 2, 4, 4), (- 1, 4, 3, 4), (l, 4, 3, 3), (l, 2, 3, 4),

(3, 2, 3, 3), (0, 4, 4, 2), (l, 3, 4, 2)}.
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24 Conrey, Zeros of the Riemann zeta function

Clearly, the fact that our coefficients r (n) satisfy

for any ε>0 does not affect the use of the bound (89) for S'2. We now show how to
bound AaNn UUVV for (a, n, M, v) e £, and [71/4 <^ A <£ [71/2.

We have two cases to deal with: a^O and a<0. If a^O then

(91) AaNnUuVv<

since for all (a, n,u,v)e E, n + u^4 and n + v ̂  4 so that we may use t/, F «: y. Now
we have to show that

(92) T-ny2n + u + V-8+a/2 ̂  T~2yl/2

for all (a, n, M, v) e E with a ̂  0. The terms we get for the left side are

T"4/3/2, T'V/2, Γ-2//2, Γ-4/, and T~3y912.

Clearly (92) holds since y <$c T2/3. For a<0 we use

(93) AaNnUu

since for all (a, n, u, t>)e£ with a<0 we have a/4 4- n -h u — 4^0. Now we have to
show that

(94) y-B^n + n + p-S+e^^ j*-2y7/2

for both (a, n, M, t;) e E with α < 0. The terms we get for the left side are

(95) T~V/2 and T-4y27/4

and so (94) holds since y <^c Γ8/13. It follows now that

(96) S; <^ε max(7W, UV) (yN)eT-1/2y1/s.

Finally, we consider S3. Grouping together α and β into a variable a and
replacing y by b we see that S3 can be split into <^ey£ sums of the shape

(97) S'3=£r(v) Σ '*(*) Σ Φ) Σ Φ)
t>~r b-B «~Ν α~^

(b,vg) = l (α,ι;) = 1
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Conrey, Zeros of the Riemann zeta function 25

where U <^ AB «c U and A <£ W2 = Ui/2. Now if A » [71/4, then the treatment is exactly
s with S2 above using Lemma 9. If >4«:i/1/4, then we sum over b first using WeiFs

bound for the Kloosterman sum. Thus, Weil's bound implies that

(98) Σ *(y

so that by a summation by parts (using the bound in (77) for — r* (x)) we get

(99) S'3^(l +
n~N v~V

<^ε (l + \s\) (yN)£ (ANV312 + UNVi/2).

, then

AN V312 + UN V1/2 <^ Ny114

<z max { T N, U V} T ~ ί y114.

Thus, in any event

This completes the proof of the lemma and the theorems.

Note added in proof. We can improve Theorem l slightly. With = 1.28 and

Q(x) = 0.492 + 0.602 (l -2x) -0.08 (l -2x)3

-0.06(l»2x)5 + 0.046(l-2x)7

we have κ > 0.4088.
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