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More than two fifths of the zeros
of the Riemann zeta function
are on the critical line

By J. B. Conrey*) at Stillwater

1. Introduction

In this paper we show that at least 2/5 of the zeros of the Riemann zeta-function
are simple and on the critical line. Our method is a refinement of the method Levinson
[11] used when he showed that at least 1/3 of the zeros are on the critical line (and are
simple, as observed by Heath-Brown [10] and, independently, by Selberg). The main
new element here is the use of a mollifier of length y=T? with 6 =4/7 —¢ whereas in
Levinson’s theorem the mollifier has 0 =1/2—¢. The work [6] of Deshouillers and
Iwaniec on averages of Kloosterman sums is what allows us to use a longer mollifier.
In fact, in their paper [7], they obtain an upper bound of essentially the right
magnitude for an integral of the modulus squared of the zeta function multiplied by a
mollifier of length T4/7.

In order to obtain our result, we need asymptotic formulas; obtaining these
involves technical but familiar details. In fact, this paper is essentially a synthesis of
three papers: Balasubramanian, Conrey, and Heath-Brown [2], Conrey [3], and
Deshouillers and Iwaniec [7].

The first paper has the analytic machinery which reduces the integral in question
to a main term involving a sum of coefficients of the mollifier and an error term
involving sums of incomplete Kloosterman sums; the second paper has the arithmetic
machinery for giving an asymptotic formula for the main term; the third paper has
the key lemma for bounding the error term.

We mention also that in [3], it is shown that at least 0.365 of the zeros are on the
critical line. This paper uses a mollifier with §=1/2—¢ as in Levinson, but the co-
efficients are more elaborate. Levinson uses

log y/n>

b(n)=#(n)< fogy

*) The author is currently at the Institute for Advanced Study, Princeton, where he is supported by a
fellowship from the Alfred P. Sloan foundation and by a grant from NSF.
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2 Conrey, Zeros of the Riemann zeta function

whereas in [3] and here we will use

) b(n, P)= u(n) P (I°g Y/ ")

logy
where P is a polynomial with P(0)=0, P(1)=1 which can be chosen optimally by the
calculus of variations at the end of the argument. Also in [3], we start from a somewhat

more general situation than in Levinson [11]. Levinson’s first step is to observe that if
the proportion of zeros of

() +a(s) I'(s)

to the right of the critical line is < p, then the proportion of zeros of {(s) on the critical
-1
line is =1—2p. Here a(s) is a simple function which is essentially { log —;;) . In [3] we

make the same observation about a more general combination

2 a,(5) {(s)
with simple functions a, which can be chosen with a certain amount of freedom. Here

we use this more general treatment, but we approach it in an easier way as outlined
in [5].

2. Background material and statement of theorem

We recall some basic information about the Riemann zeta-function {(s), where
s=0+it (see Titchmarsh [15]). It is defined for ¢ >1 by

L) = i n-

and has a meromorphic continuation to the whole plane with its only pole, a simple
pole at s =1 with residue 1. It satisfies the functional equation

) EE=E8(1—5)
where the entire function &(s) is defined by

3 E(s)=H(s) {(s)
with

@) H(s)=(1/2) s(s _n#2 I(s)2).

In asymmetrical form, the functional equation is
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) {)=x(s) {(A—s)

where, because of familiar properties of the I'-function,

6) 1) =y (1—5)=2Q2n)*T(s) cos?.

Because of the Euler-product representation (for ¢ > 1),
(7) (s) =l;[ 1-p=)7",

{(s) has no zeros in ¢> 1. By (5) and (6) it is seen that {(s) has simple zeros at
s=-—2,—4, —6,...

and nowhere else in 0 <0. Hadamard and de la Vallée-Poussin showed, independently in
1885, that {(s) has no zeros on o =1; hence all the non-real zeros of {(s) are in the
critical strip 0 <o <1. The zeros of {(s) in the critical strip are denoted by g=f+iy.
Von Mangoldt proved that

(8) N(T)=#{0:0<y<T}
T T
If we let
)] No(T)=#{0:0<y<T and p=1/2},

then Riemann [13] conjectured that No(T)=N(T) for all T; i.e., that all the zeros are
on ¢ =1/2. Hardy was the first to show that N,(T) goes to infinity with T; later he and
Littlewood showed [9] that Ny (T)>T. Selberg [14] was the first to prove that
No(T)>TlogT i.e., that

>0.

o No(T)
(10) x—h;r_l'lgf N(T)

We call x the proportion of zeros on the critical line. Let now
(11) N§(T)=#{e:0<y<T, p=1/2, {'(e)+0}

be the number of simple zeros on the critical line up to a height 7, and let

. . N
* _
(12) K -hglgf N{T)
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Then the work of Levinson [11] implies that

(13) Kk* 20.3474.
In Conrey [3] it was shown that

(14 K =0.3658
and in [4] that

(15) K* = 0.3485.
Anderson showed in [1] that

(16) x* 20.3532.

Here we prove

Theorem 1. With the above notation, k 20.4077 and x*20.401. In particular, at
least 2/5 of the zeros of {(s) are simple and on the critical line.

3. Beginning of the proof

It follows from (2) that &®(s) is real for s=1/2+it when n is even and is purely
imaginary when n is odd. Let g,, n =0, be complex numbers with g, real if n is odd and
g, purely imaginary if n is even. Let g+0 be real. Let T be a large parameter (we will
be working with the strip 0<¢ < T) and let

17 L=1logT.
Now define
. N
(18) n(s)=g&(s) + ;0 g, &™) L7"

for some fixed N. Then, for s=1/2 +it,

(19) | g&(s)=Ren(s)

so that £(s)=0 on o=1/2 if and only if Re#n(s)=0. The idea, then, is to show that
Ren(1/2 +it) vanishes at least

(20) | (c + o(1)) % log T

times for ¢t in [0, T]. We do this by showing that the change in argument of n(1/2 + it)
as t varies from 0 to T is at least
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T
(21) (rc+o(1))—2—10gT

since for every change of n in the argument of some function f(z) it must be the case
that Re f(z) has at least one zero.

To estimate the change in argument of #(s) on the 1/2-line, we let n(s)= H(s) V,(S)
where H is defined in (4) and

(n—k)
@ o=+ % 5 5 (1) E D g
By Lemma 1 of [3], for |t| =2,
H™
e B ()= (1/2 log /)" 1+ 0(/)
so that
il 2
@) KO-+ & (!9%’1 L ] arous
_ logs/(27t)
~(0: (22 L & o) a+oaim
where
25) 0,(x)=g+ ZO g,x"

A useful approximation to V;(s) in 0<t< T, |o| < 1, is given by

(26) V(=0 <“Z a) gt
where

27) 0(x)=0,(1/2—x).
Note that for o> 1,

(28) | V=3 Q*(%g;w,

n=1

Also, the condition that g,, is imaginary and g,,,, is real is equivalent to Re Q,(ix)=g
for real x or Re Q(1/2 + ix) =g for real x. Equivalently,

(29) Q@) +Q0(1-2)=g.

By Lemma 1 of [3],
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t
(30) argH(1/2+it)=— logﬂ—+0(1)
2 27ne
so that
T
(31) 4 argn(1/2+it)|§=?10gT+A argV,(1/2+it)|¥ + O(T).

Now if Q(0)=1 (i.e. Q,(1/2)=1), then it is not hard to show (see Conrey [3], Section 4)
using the argument principle and standard estimates that

(32) A argV,(1/2+it)|f = =2z N (T) + O(T)

where Ny (T) is the number of zeros of V;(s) with 6=1/2 and 0<t<T counted with
multiplicity, except that zeros on ¢ =1/2 only count with weight 1/2 (times their multi-
plicity). We need an upper bound for Ny, (T).

We introduce the mollifier

(33) B(s, P)= Y b(n, Pyn” 1%

S
nsy n

where o,=1/2— R/L with R>0 a free parameter; also
(34) y=T?*

(and eventually 6=4/7—¢) and b(n, P) is defined in (1). (Recall that P denotes a
polynomial with P(0)=0 and P(1)=1 so that b(1, P)=1 and b(n, P) >0asn—y.)

Then
(35 Ny (T)= Ny 5(T)

1 .
where Ny 3(T) is the number of zeros of V;B in 0<t=<T, agi counted with multi-

plicity, except that zeros on the 1/2-line have only one-half their usual weight.

Now, as above
(36) 6o=1/2—R/L

where R is a positive real number, R < 1. Then by Littlewood’s lemma and the arith-
metic-mean, geometric-mean inequality exactly as in Levinson [11] or Conrey [3],

37) 2nNm(T)gI£ log (i f lVlB(oo+it)|2dt)+O(T)
2R T

where Ny 5(T) is the number of zeros of BV(s) in 0<t<T, 6=1/2 counted with
multiplicity (and no convention about zeros on the 1/2-line). This leads to

T
(38) K21+ 1og<i | ;V,B(ao+it)|2dt)+o(1).
R °\T]
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We will prove an asymptotic formula for the integral here. In fact, such a formula will
follow by an integration by parts from an asymptotic formula for

T
| IVB(a, +it)|2dt.
1

Thus,

1 1T
(39) k21——log| = [ IBV(ao+it)?dt)+o(1)
R °8\1 !

1 d
where R>0, 6,=1/2—R/L, V(s)=Q <_Z a) {(s) where Q is a polynomial satisfying

Q(0)=1 and Q(z)+Q(1—2z)=g for some real number g; and B(s)= ) b(n, P)n~**%"12

nsy

" ) where P is a polynomial with P(0)=0 and P(1)=1.

with b(n, P)= u( )P(loggy/

Regarding simple zeros, we note that our argument thus far has shown that

1 TL
(40) ;A argn(1/2+it)|§=§~7—t——2N,’,“l(T)+O(T)

TL
25— 2N3,5(T)+0(T)

TL
2‘2“7?—2NV13(T)+ No,v,(T)+0O(T)

where N, ,(T) is the number of zeros of V;(s) (or equivalently of n(s)) on the half-line.
Thus, we actually have

1 TL
41) - A argn(1/2+it)|; — Ny, (T) >—2——-—2NV18(T)+ o(T)

TL

T
21': (1———1 .E IBV (o, +it |2dt)

Now the left hand side here is a lower bound for the number of ¢t in (2, T) for which
Ren(1/2+it)=0 but n(1/2+it)+0. In the event that

42) n(s)=g&(s)+ 8o &) +g, &' (5) L1

we have Ren(1/2+it)=g&(1/2 +it) so that Ren(1/2+it)=0 but n(1/2+it)+0 implies
that £(1/2+it)=0 but &'(1/2+it)=*0, i.e., that 1/2+it is a simple zero of .

Hence we have
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(43) 1c*>l—llog<1 jIVB(ao+zt)2dt>+o(l)

subject to all the conditions on R, V, B, and Q mentioned above and with the additional
condition that Q be a polynomial of degree 1.

4. The mean value theorem
Apart from some numerical calculations, Theorem 1 will be a consequence of the
following mean value theorem.
Theorem 2. Let B(s, P) be as in (1), (33), and (34). Suppose that R<1 and

0o=1/2—R/L. Let V(s)=Q (—% %) {(s) for some polynomial Q. If 0 <4/7, then

T
j' |VB(o,+it)|*dt~c(P,Q,R)T
2

as T — oo where

2

11
C(P. 0. PY=IP() QO+ | | |10 (%" Q(y-+0u) Plx-+ w)l,—o| dxdy

S |

11
=IP(1) Q(O)I* + £ g e*®1Q(y) P'(x)+0Q'(y) P(x) +0RQ(y) P(x)|*dxdy.

Qbi

To deduce Theorem 1 from Theorem 2, we make our choices for P, Q, and R.
For the moment, let

(44) w(y)=e®Q(y).
Then

2

@) (B, RY= WO 47 | § | (w(y+0u) PCe+w)ly-o| dxdy
00

Ql

11 ‘
w(0)|> + 5 [ w(y) P'(x)+ 0w (y) P(x)I* dxdy.
00

cbl

The double integral here is
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1 1 1
I(P)=A [ |P'(x))?dx+2Re(B | P'(x) P(x)dx)+ C [ |P(x)|*dx
0 0 0
where
1 1 _ 1
46) A=[|lw(yI*dy, B=0[w(y)w(y)dy, C=0[|w(y)*dy.
0 0 0

By the Euler-Lagrange equations, I(P) will be minimized by a function P satisfying
47 AP"—(B—B)P'—CP=0, P(0)=0, P(1)=1.

By an integration by parts,
1 _ 1
[IP'(x)|*dx=PP'(x)lg— | P(x) P"(x)dx.
V] 0

We use (47) here to substitute for P”; then by (46) and an easy calculation,

I(P)=AP'(1)+ B 2Re | P(x) P'(x)dx.
0
But
i P(x) P'(x)dx +j' P(x) P'(x)=P(x) P(x)|g =1
0 0

whence

I(P)=AP'(1)+B.
The solution of (47) is easily seen to be

erx —_ esx
P(x)= e

where r and s are roots of Az2—(B— B)z— C=0. (Although P is not a polynomial it
can be uniformly approximated by polynomials of the right sort.) Solving for r and s we
may write

eiﬂx et — g7 ax
P(x)=—e—"”_ e*—e "
where
_((B—B)2+4AC)"2 ,_B—-E
(48) o= 74 , if= Vi
Then
Pl)=a S4B

e“—e
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from which we see from (48) that

= B+B
I(P)=AP'(1)+ B=Aa cotha+%

= Aa cotha +g (Iw@)1> = w(0)%)

since
1 1 1
2ReB=0(j ww' + | wW')=0|w|2 )
0 0 (V]
By (45) we now have
Aa cotha
49) c=c(Q, R)=1/2(w(O)* +w(1)]?) t—

We illustrate the computation in the case of simple zeros. We are forced here to take
Q@)=1+14z

for some real number A. Then

1 1
A=[w(y)Pdy=[ P 1+ Ay)dy=21,+2AI,+1,
0 0

where
1
IL,={e*®y"dy.
0
Also, B=0,
1
C=0%[e*®R(1+Ay)+A)*dy=0*((R+1)*I+2RA(R+A)I, + R*A’1,)
2 :
and

o= (C/A)">.
Then with 0=4/7, R=1.2, 1= —1.02 we get (using I,=(e*® —1)/2R), I, =(e** - 1,)/(2R),

and I,=(e*R—21,)/2R)), I,=4.17..., 1,=285..., I,=221..., A=066..., B=0,
C=071...,a=1.04..., cotha=128...,

A
c=(1/2)(1 +e2R(1+,1)2)+§oz cotha=205...,

and 1—(logc)/R=0.4013.... The 0.4077 result arises from choosing Q(y) as the ¢(y) in
Conrey [3], Section 7, with m=0.
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5. The proposition

In this section, we deduce our mean value theorem, Theorem 2, from the following

Proposition. Let a, be C with a,b< 1, and put a=a/L, B=b/L where L=1logT.
Let so=1/2+iw with TSwZ2T. Suppose that >0, A=T'"% and that y=T® with
0<6<4/7. Let

g(aa b, w, Pl, PZ)

1 —sg)24-2
=7 (19'2) eC A s+ o) ((1— s+ B) B(s, P) B(1—s, Py)ds

where (c) denotes the straight line path from c —ioo to c+ioco and where

B, P)=Y b(':sp‘) —B(s+0,—1/2, P)

nsy

with P,(0)=0 for i=1, 2. Then
g(a9 b’ W, P19 PZ)

11 0 0 1
— =(b+a)y —abu—bov o
=3 ge dy 5550 ¢ { Py (x4 u) Py(x+v)dx|,=p=0

+ Py (1) P,(1) + 04(1)
uniformly in a, b, and w.

Proof of Theorem 2. To prove Theorem 2 it suffices to show, in the notation of
Theorem 2, that

1 @ .
(50) YT [ e W4V B(g, +it)|2dt =c(P, Q, R) + 0,(1)

uniformly for T<w<2T, with A=T'"% For then Theorem 2 follows exactly as in
Section 3 of Balasubramanian, Conrey, and Heath-Brown [2]. To prove (50) we write
the left side as a complex integral

1 24-2 7453
Y (1}[2) et 54 Y B(s+6,—1/2) VB(1 —s+ 0, —1/2)ds

where s, =1/2 + iw; by (26) this is

-e(a)2(@)

(I—A_}I—ITZ— (1'/[2) et 50?472 (s 4 ) {(1—s+ ) B(s, P) B(1—s, P)dsl,,:b:_R)
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where a =a/L and f=b/L. In the notation of the proposition, this is

—d d
—Q< )Q(db>g(abWPP)|,, b=—R-

Thus, by the proposition, the left side of (50) is

~o(2) (&)

10 01 1 -
(|P(1)|2+ FPET [ emabronbo*e0gy [ P(x+u) P(x+v)dxlu=v=0+06(1))|a=b=—R'
uov g 0

0

Clearly, g is analytic in the complex variables a and b if a, b< 1. Thus, we may use
Cauchy’s integral formula and the fact that

—d
(51) Q(E) e l-—r=0()e™

to conclude that the left side of (50) is

=1Q(0) P())?

1 ai -;~ i i P(x+u) P(x+v)e*® Q(y+0u) Q(y +0v)dxdy|, =, +05(1).
[O1]

Equation (50) easily follows from this.

6. Initial Lemmas

In this section we prove that the proposition is a consequence of the following two
lemmas.

Lemma 1. Suppose that y=T° 0<60<1, P, and P, are polynomials with
P,(0)=P,(0)=0,

log y/n)

b(n, P)= /»t()11’<1 ogy

L=1logT, a=a/L, f=b/L with a,b<1 and

b(h’ Pl) b(k, PZ)

REzTAET (h, k)L +ats,

Z(aa ﬂs Pl’ P2)= z

hk<y

Then, as T — o©
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1 0 0

Z(aﬂPI’PZ) aLa a

ea6u+b00j'Pl(x+u}Pz(x+v)dX|u v=0

1 1
=L (j; (P{(x)+ a0 Py (x)) (P;(x)+ bOP,(x))dx

Proof. We give a sketch, as this sort of mean is worked out in Conrey [3],
Section 6, using Lemmas 10 and 11 of that paper. We write

d 1+a+p
(h k 1+a+p __ Z Z u(e)< )

dlh eld
dlk

=Z|‘, d****BFd, 1+a+p)
dlh
d|k

where

F@,9)=T101-p™)

pld

Next we change the order of summation, so that the sum over d is on the outside and
on the inside we have a product of a sum over h'=h/d and a sum over k'=k/d. The
sums over h’ and k' are evaluated using Lemma 10 and the result is evaluated using
Lemma 11. After some simplification, we have our result. (More details may be found in
Section 6 of Conrey [3].)

Lemma 2. Let g be as in the proposition and let X be as in Lemma 1. Assume the
hypotheses of the proposition. Then

Z(b, a, Pl’ Pz)_e_a_bz(_a, -'b, Pl’ Pz)
a+p

g(a, b,w, Py, P,)= +04(1)

uniformly in a, b, and w.

Proof of the proposition. Let

0@, b, Py, P) = [ (PL(x)+a0 P, (x)) (P()+ bO P (x)) dx
0

9
so that by Lemma 1,
' 1
(52) Z(aa b, P11 P2)~Za(a9 ba Pls PZ)
Then

(53) o(a, b, Py, P;)—0(—b, —a, P, P))=(a+Db) } (P{(x) Py(x)+ Py (x) P;(x))dx
V]

=(a+b) Py(x) P,(x)lo =(a+b) P, (1) P,(1)
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for any a and b. Thus, by Lemma 2 and (52) and (53),
g~(@+b)"! [o(—a, —b)+(a+b) Py(1) P,(1)—e " *a(—a, —b)]
B 1 _ e—a—b

——W o(—a, —b, P;, P,) + P, (1) P,(1)

1 10 0 1
= e““"’yd)’g ™ ;;e_"”“""’” | Py(x+u) Py(x +v)dxX|,—,=0+ Pi (1) P,(1)
) uov 0

as stated in the proposition.

7. The main term

In this section, we produce the main term of g in Lemma 2 after some preparatory
lemmas.

Lemma 3. Suppose that 1 <c<?2 and as usual,
1(1—5)=22n)° I'(s) cos§.
Let
J 0, A)= ! (6=s02472 (1 ~*d
(¥, S0, 0, )_W(&e x(1—s+ By~ ds.
Then

@ 42 log? d
J=y"] v’°“’exp(———zﬂ> (e(—yv)+e(yv))70
0

for any y+0, 4>0, s, and B with Re f<c.

Proof. By a change of variables,

-B
y s - S - -8
S A2 [ttt 0?47y (1—5)y " ds.
(c—Rep)

The lemma now follows from Lemma 2 of Balasubramanian, Conrey, and Heath-
Brown [2].

Lemmad4. Let

D(s,a, B, HK)=) m™*"*n"*"Pe(mnH/K)

where H, K are integers (K =1) with (H, K)=1 and a, B, s€ C. Then
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D(s, o B, HK)— K™ * B=2((s+a) {(s + )

is an entire function of s. Also, D satisfies the functional equation

K 1-2s—a—§p
D(s,oc,ﬁ,H/K)=—2<—2—n) rl—s—a)Ir(l—s—p)

[cosg(23+a+ﬁ) D(l‘s’ —% —p, %)—cos;(a—ﬂ) D(l—s, —o, —f, g)]

Moreover, if a, B < (log K)™!, then D(0, o, B, H/K)<,K'** for any ¢>0.

All of these assertions are easily proven using the techniques of Estermann’s
original paper [8]. Basically, one uses the fact that

D(s, 2 B, H/K)= 3 U(s+0,a K) (s + B, aH/K)
1

where

{s,a,K)= ) n°°

n=amodK
and

0

{(s,a/K)= Y e(an/K)n".

n=1

These functions satisfy the functional equations

{(s, a, K)=G(s) K~*[e"2{(1—s, a/K) —e” ™2 [ (1 —s, —a/K)]
and

{(s, a/K)=G(s) K**[e™**{(1—5, —a, K)—e ™2 [(1—s, a, K)]
where

G(s)=—iQn)’ I (1—ys).
The details are in Estermann’s paper [8].

Lemma 5. Let H and K be relatively prime integers with K>0. Suppose that
a, B, x € C with Imx>0 and let

S(x, o B, HK)=Y m~*n"?e(mnH/K) e(mnx).

If ¢>1, then
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S(x, a, B, H/K)
={(l—a+B)K 1 bz e Pl —) 4+ {(1 =B+ ) K 1B 22718 (1 - )

+D(0, o, B, H/K)+;ll¢ (227 r(1=s)T'(s—®) I'(s—pP) (K/2m)*s~ 1727 F
©)

x [cosn/2(2s+a+ ) D(s, —a, — B, —H/K)
+cosn/2(a—B) D(s, —a, — B, A/K)]ds.

Proof. By Mellin’s formula,
1
s=Y m'“n'ﬁe(mnH/K)m [ () (—2nimnx)"*ds
m,n ©)

where we take ¢ >1. Thus,

1 -5
S=§-7r_i (!) D(s, o, B, H/K) I'(s)z"*ds

where z=—2mnix. We move the path of integration to (1 —c) and then make the change
of variable s — 1—.s. Thus, by Cauchy’s theorem and Lemma 4,
S=C(1 _a+ﬂ)K—1+a—ﬂz—1+ar(l _a)
+{(1=B+a)K~1*E-2z71*8 (1 - B)

+D(0, o, ﬁ, H/K)-}-;l; j' zs—lr(l_s) F(s—oc) F(S——ﬂ) (K/Zn)Zs—l—-a—p
©) '

x [cosm/2 (2s+a+ B) D(s, —a, — B, —H/K)
+cosm/2(e— B) D(s, —a, — B, H/K)]ds

which completes the proof of the lemma.

Lemma 6. Let w be real with T<w=<2T and let s,=1/2+ f+iw where f=b/L
with be C, b<1. Let 6>0, n/2>1>0, A=T'"% and a=a/L with aeC, a<]1.
Define

r(sy, @)= [ v* exp(—42(log?v)/4) (v —1)"***dv/v,

La

where L, is the half-line L, ={re'*:r 20}. Then
r(s;, a)= —mie "+ 04(1)
as T — oo, uniformly in a and s, .

Proof. We change the path of integration to the positive real axis except for a
small semicircular indentation into the upper half-plane centered at v=1. Now let
v=e*. Writing w=wT, a=a/L, f=b/L, and A= T'7%, we have
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2-26,2
. x dx
— bx/L jioTx X a/L
r(s;, a)=\| e’**e exp|l — | (-1 ———
(5, 0)=] p( 4 >( Y Tenhx2
where € is the path consisting of the entire real axis from — oo to oo apart from a small
semicircular indentation into the upper half plane centered at x =0. Now let

2-26,2

—x) XL dx/x,

R(sy, a)={ e®Lei®T~ exp (—
€ 4

and consider r(s,, a) — R(s;, a). Since

(ex _ l)a/L xa/L

96 % 1) = X2 x

< Ix|a/L
as |x| — 0, it follows that

-n © . 2—26x2
R(sy, @) —r(sy, @)= lim | + [ e*Le’T exp (——T) q(a, x, T)dx.
120" S Sy

The convergence is uniform in T, w, b, and a for T =1, and qa, b, w < 1. Taking the limit
as T — oo, we get 0 for the right side whence

r(s1, @)= R(sy, @)+ 0s(1)

uniformly in w, b, and a. In the integral defining R let y = Tx. Then

2-26,2

X
~————> y“tdyly.

R(sy, a)=e"" [ e™/TLe'® exp (—
@ 4

Again, for fixed § >0 the convergence is uniform in g, b, and w < 1. Letting T — oo we
have, by the residue theorem,

lim R(s;, a)=e° [ e!?dy/y=e"" | eV dy/y=—mie™"
T—o0 € 74

Thus, R(s,, a)= —nie™“+ 04(1) whence the lemma follows.

Now we begin the proof of Lemma 2. First of all we move the path of inte-
gration in the definition of g to (c) where c=1+# with #>0 small and fixed. Since
a, < 1/L it will be the case that ||, |8| <# if T is sufficiently large. Thus, in moving the
path of integration we cross a pole at s=1—oa. The contribution from the residue is
negligible since for s < 1,

(54 exp((s—so)*4 ) <exp(T )< T

because of the definition of 4 and s,. We use the functional equation (5) on {(1—s+ f);
then we interchange summation and integration and have
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bk Py) blk, Py) Y. m™*nfJ(mnhjk, s, B, 4)+ 05(1)

hk=<y k m,n

b(h, P) b(k, P,) cap D som — 4% log?v
= __kli__”lT_Z_ Y m P [ po P exp 2
hk=<y m,n 0

mnhv mnhv\\ dv 1
x| e k +el|— X 7+o,,( ).

We express the integral as a sum of two integrals and use Cauchy’s theorem to move
one path to L, and the other to L_,; where 1>0 is small and L, is the half-line
{re'*:r20}. We interchange summation over m and n with the integration and have

b(h, P,) b(k, P
53 g= 3 PS4 o)

where, in the notation of Lemma 5,

A2 1no2 d
(56) I=[ v exp <—Aiﬂ> S(h/k(@—1), &+ B, 0, h/k) 7"
La

and
A2 1ho2 d
(57) L= [ vexp <—f'—41-°—g—‘1) S(=h/k(v—1), 2+ B, 0, h/K) 7"
L-,

Then, by Lemma 5, with H = h/(h, k) and K = k/(h, k),
(58) 11=M1+R1+E1
where
42 2
(59) M, = [ v exp (_A_lo_g'i)
L, 4
h' —1+a+p
x[C(l—a—ﬂ)F(l—a—ﬁ) K~itath <—2ni;(v—1)>

+{(1—a—p) K'l“'"’(—Znih/k(v—l))—l-J %,

—A4%log?v\ d
(60) Ro=DO.oc+f, H/K) | v erp( L E0) £,
La
and
: — 4% log? d
(61) El = S vsl exp (—_&}_}.) Fl (U) _2
L, 4 v

with
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1 K 2s—1—a—§
(62) Fl(v)=n_i (j) (—2rih/k(—1))p "' T(1—s) T'(s—a—p) I'(s) (2—1;)

x [cos(n/2(2s+a+ B)) D(s, —a— B, 0, — H/K)
+cos(n/2(x+ B)) D(s, —a— B, 0, H/K)]ds.

There are similar expressions for I, =M, + R, +E,.
Now in the notation of Lemma 6,

(63) M =({(1—a—B) T(l—a—p)(=2ri)) ' **PH " **br(s,, a+ f)
+{(1+a+p)(=2ni) *H K * Pr(sy, 1).

Now {(s)~1/(s—1) for s near 1 and I'(1)=1. Thus, by Lemma 6,

M
Il } 1
hk<y #n?

-1

31D (€™ *Z(—a, —b, Py, P)— Z(b, a, Py, P,)) (1+o(1)).

We get exactly the same expression for the sum of the M,. Thus, from the terms with
M, and M, we get the main term of g in Lemma 2.

8. The error terms

In this section we complete the proof of Lemma 2 which completes the proofs of
the theorems. This section is where the important work of Deshouiller and Iwaniec on
averages of Kloosterman sums enters.

It remains to bound

: b(h, P,) b(k, P.
(65) y _(TILT?(B_J)(Ri’*'Ei)
hksy

for i=1 and 2. As the situation is identical for i =2 we deal with i=1 only. As far as R;
is concerned, since, by Lemma 4 of [2]

1 2 d 2 1/2 2
(66) [ vrexp (—— 4* ﬁ%_”) 70 = 1; exp (%) < exp(T~?%)
La

it follows from Lemma 4 that
R,<T™?

whence the contribution to (65) from R, is < T ~*°.
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Now by (61) and (62), the part of (65) which involves E; may be written as a sum
of two terms, one of which is

(67) Z=| [ Ga+B,v,sy,4,5) M (B, s)dsdv
La (©
where
s , log?v B
(68) G(a, v, 51, 4,5)=—iv exp| — 4 4 re)r(l—s)r(s—o)(2n)*"°

x cos(m/2(2s+a)) e ™2 (v—1) "1yt

and

HPIVL P v o (2

(69) Jl(a, ﬂ, S)= Z meth-sp=s Z pl=sTBi-s+a K

hk=y

where H = h/(h, k) and K =k/(h, k). The other term is slightly less complicated and may
be treated the same way as this one will be. Replacing mn by n and arranging the sums
over h and k according to the g.c.d. of h and k we get

(70) M )= g ¥ MNUV,opgs5)
gsy N UV
where
d(n b(ug, P,) b(vg, P,) (ni
(71) M N, UV, B, g 5)= 3, _(”s'2 D ( %—s-ll-i 1(—sg+a 2 e(‘—)
n~N N J<U v~v u v v
(u,v)=1
with
(72) =Y a=*¢
din

and where the notation x~X means X <x<2X, and the sums on U and V have
< logy terms with U, V < y/g and the sum on N is for N=2’, J=0,1,2,.... Now Z is
a sum of terms of the shape

73) ZWN, U, V)= [ G@a+B, v, 55, 4, 5) (N, U, V, 0B, g, s)dsdv.

L (o)
If UV 2 TN, then we move the s path of integration to s=#+it; otherwise we leave it

at s=c+it=1+n+it. (Recall that n >0 is fixed, to be chosen at the end of the proof in
terms of ¢.) In moving the path of integration, we cross a pole at s =1 with residue

(74) r—u) @ne ! cos(n/22+a) #(N, U, V,a, B, g 1)

2
d
“' vsl exp (_Az IOg U) ‘9'«6 T-lO
La 4 v

by (66). To complete the proof we require two lemmas.
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Lemma 7. Let G be as in (68) with the usual conventions about s,, 4, and o.
Suppose that c=n or c =1+n where n>0 is a small fixed number. Let . =1/T. Then

| (+1s)1G (e, v, sy, 4, s)dsdv| <<, ,, 4752 T52+n+e

Li (©
for any >0, uniformly in a and s, .
The proof is exactly the same as that of Lemma 5 of [2].

Lemma 8. Let #(N,U,V,a, B, g, s) be as in (71). Suppose that y < T®13; 1<U,
V=y, n>0and s=c+it withc=n if UVZTN and c=1+n if UV<TN. Then

MN, U, V, 0, B, g 5) <, (1+Is) (TNY y*" T*N""(T V2 y7/8 4 T=1y714)

uniformly for a, b<<1, all t, and all g << y/V.

Before giving the proof of Lemma 8 we complete the proof of Lemma 2. We have
by Lemmas 7 and 8

1
(75) Z= Z — Z Z(N,U,V)
g<y & NUV
<, , A7 TATS2F2e 2k (T2 718 4 )7/4) Z N~ "4 Z T !
" N, UV NU,V
NTSUV

<<£A_7/2 T5/2+2ey3e(T1/2y7/8 +y7/4)

on taking n = ¢/2. Since 6 <7/4, this is o,(1) as T — oo if 4 and ¢ are sufficiently small.

Proof of Lemma 8. Initially we use the fact that the variable g can be separated
from u and from v since, for example,

p (log y/(ug)>
logy

is a sum of <1 terms of the shape a constant times

) logu+logg\*
logy

which is itself a sum of < 1 terms of the shape

logu\** (logg\
logy) \logy/ "

21 Journal fiir Mathematik. Band 399
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Also, p(ug)=pu(u) u(g) if (u, g)=1 and u(ug)=0 if (u, g)>1. Thus, #(N, U, V, a, B, g, s)
is a sum of < 1 terms that are themselves

<N~ UV)< S|

where
(76) S= ZN r(n) Y, Z u(u) r* (u) r(v)e( )
n~ u~U v~V
(u,v9)=1

Here the functions r may be different at each occurrence; but they all may be described
as follows: r( ) depends on its argument as well as g, s, a, §, N, U, and V and r(n) <,n*
for any ¢>0 uniformly in g, s, a, f, N, U, and V. In addition, r* is an r function which is
smooth in its dependency on u, satisfying

77) % r*w) < (1+|sl)u""r(u)

for some r(u), and having the property of separability, i.e.,
(78) r*(ab)=r*(a) r*(b)

where the r*’s here are not necessarily the same at each occurrence.

We now use Vaughan’s identity to get a new expression for u(n); equating
coefficients on both sides of the identity 1/ =1/{(1—{M)? +2M —{ M? where

(79) M=M(s)= Z umn=*, W=Ult

we find that

(80) p)=cy (W) +c (W) +c3(u)
where
(81) ¢ (W)= Z_ 1) cal@) ca(B)
a2 W BEW
with
(82) ca@=— Y pdy);
?fé;f
2pm) if usw,
(83) e (W)= { it usw
(84) csw=— ) p@) up).
afy=u
asW

B=W
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This leads to S=S, + S, + S; where

(85) S;= Z r(n) ZU Z c;(u) r*(u)r(v)e( >
(u,v9)= 1

for i=1, 2, and 3. We treat each of these sums in a slightly different way. We note also
that it suffices to show that for any £>0,

(86) S; <, (yN)* max(TN, UV)y"/8T 12,

the lemma then follows with a different value of e.

We start with S, which is trivially estimated by

87) S, <, (yNYNWV <,(yN) (TN)T-1 UV
<, (YyN) (TN)T 1y,
Thus S, satisfies (86) since y < T*/>. Next we consider S,. Grouping together y and the

larger of o and f in (81) into a variable b and calling the other variable a, we see that S,
can be split into <<, y* sums of the shape

(88) S, = Z rm) Y Y r(a)r(b)r(v)e( “5)

n~N a~A v~V
b~B
(ab,v)=1

where U< AB< U and W £ 4 < B. Now we have the following lemma, which is a case
of Lemma 1 of Deshouillers and Iwaniec [7].

Lemma 9. Suppose that |c(a, n)|<1 and U< AB< U. Then for any ¢>0

L 3lE 3 cane("D)

v~V b~B [n~N a~A
b,v)=1 (a,v)=1

<, (NUV)Y2* ((UVA™)2 4 (A+ N)" [UVA™L (N + A) (V + A) + NU?]¥4},

Using the fact that x* + y* < (x + y)* < x®+ y° for a=0 and x, y =1 it is not hard to see
that the right hand side of the relation in the proposition is

(89) < (NyF( Y A°N"U'VY)

(a,n,u,v)eE

for any ¢>0 where

(90) E={(-22,4,4),(—1,4,3,4),(1,4,3,3),(1,23,4),
(3,2,3,3),(00,4,4,2),(1, 3,4, 2)}.
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Clearly, the fact that our coefficients r(n) satisfy
r(n) <, n’

for any ¢>0 does not affect the use of the bound (89) for S5. We now show how to
bound A*N"U*V" for (a, n,u,v) € E, and UV* < 4 < U2

We have two cases to deal with: a=>0 and a <0. If ¢ =0 then

(91) A“NHUMVU<<(TN)n (UV)4—nT—n Ua/2+n+u—4Vn+v—4
<<(max{TN, UV})4 T—ny2n+u+v—8+a/2

since for all (a,n, u,v)e E, n+u=4 and n+v=4 so that we may use U, V < y. Now
we have to show that

92) T—-ny2n+u+v-8+a/2<<T—2y7/2
for all (a, n, u, v) € E with a=0. The terms we get for the left side are
T4y13/2 T-2)72 T=2)72 T=4y6 and T3y9/2,
Clearly (92) holds since y << T?/3. For a<0 we use

93) A°N"U"V* < (TN)' (UV)*-nT—ryeatntu-dynte-4
<<(maX{TN, UV})4T—ny2n+u+v—8+a/4

since for all (a,n,u,v)e E with a<0 we have a/4+n+u—4=0. Now we have to
show that

(94) Tny2ntuto-Btad o 2,72
for both (a, n, u, v) € E with a<0. The terms we get for the left side are
95) T~2)72 and T *y?7*
and so (94) holds since y << T®*'3. It follows now that
(96) Sy <, max (TN, UV) (yN) T Y278,

Finally, we consider S;. Grouping together a and f into a variable a and
replacing y by b we see that S; can be split into <<, y* sums of the shape

(97 S5=Y rv) Y r*®b) Y rm) Y r(a)e<zd—5>
v~V (bb~)8=1 n~N (a,-;gl v
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where U << AB< U and A < W?=U"2 Now if A>> U'4, then the treatment is exactly
as with S, above using Lemma 9. If A< U"4, then we sum over b first using Weil’s
bound for the Kloosterman sum. Thus, Weil’s bound implies that

(98) 2 e(”‘_") <, v"?(vg)* (L, v) (1+Bv™")
B<b<B+x v

(b,vg)=1

. . . d
so that by a summation by parts (using the bound in (77) for Ix r*(x)) we get

99) Sy<< (1+I[sl)) NI AV2(1+BV™H) Y Y (n,0)

n~N v~V

<, (1+]s) (N ANVY2(V + B)
<, (1+1s)) ONY (ANVY2+ UNVY2),

If A< UY4, then

ANV32 L UNVY2 <« Ny
<max {TN, UV} T 1y’

Thus, in any event
Sy<,(1+|s|) max {TN, UV} (yN)* (T 1y"* + T~12)7/8),

This completes the proof of the lemma and the theorems.
Note added in proof. We can improve Theorem 1 slightly. With R =1.28 and

0(x)=0.492 +0.602 (1 —2x) — 0.08 (1 —2x)3
—0.06 (1—2x)° +0.046 (1 —2x)

we have k = 0.4088.
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