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Chapter 1

Introduction

1.1 Who is Teaching this Course?

I am William Stein. Come see me during my office hours, which are Wednesdays
and Fridays, 2:00-3:00.

Quick Bio: I received a Ph.D. from Berkeley just over a year ago, where I worked
with Hendrik Lenstra, Ken Ribet, and Robert Coleman. After graduating, I visited
math institutes in Europe, Australia, and Asia and was a postdoctoral fellow here
at Harvard. Now I am a Benjamin Peirce Assistant Professor. Lucky for you, my
research specialty is number theory, with a focus on computing with “elliptic curves
and modular forms”.

1.2 Evaluation

e In-class midterm on October 17 (20% of grade)
e Homework every Wednesday (40% of grade)

e Take-home final (40% of grade)

1.3 What is this Course About?

See the lecture plan. The main ideas include:

1.3.1 Factorization

Do you remember writing whole numbers as products of primes? For example,
12=2x2x3.

Can this sort of thing always be done? Is it really hard or really easy? For example,
is factoring social security numbers “trivial” or hopeless? In fact, it’s trivial; even
my wristwatch can do it!! (Mine might be the only wristwatch in the world that
can factor social security numbers, but that’s another story.) What about bigger
numbers?



These questions are important to your everyday life. If somebody out there
secretly knows how to factor 200-digit numbers quickly, then that person could easily
read you credit card number and expiration date when you send it to amazon.com.

1.3.2 Congruences and Public-key Cryptography

Two numbers a and b are congruent modulo another number n if a = b+ nk for
some integer k. That a and b are congruent just means you can “get from a to b on
the number line” by adding or subtracting lots of copies of n. For example, 14 = 2
(mod 12) since 14 =2 + 12 1.

Z/nZ = { equivalence classes of numbers modulo n }.

Your web browser’s “secret code language” uses arithmetic in Z/pgZ to send
messages in broad weblight to amazon.com. How can this possibly be safe!? You
will find out exactly what is going on.

1.3.3 Computers

Computers make the study of properties of whole numbers vastly more interesting.
A computer is to a number theorist, like a telescope is to an astronomer. It would
be a shame to teach an astronomy class without touching a telescope; likewise, it
would be shame to teach this class without telling you how to look at the integers
“through the lens of a computer”.

1.3.4 Sums of Two Squares

I will tell you how to decide whether or not your order number is a sum of two
squares. For example, an odd prime number is a sum of two squares if and only if
when divided by 4 it leaves a remainder of 1. For example, 7 is not a sum of two
squares, but 29 is.

1.3.5 Elliptic Curves

My experience is that elliptic curves are extraordinarily fun to study. Every such
curve is like a whole galaxy in itself, just like the rational numbers are. An elliptic
curve over QQ is a curve that can be put in the form

y? = 2® + az +b,

where the cubic has distinct roots and a,b € Q. The amazing thing is that the set
of pairs
B(Q = {(z,y) € @x Q:y* = 2* + az + b} U {oc}

has a natural structure of “group”. In particular, this means that given two points
on FE, there is a way to “add” the two solutions together to get another solution.

Many exciting problems in number theory can be translated into questions about
elliptic curves. For example, Fermat’s Last Theorem, which asserts that z"+y" = 2™
has no positive integer solutions when n > 2 was proved using elliptic curves. Giving
a method to decide which numbers are the area of a right triangle with rational side
lengths has almost, but not quite, been solved using elliptic curves.



The central question about elliptic curves is The Birch and Swinnerton-Dyer
Conjecture which gives a simple conjectural criterion to decide whether or not E(Q)
is infinite (and more). Proving the BSD conjecture is one of the Clay Math Insti-
tute’s million dollar prize problems. I'll tell you what this conjecture is.



Chapter 2

Prime Factorization

2.1 Prime Numbers
We call positive whole numbers the natural numbers and denote them by N. Thus
N={1,2,3,4,...}.
We call all the whole numbers, both positive and negative, the integers, and write
Z=1{.,-2,-1,01,2,...}

They are denoted by Z because the German word for the integers is “Zahlen” (and
19th century German number theorists rocked).

Definition 2.1.1. If a,b € Z then “a divides b” if ac = b for some ¢ € Z.

To save time, we write

alb.
For example, 2 | 6 and 389 | 97734562907. Also, everything divides 0.

Definition 2.1.2. A natural number p > 1 is a prime if 1 and p are the only
divisors of p in N. Le., if a | p implies a = 1 or a = p.

Primes:
2,3,5,7,11,...,389,...,2003,...

Composites:
4,6,8,9,10,12,...,666 =2-32-37,...,2001 =3-23-29,...
Primes are “primal”’—every natural number is built out of prime numbers.

Theorem 2.1.3 (The Fundamental Theorem of Arithmetic). Every positive
integer can be written as a product of primes, and this expression is unique (up to
order).

10



Warning: This theorem is harder to prove than I first thought it should be. Why?

First, we are lucky that there are any primes at all: if the natural numbers are
replaced by the positive rational numbers then there are no primes; e.g., 2 = % -4,
1
so 5 | 2.
2

Second, we are fortunate to have unique factorization in Z. In other “rings”, such
as Z[v/—5] = {a + bv/=5 : a,b € Z}, unique factorization can fail. In Z[+/—5], the
number 6 factors in two different ways:

2-3=6=(1++v-5)-(1—-v-5).

If you are worried about whether or not 2 and 3 are “prime”, read this: If
2 = (a + bv/=5) - (c + dv/=5) with neither factor equal to £1, then taking
norms implies that

4 = (a® + 5b%) - (¢* + 5d?),

with neither factor 1. Theorem 2.1.3 implies that 2 = a? + 5b%, which is
impossible. Thus 2 is “prime” in the (nonstandard!) sense that it has no
divisors besides £1 and +£2. A similar argument shows that 3 has no divisors
besides +1 and +3. On the other hand, as you will learn later, 2 should
not be considered prime, because the ideal generated by 2 in Z[v/—5] is not

prime. We have (1 ++1/-=5) - (1 — +/=5) = 6 € (2), but neither 1 + /-5
nor 1 —+/=5 is in (2). We also note that (1 + +/—5) does not factor. If
(14 +/-5) = (a+bv/=5) - (¢ + dy/—5), then, upon taking norms,

2-3 = (a® +5b°) - (¢ + 5d?),

which is impossible.

2.2 Greatest Common Divisors

Let a and b be two integers. The greatest common divisor of a and b is the biggest
number that divides both of them. We denote it by “gcd(a,b)”. Thus,

Definition 2.2.1.
ged(a,b) = max{d: d | a and d | b}.

Warning: We define gcd(0,0) = 0, instead of “infinity”.

Here are a few ged’s:

ged(1,2) =1, ged(0,a) = ged(a,0) =a, ged(3,27) =3, ged(2261,1275) =7

Warning: In Davenport’s book, he denotes our gcd by HCF and calls it the
“highest common factor”. I will use the notation gcd because it is much more
common.

2.2.1 Euclid’s Algorithm for Computing GCDs
Can we easily compute something like gcd(2261,1275)7 Yep. Watch closely:

2261 =1-1275 4+ 986.

11



Notice that if a number d divides both 2261 and 1275, then it automatically divides
986, and of course d divides 1275. Also, if a number divides both 1275 and 986,
then it has got to divide 2261 as well! So we have made progress:

ged (2261, 1275) = ged (1275, 986)
Let’s try again:
1275 =1 - 986 + 289,
so ged(1275,986) = ged(986,289). Just keep at it:

986 = 3-289 + 119
289 =2-119+51
119 =2-51 4+ 17.

Thus ged(2261,1275) = --- = ged(51,17), which is 17 because 17 | 51, so
ged(2261,1275) = 17.

Cool. Aside from tedious arithmetic, that was quick and very mechanical.

The Algorithm: That was an illustration of Euclid’s algorithm. You just
“Divide and switch.”

More formally, fix a,b € N with ¢ > b. Using “divide with quotient and remain-
der”, write a = bqg 4+ r, with 0 < r < b. Then, just as above,

ged(a, b) = ged(b, 7).
Let a; = b, by = r, and repeat until r = 0. Soon enough we have computed ged(a, b).

Here’s are two more examples:

Ezxample 2.2.2. Set a =15 and b = 6.

15 = 6-2+43 ged(15,6) = ged(6, 3)
6 = 3-2+0 ged(6,3) = ged(3,0) =3

We can just as easily do an example that is “10 times as hard”:
Ezample 2.2.3. Set a = 150 and b = 60.

150 = 60-2+30  ged(150,60) = ged(60, 30)
60 = 30-2+40 ged(60,30) = ged(30,0) = 30

With Euclid’s algorithm in hand, we can prove that if a prime divides the prod-
uct of two numbers, then it has got to divide one of them. This result is the key to
proving that prime factorization is unique.

Theorem 2.2.4 (Euclid). Let p be a prime and a,b € N. Ifp | ab then p | a or
p|b.

Proof. If p | a we are done. If p { a then ged(p,a) = 1, since only 1 and p divide p.
Stepping through the Euclidean algorithm from above, we see that gcd(pb, ab) = b.
At each step, we simply multiply the equation through by b. Since p | pb and, by
hypothesis, p | ab, it follows that p | gcd(pb, ab) = b. O

12



2.3 Numbers Do Factor

Let n = 1275, and recall from above that 17 | 1275, so n is definitely composite,
n =17-75. Next, 75is 5-15=5-5-3. So, finally, 1275 =3-5-5-17.

Now suppose 7 is any positive number. Then, just as above, n can be written
as a product of primes:

e If n is prime, we are done.

e If n is composite, then n = ab with a,b < n. By induction, a, b are products
of primes, so n is also a product of primes.

What if we had done something differently when breaking 1275 apart as a prod-
uct of primes? Could the primes that show up be different? Why not just try? We
have 1275 = 5-255. Now 255 = 5-51 and 51 = 17 - 3, so everything turned out the
same. Will it always?

Incidently, there’s an open problem nearby:

Unsolved Question: Is there an algorithm which can factor any given integer n so
quickly that its “running time” is bounded by a polynomial function of the number
of decimal digits of n.

I think most people would guess “no”, but nobody has yet proved that it can’t be
done (and told everyone...). If there were such an algorithm, then the cryptosystem
that I use to send my girlfriend private emails would probably be easily broken.

2.3.1 A $10,000 Challenge

If you factor the following 174-digit number, affectionality known as “RSA-576",
then the RSA company will give you TEN THOUSAND DOLLARS!!!

18819881292060796383869723946165043980716356337941738270076335
64229888597152346654853190606065047430453173880113033967161996
92321205734031879550656996221305168759307650257059

This number is called RSA-576, since it has 576 binary digits. See
http://www.rsasecurity.com/rsalabs/challenges/factoring/index.html

for more details.

2.4 The Fundamental Theorem of Arithmetic

We can now prove Theorem 2.1.3. The idea is simple. Suppose we have two fac-
torization. Use Theorem 2.2.4 to cancel primes from each, one prime at a time. At
the end of the game, we discover that the factorizations have to consist of exactly
the same primes. The technical details, with all the p’s and ¢’s are given below:

Proof. We have
N =p1-p2--"Pds
with each p; prime. Suppose that

n=4q1-92'""9m

13



is another expression of n as a product of primes. Since

pln=q (g2 qm),

Euclid’s theorem implies that p; = g1 or p1 | g2- - - gm- By induction, we see that
p1 = g; for some 3.

Now cancel p; and g;, and repeat the above argument. Eventually, we find that,
up to order, the two factorizations are the same. O

14



Chapter 3

Introduction to Computing and
PARI

3.1 Introduction

“The object of numerical computation is theoretical advance.” — Bryan
Birch describing A. O. L. Atkin.

Much progress in number theory has been driven by attempts to prove conjec-
tures. It’s reasonably easy to play around with integers, see a pattern, and make a
conjecture. Frequently proving the conjecture is extremely difficult. In this direc-
tion, computers help us to

e find more conjectures
e disprove conjectures
e increase our confidence in a conjecture

They also frequently help to solve a specific problem. For example, the following
problem would be hopelessly tedious by hand. Here’s an example of such a problem:

Find all integer n < 100 that are the area of a right triangle with integer
side lengths.!

This problem can be solved by a combination of very deep theorems, a few big
computer computations, and a little luck.

3.2 Some Assertions About Primes

A computer can quickly “convince” you that many assertions about prime numbers
are true. Here are three.

e The polynomial % + 1 takes on infinitely many prime values.
Let
f(n)={z:z <n:zandz®+ 1 is prime }.

1We will discuss the “The Congruent Number Problem” in more depth later in this course.
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With a computer, we quickly find that
f(10%) =19, f(10%) =112, f(10*) =841, f(10°) = 6656.
Surely f(n) is unbounded! The PARI code to compute f(n) is very simple:

? f(n) = s=0; for(x=1,n,if(isprime(x~2+1),s++)); s
7 £(100)

%1 =19

? £(1000)
%2 = 112

? £(10000)
%3 = 841

? £(100000)
%4 = 6656

Every even integer n > 2 is a sum of two primes.
With a computer we find that this seems true

p g

—_ =
Tt W W W N
N J Ot W N

.. and much further. In practice, it’s easy to write an even number as a sum
of two primes. Why should there be any weird even numbers out there for
which this can’t be done? PARI code to find p and ¢:

7 gb(n) = forprime(p=2,n,if (isprime(n-p),return([p,n-pl)));
? gb(4)

W= [2, 2]

? gb(6)

w8 = [3, 3]

? gb(100)

w9 = [3, 97]

? gb(1000)

»10 = [3, 997]

7 gb(570) \\ takes no time at all!
w11 = [7, 563]

There are infinitely many primes p such that p + 2 is also prime.
Let t(n) = #{p : p < n and p + 2 is prime }. Using a computer we quickly
find that
t(10%) =8, #(10%) =35, ¢(10%) =205, #(10°) = 1024.
The PARI code to compute ¢(n) is very simple:

16



? t(n) = s=0; forprime(p=2,n,if (isprime(p+2),s++)); s
? t£(1072)

%12 = 8

? £(1073)

%13 = 35

? t(1074)

%14 = 205

? t(10°5)

%15 = 1224

Surely t(n) keeps getting bigger!!

As it turns out, these three assertions are all OLD famous extremely difficult
unsolved problems! Anyone who proves one of them will be very famous.

Assertion 2 is called “The Goldbach Conjecture”; Goldbach reformulated it in
a letter to Euler in 1742. It’s featured in the following recent novel:

Uncle Petros &
Goldbach’s Conjecture

J aawel af mathemalical omrddien | Aposiolos Bosladlis

The publisher of that novel offers a MILLION dollar prize for the solution to
the Goldbach conjecture:

http://www.faber.co.uk/faber/million_dollar.asp?PGE=&0RD=faber&TAG=&CID=
The Goldbach conjecture is true for all n < 4- 10, see

http://www.informatik.uni-giessen.de/staff/richstein/ca/Goldbach.html
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Assertion 3 is the “T'win Primes Conjecture”. According to
http://perso.wanadoo.fr/yves.gallot/primes/chrrcds.html#twin

on May 17, 2001, David Underbakke and Phil Carmody discovered a 32220 digits
twin primes record with a set of different programs: 318032361 - 2107901 + 1. This is
the current “world record”.

With a computer, even if you can’t solve one of these “Grand Challenge” prob-
lems, at least you can perhaps work very hard and prove it for more cases than
anybody before you, especially since computers keep getting more powerful. This
can be very fun, especially as you search for a more efficient algorithm to extend
the computations.

3.3 Some Tools for Computing

Calculator: A TIT-89 can deal with integers with 1000s of digits, factor, and do
most basic number theory. I am not aware if anyone has programmed basic ”elliptic
curve” computations into this calculator, but it could be done.

Mathematica and Maple: Both are commercial, but they are very powerful,
can draw pretty pictures, and there are elliptic curve packages available for each
(apecs for Maple, and something by Silverman for Mathematica).

PARI: Free, open source, excellent for our course, simple, runs on Macs, MS
Windows, Linux, etc.

MAGMA: Huge, non-free but nonprofit, what I usually use for my research. I
can legally give you a Linux executable if you are registered for 124.

My Wristwatch: Perhaps the only wristwatch in the world that can factor your
social security number? :-)

3.4 Getting Started with PARI

3.4.1 Documentation

The documentation for PARI is available at

http://modular.fas.harvard.edu/docs/

Some PARI documentation:
1. Installation Guide: Help for setting up PARI on a UNIX computer.
2. Tutorial: 42-page tutorial that starts with 2 + 2.
3. User’s Guide: 226-page reference manual; describes every function

4. Reference Card: hard to print, so I printed it for you (handout)

18



3.4.2 A Short Tour

$ ep
Appele avec : /usr/local/bin/gp -s 10000000 -p 500000 -emacs

GP/PARI CALCULATOR Version 2.1.1 (released)
i686 running linux (ix86 kernel) 32-bit version
(readline v4.2 enabled, extended help available)

Copyright (C) 2000 The PARI Group

PARI/GP is free software, covered by the GNU General Public License, and
comes WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.
Type 712 for how to get moral (and possibly technical) support.

realprecision = 28 significant digits
seriesprecision = 16 significant terms
format = g0.28

parisize = 10000000, primelimit = 500000
7 \\ this is a comment

? x = 571438063;

? print(x)

571438063

? x"2+17

%2 = 326541459845191986

? factor(x)

%3 =

[7 1]

[81634009 1]

? gcd(x,56)

W=7

7?7 x720

%6 = 137842550376658549303577840675412507732229165495828020913935
8450113971943932613097560462268162512901194466231159983662241797
60816483100648674388195744425584150472890085928660801

3.4.3 Help in PARI

77

Help topics:
0: list of user—-defined identifiers (variable, alias, function)
1: Standard monadic or dyadic OPERATORS
2: CONVERSIONS and similar elementary functions
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TRANSCENDENTAL functions

NUMBER THEQRETICAL functions

Functions related to ELLIPTIC CURVES

Functions related to general NUMBER FIELDS
POLYNOMIALS and power series

Vectors, matrices, LINEAR ALGEBRA and sets
SUMS, products, integrals and similar functions
10: GRAPHIC functions

11: PROGRAMMING under GP

12: The PARI community

© 00 ~N O O W

Further help (list of relevant functions): 7n (1<=n<=11).

Also:

? functionname (short on-line help)

7\ (keyboard shortcuts)

7. (member functions)
Extended help looks available:

77 (opens the full user’s manual in a dvi previewer)

7?7 tutorial (same with the GP tutorial)

7?7 refcard (same with the GP reference card)

7?7 keyword (long help text about "keyword" from the user’s manual)

77?7 keyword (a propos: list of related functions).
? 74
addprimes bestappr bezout bezoutres bigomega
binomial chinese content contfrac contfracpngn
core coredisc dirdiv direuler dirmul
divisors eulerphi factor factorback factorcantor
factorff factorial factorint factormod ffinit
fibonacci ged hilbert isfundamental isprime
ispseudoprime issquare issquarefree kronecker lcm
moebius nextprime numdiv omega precprime
prime primes gfbclassno qfbcompraw gfbhclassno
gfbnucomp gfbnupow gfbpowraw gfbprimeform qfbred
quadclassunit quaddisc quadgen quadhilbert  quadpoly
quadray quadregulator quadunit removeprimes sigma
sqrtint znlog znorder znprimroot znstar
? 7gcd

gcd(x,y,{flag=0}): greatest common divisor of x and y. flag is optional, and
can be 0: default, 1: use the modular gcd algorithm (x and y must be
polynomials), 2 use the subresultant algorithm (x and y must be polynomials).

? 7?7
? 77gcd
\\ if set up correctly, brings up the typeset section from the manual on gcd

We will discuss writing more complicated PARI programs on October 10.
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Chapter 4

The Sequence of Prime
Numbers

This lecture is about the following three questions:
1. Are there infinitely many primes? (yes)
2. Are there infinitely many primes of the form az + b? (yes, if gcd(a,b) = 1)

3. How many primes are there? (asymptotically z/log(z) primes less than z)

4.1 There are infinitely many primes

Theorem 4.1.1 (Euclid). There are infinitely many primes.

Note that this is not obvious. There are completely reasonable rings where it is
false, such as

R= {% ta,b € Z and ged(b, 30) = 1}
There are exactly three primes in R, and that’s it.
Proof of theorem. Suppose not. Let py = 2,po = 3, ..., p, be all of the primes. Let
N=2xX3xbx---Xp,+1
Then N # 1 so, as proved in Lecture 2,
N=qg xqgXx- Xqn

with each ¢; prime and m > 1. If ¢; € {2,3,5,...,p,}, then N = qra+1,s0 ¢ t N,
a contradiction. Thus our assumption that {2,3,5,...,p,} are all of the primes is
false, which proves that there must be infinitely many primes. O

If we were to try a similar proof in R, we run into trouble. We would let
N =2-3-541 =31, which is a unit, hence not a nontrivial product of primes.

Joke (Lenstra). “There are infinitely many composite numbers. Proof: Multiply
together the first n primes and don’t add 1.”

According to
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http://www.utm.edu/research/primes/largest.html

the largest known prime is

p= 26972593 -1

?

which is a number having over two million' decimal digits. Euclid’s theorem implies
that there definitely is a bigger prime number. However, nobody has yet found it
and proved that they are right. In fact, determining whether or not a number is
prime is an extremely interesting problem. We will discuss this problem more later.

4.2 Primes of the form axz + b

Next we turn to primes of the form az + b. We assume that ged(a,b) = 1, because
otherwise there is no hope that az + b is prime infinitely often. For example, 3z + 6
is only prime for one value of z.

Proposition 4.2.1. There are infinitely many primes of the form 4z — 1.

Why might this be true? Let’s list numbers of the form 4z — 1 and underline
the ones that are prime:

3,7,11,15,19,23,27, 31, 35, 39,43, 47, . ...

It certainly looks plausible that underlined numbers will continue to appear. The
following PARI program can be used to further convince you:

f(n, s=0) = for(x=1, n, if(isprime(4*x-1), s++); s

Proof. The proof is similar to the proof of Euclid’s Theorem, but, for variety, I will
explain it in a slightly different way.
Suppose p1,pa, ..., p, are primes of the form 4z — 1. Consider the number

N =4py X pg X --- X p, — 1.

Then p; { N for any i. Moreover, not every prime p | N is of the form 4z + 1; if they
all were, then NV would also be of the form 4z + 1, which it is not. Thus there is a
p | N that is of the form 4z — 1. Since p # p; for any ¢, we have found another prime
of the form 42 — 1. We can repeat this process indefinitely, so the set of primes of
the form 4z — 1 is infinite. O

Ezample 4.2.2. Set p1 =3, po = 7. Then
N=4x3xT7—-—1=283
is a prime of the form 4z — 1. Next
N=4x3x7Tx83—1=069T71,
which is a again a prime of the form 4z — 1. Again:

N=4x3xT7x83x6971 —1=48601811 = 61 x 796751.
Tt has exactly 2098960 decimal digits.
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This time 61 is a prime, but it is of the form 4z +1 =4 x 15+ 1. However, 796751
is prime and (796751 — (—1))/4 = 199188. We are unstoppable

N =4x3x7x83x6971 x 796751 — 1 = 5591 x 6926049421.

This time the small prime, 5591, is of the form 4z — 1 and the large one is of the
form 4z + 1. Etc!

Theorem 4.2.3 (Dirichlet). Let a and b be integers with gcd(a,b) = 1. Then
there are infinitely many primes of the form ax + b.

The proof is out of the scope of this course. You will probably see a proof if you
take Math 129 from Cornut next semester.

4.3 How many primes are there?

There are infinitely many primes.
Can we say something more precise?
Let’s consider a similar question:

Question 4.3.1. How many even integers are there?

Answer: Half of all integers.

Question 4.3.2. How many integers are there of the form 4z — 17

Answer: One fourth of all integers.

Question 4.3.3. How many perfect squares are there?

Answer: Zero percent of all numbers, in the sense that the limit of the proportion
of perfect squares to all numbers converges to 0. More precisely,

lim #{n :n <z and n is a perfect square }/z = 0,
T—00

since the numerator is roughly v/z and \/z/z — 0.
A better question is:

Question 4.3.4. How many numbers < x are perfect squares, as a function of z?
Answer: Asymptotically, the answer is /x.

So a good question is:
Question 4.3.5. How many numbers < z are prime?

Let
m(xz) = #{ primes p < z}.

For example,
m(6) = #{2,3,5} = 3.

We can compute a few more values of 7(z) using PARI:
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? pi(x, ¢=0) = forprime(p=2,x,c++); C;

? for(n=1,7,print (n*100,"\t",pi(n*100)))
100 25

200 46

300 62

400 78

500 95

600 109

700 125

Now draw a graph on the blackboard. It will look like a straight line...
Gauss spent some of his free time counting primes. By the end of his life, he
had computed w(z) for z up to 3 million.

7(3000000) = 216816.

(I don’t know if Gauss got the right answer.) Gauss conjectured the following:

Theorem 4.3.6 (Hadamard, Vallée Poussin, 1896). 7w (z) is asymptotic to

z/log(z), in the sense that

@) .

lim ————
00 T /log(x)
I will not prove this theorem in this class. The theorem implies that z/(log(z) —
a) can be used to approximate 7(z), for any a. In fact, a = 1 is the best choice.

? pi(x, ¢c=0) = forprime(p=2,x,c++); c;

? for(n=1,10,print (n*1000,"\t",pi(n*1000),"\t",n*1000/(log(n*1000)-1)))
1000 168 169.2690290604408165186256278
2000 303 302.9888734545463878029800994
3000 430 428.1819317975237043747385740
4000 550 548.3922097278253264133400985
5000 669 665.1418784486502172369455815
6000 783 779.2698885854778626863677374
7000 900 891.3035657223339974352567759
8000 1007 1001.602962794770080754784281
9000 1117 1110.428422963188172310675011
10000 1229 1217.976301461550279200775705

Remark 4.3.7.

4.3.1 Counting Primes Today
People all over the world are counting primes, probably even as we speak. See, e.g.,

http://www.utm.edu/research/primes/howmany.shtml

http://numbers.computation.free.fr/Constants/Primes/Pix/pixproject.html

A huge computation:
7(10%%) = 201467286689315906290

(I don’t know for sure if this is right...)
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4.3.2 The Riemann Hypothesis

RN A | .
Ll(.’L‘)—/2 log(:v)d

is also a good approximation to m(z).

The function

The famous Riemann Hypothesis is equivalent to the assertion that

m(z) = Li(z) + O(Vz log())-

(This is another $1000000 prize problem.)

pi(10722) 201467286689315906290
Li(10722)

Log(x)/(x-1)

25

201467286691248261498.1505. ..
201381995844659893517.7648. ..

(using Maple)
(pari)



Chapter 5

Congruences

The point of this lecture:
Define the ring Z/nZ of integers modulo n. Prove Fermat’s little theorem, which
asserts that if ged(z,n) = 1, then z#( =1 (mod n).
5.1 Notation
Definition 5.1.1 (Congruence). Let a,b € Z and n € N. Then
a=b (modn)
ifn|a—>o
That is, there is ¢ € Z such that
nc=a —b.

One way I think about it: a is congruent to b modulo n, if we can get from b to a
by adding multiples of n.
Congruence modulo n is an equivalence relation. Let

Z/nZ = { the set of equivalence classes }

The set Z/nZ is a ring, the “ring of integers modulo n”. It is the quotient of the
ring Z by the ideal generated by n.

Ezxample 5.1.2.

Z/3Z: {{"'7_370537"'}7{"'5_271,47"'}’{"',_172557"'}} = {[0]5[1]7[2]}

where we let [a] denote the equivalence class of a.

5.2 Arithmetic Modulo N
Suppose a, a’,bb’ € Z and

a=d (mod n), b=V (mod n).
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Then

a+b=d +b (modn) (5.1)

axb=ad xb (modn)

So it makes sense to define + and x by [a] + [b] = [a + b] and [a] x [b] = [a x b].

5.2.1 Cancellation
Proposition 5.2.1. If gcd(c,n) =1 and

ac =bc (mod n)
then a = b (mod n).

Proof. By definition
n | ac — bec = (a — b)ec.

Since ged(n,c) = 1, it follows that n | a — b, so
a=b (modn),

as claimed. O

5.2.2 Rules for Divisibility

Proposition 5.2.2. A number n € Z is divisible by 3 if and only if the sum of the
digits of n is divisible by 3.

Proof. Write
n=a+10b 4 100c 4+ --- .

Since 10 = 1 (mod 3),
n=a+106+100c+---=a+b+c+--- (mod 3),
from which the proposition follows. U

Similarly, you can find rules for divisibility by 5, 9 and 11. What about divisi-
bility by 77

5.3 Linear Congruences

Definition 5.3.1 (Complete Set of Residues). A complete set of residues mod-
ulo n is a subset R C Z of size n whose reductions modulo n are distinct. In other

words, a complete set of residues is a choice of representive for each equivalence
class in Z /nZ.

Some examples:

R=1{0,1,2,...,n—1}

is a complete set of residues modulo n. When n = 5, a complete set of residues is

R=1{0,1,-1,2,—2}.
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Lemma 5.3.2. If R is a complete set of residues modulo n and a € 7Z with
ged(a,n) =1, then aR = {az : © € R} is also a complete set of residues.

Proof. If ax = az’ (mod n) with z,z’ € R, then Proposition 5.2.1 implies that z =
z' (mod n). Because R is a complete set of residues, this implies that z = z’. Thus
the elements of aR have distinct reductions modulo n. It follows, since #aR = n,
that aR is a complete set of residues modulo n. ]

Definition 5.3.3 (Linear Congruence). A linear congruence is an equation of
the form
ar =b (mod n).

Proposition 5.3.4. If gcd(a,n) = 1, then the equation
ar =b (mod n)

must have a solution.

Proof. Let R be a complete set of residues modulo n (for example, R = {0,1,...,n—
1}). Then by Lemma 5.3.2, aR is also a complete set of residues. Thus there is an
element az € aR such that axz = b (mod n), which proves the proposition. O

The point in the proof is that left multiplication by a defines a map Z/nZ —
Z/nZ, which must be surjective because Z/nZ is finite.

Illustration:

22 =3 (mod 7)
Set R ={0,1,2,3,4,5,6}. Then
9R = {0,2,4,6,8 = 1,10 = 3,12 = 5},
$02-5=3 (mod 7).

‘Warning:

Note that the equation az = b (mod n) might have a solution even if gcd(a,n) # 1.
To construct such examples, let a be any divisor of n, z any number, and set b = az.
For example, 2z = 6 (mod 8) has a solution!

5.4 Fermat’s Little Theorem

Definition 5.4.1 (Order). Let n € N and z € Z with gcd(z,n) = 1. The order of
z modulo n is the smallest m € N such that

™ =1 (mod n).

We must show that this definition makes sense. To do so, we verify that such
an m exists. Consider z,z?, 23,... modulo n. There are only finitely many residue

classes modulo n, so we must eventually find two integers 7,7 with ¢ < j such that
' =2’ (modn).

Since ged(z,n) = 1, Proposition 5.2.1 implies that we can cancel z’s and conclude
that o
2/7'=1 (mod n).
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Definition 5.4.2 (Euler Phi function). Let
o(n) =#{a € N:a <nand ged(a,n) =1}.
For example,
p(1) =#{1} =1,

(:0(5) = #{15 2a3a4} =4,
o(12) = #{1,5,7,11} = 4.

If p is any prime number then
e(p) =#{1,2,....,p— 1} =p— 1.
Theorem 5.4.3 (Fermat’s Little Theorem). If gcd(z,n) =1, then
2™ =1 (mod n).

Proof. Let
P={a:1<a<nand ged(a,n) =1}.

In the same way that we proved Lemma, 5.3.2, we see that the reductions modulo n
of the elements of x P are exactly the same as the reductions of the elements of P.

Thus
H(wa) = H a (mod n),

acP acP

since the products are over exactly the same numbers modulo n. Now cancel the
a’s on both sides to get
##P =1 (mod n),

as claimed. O

5.4.1 Group-theoretic Interpretation
The set of invertible elements of Z/nZ is a group
(Z/nZ)* = {[a] € Z/nZ: gcd(a,n) = 1}.

This group has order ¢(n). Theorem 5.4.3 asserts that the order of an element of
(Z/nZ)* divides the order ¢(n) of (Z/nZ)*. This is a special case of the more
general theorem that if G is a finite group and g € G, then the order of g divide
#G.

5.5 What happened?

Take out a piece of paper and answer the following two questions:
1. What is a central idea that you learned in this lecture?

2. What part of this lecture did you find murky?
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Chapter 6

Congruences, Part 11

Key Ideas Today
e Wilson’s theorem
e Chinese Remainder Theorem

e Multiplicativity of ¢

6.1 Wilson’s Theorem

Theorem 6.1.1 (John Wilson’s theorem, from the 1770s). An integer p > 1
is prime if and only if
p—1I'=-1 (mod p).

Ezample 6.1.2.
? p=3

%l =3

?7 (p-1!' % 3
%2 = 2

? p=17

%3 = 17

7 (p-1)!

%4 = 20922789888000
7 (D! %P
%5 = 16

Proof. We first assume that p is prime and prove that (p — 1)! = —1 (mod p).
Ifa€{1,2,...,p — 1} then the equation
ax =1 (mod p)

has a unique solution a' € {1,2,...,p — 1}. If @ = d', then a®> = 1 (mod p), so
pla?—1=(a—1)(a+1),s0p|(a—1)orp|(a+1),s0ac{l,—1}. We can thus
pair off the elements of {2,3,...,p — 2}, each with its inverse. Thus



Multiplying both sides by p — 1 proves that (p — 1)! = —1 (mod p).

Next we assume that (p —1)! = —1 (mod p) and prove that p must be prime.
Suppose not, so that p is a composite number > 4. Let ¢ be a prime divisor of p.
Then £ < p,so £ | (p— 1)!. Also,

tlpl((p—1!=1).

This is a contradiction, because a prime can’t divide a number a and also divide
a — 1, since it would then have to divide a — (a — 1) = 1. O

Ezxample 6.1.3. When p = 17, we have
2:3.--15=(2-9)-(3-6)-(4-13)-(5-7) - (8-15)- (10-12) - (14-11) =1 (mod 17),
where we have paired up the numbers a, b for which ab=1 (mod 17).

Let’s test Wilson’s Theorem in PARI:

? wilson(n) = Mod((n-1)!,n) == Mod(-1,n)
? wilson(5)

% =1

? wilson(10)
%10 =0

? wilson(389)
%1 =1

? wilson(2001)
%12 =0

Warning: In practice, this is a horribly inefficient way to check whether or not a
number is prime.

6.2 The Chinese Remainder Theorem

Sun Tsu Suan-Ching (4th century AD):

There are certain things whose number is unknown. Repeatedly divided
by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder
is 2. What will be the number?

In modern notation, Sun is asking us to solve the following system of equations:

z=2 (mod 3)
z=3 (mod5)
=2 (mod 7)

The Chinese Remainder Theorem asserts that a solution to Sun’s question exists,
and the proof gives a method to find a solution.

Theorem 6.2.1 (The Chinese Remainder Theorem). Let a,b € Z and n,m €
N such that ged(n,m) = 1. Then there ezists © € Z such that

(mod m)

a
z=b (modn)
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Proof. The equation
tm=b—a (modn)

has a solution ¢ since ged(m,n) = 1. Set £ = a + tm. We next verify that z is a
solution to the two equations. Then

z=a+(b—a)=b (modn),

and
z=a+tm=a (modm).

Now we can solve Sun’s problem:

z=2 (mod 3)
z=3 (mod5H)
z=2 (mod7).

First, we use the theorem to find a solution to the pair of equations
z=2 (mod 3)
z=3 (mod 5).

Set a =2,b=3, m=3,n=>5. Step 1 is to find a solution to ¢t-3 =3 —2 (mod 5).
A solution ist = 2. Then z = a+tm =2+ 2-3 = 8. Since any 7’ with 2’ = z
(mod 15) is also a solution to those two equations, we can solve all three equations
by finding a solution to the pair of equations

z=8 (mod 15)

z=2 (mod7).

Again, we find a solution to ¢-15 =2 — 8 (mod 7). A solution is t = 1, so
r=a+tm=8+15=23.

Note that there are other solutions. Any z’ = z (mod 3 -5 -7) is also a solution;
g, 23+3-5-7=128.
We can also solve Sun’s problem in PARI:

? chinese (Mod(2,3),Mod(3,5))
%13 = Mod (8, 15)

? chinese(Mod(8,15),Mod(2,7))
%14 = Mod (23, 105)

6.3 Multiplicative Functions

Definition 6.3.1. A function f : N — Z is multiplicative if, whenever m,n € N
and ged(m,n) = 1, we have

f(mn) = f(m) - f(n).
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Recall that the Fuler ¢-function is
o(n) =#{a:1<a<nand ged(a,n) =1}.
Proposition 6.3.2. ¢ is a multiplicative function.

Proof. Suppose that m,n € N and gcd(m,n) = 1. Consider the map

{c:1 < c¢<mnand ged(c,mn) = 1} N

{a:1<a<mand ged(a,m) =1} x {b:1 <b<nand ged(b,n) =1}}

defined by
f(c) =(c mod m, ¢ modn).

The map f is injective: If f(c) = f(¢'), then m | c— ¢ and n | ¢ — ¢, so, since
ged(n,m)=1,nm|c—d,s0oc="C.
The map f is surjective: Given a,b with ged(a,m) = 1, ged(b,n) = 1, the
Chinese Remainder Theorem implies that there exists ¢ with ¢ = a (mod m) and
¢ = b (mod n). We may assume that 1 < ¢ < nm, ans since ged(a,m) = 1 and
ged(b,n) = 1, we must have ged(c,nm) = 1. Thus f(c) = (a,b).

Because f is a bijection, the set on the left has the same size as the product set
on the right. Thus

p(mn) = p(m) - p(n).

Ezample 6.3.3. The proposition makes it easier to compute ¢(n). For example,

0(12) = p(2%) - p(3) =2-2=4.
Also, for n > 1, we have
ny _.n_P"
p)=p ——
e(p") p

since ¢(p") is the number of numbers less than p™ minus the number of those that
are divisible by p. Thus, e.g.,

©(389 - 112) = 388 - (112 — 11) = 388 - 110 = 42680.
The ¢ function is also available in PARI:

? eulerphi(389%1172)
%15 = 42680

Question 6.3.4. Is computing ¢(1000 digit number) really easy or really hard?
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Chapter 7

Congruences, Part III

Key Ideas
1. How to solve ax = 1 (mod n) efficiently.
2. How to compute a™ (mod n) efficiently.

3. A probabilistic primality test.

7.1 How to Solve az =1 (mod n)

Let a,n € N with gcd(a,n) = 1. Then we know that az =1 (mod n) has a solution.
How can we find z7

7.1.1 More About GCDs

Proposition 7.1.1. Suppose a,b € Z and ged(a,b) = d. Then there exists z,y € Z
such that
az + by = d.

I won’t give a formal proof of this proposition, though there are many in the
literature. Instead I will show you how to find z and vy in practice, because that’s
what you will need to do in order to solve equations like az =1 (mod n).

Ezxample 7.1.2. Let a =5 and b = 7. The steps of the Euclidean gcd algorithm are:

S

ot I3

N Ot
= 1o
v 1~
N Ot

+
_l’_

=N

1- 0
2. I} —

S .2=3.5-2.7

On the right, we have written each partial remainder as a linear combination of a
and b. In the last step, we write gcd(a,b) as a linear combination of a and b, as
desired.

That example wasn’t too complicated, next we try a much longer example.
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Ezample 7.1.3. Let a =130 and b = 61. We have

,_.
)
[es}
Il

@ |

o |Ov |00 |
[l

[ RN )

-61+8 so 8 =130 —2-61
-845 so5=—-7-130+15-61
-5+3 s03=8-130—-17-61
‘342 so2=—15-130+32-61
-2+1 sol=23-130—-49-61

Thus z = 130 and y = —49.

Remark 7.1.4. For our present purposes it will always be sufficient to find one
solution to ax + by = d. In fact, there are always infinitely many solutions. If z,y
is a solution to

ax + by =d,

a(x—l—a-%)—i—b(y—a-%):d,

is also a solution, and all solutions are of the above form for some «.

then for any « € Z,

It is also possible to compute z and y using PARI.

? 7bezout

bezout(x,y): gives a 3-dimensional row vector [u,v,d] such that
d=gcd(x,y) and wxx+v*y=d.

? bezout(130,61)

%1 = [23, -49, 1]

7.1.2 To solve ax =1 (mod n)
Suppose ged(a,n) = 1. To solve
ar =1 (mod n),
find z and y such that az + ny = 1. Then
az=az+ny=1 (modn).

Ezample 7.1.5. Solve 17z =1 (mod 61). First, we use the Euclidean algorithm to
find z,y such that 17z + 61y = 1:

61=3-17+10 so 10 =61—-3-17
17=1-10+7 so7=—61+4-17
10=1-7+3 s03=2-61—-7-17
3=2-3+1 sol=-5-61+18-1

Thus z = 18 is a solution to 17z = 1 (mod 61).

35



7.2 How to Compute a™ (mod n) Efficiently

As we will see on Friday, a quick method to compute o™ (mod n) is absolutely
essential to public-key cryptography.

Naive Algorithm: Compute a-a-----a (mod n) by repeatedly multiplying by
a and reducing modulo m. This is BAD because it takes m — 1 multiplications.

Clever Algorithm: The following observation is the key idea which makes the
clever algorithm work. Write m = Y_'_, £;2° with each ¢; € {0,1}, i.e., write m in
base 2 (binary). Then
a™ = H a®  (mod n).
g;=1

It is straightforward to write a number m in binary, as follows: If m is odd, then
g0 = 1, otherwise g = 0. Replace m by floor(%). If the new m is odd then £, = 1,
otherwise €1 = 0. Keep repeating until m = 0.

Ezample 7.2.1.
Problem: Compute the last 2 digits of 6°'.

Solution: We compute 61 (mod 100).

i m € 62 mod 100
0 91 1 6
1 45 1 36
2 22 0 96
3 11 1 16
4 5 1 56
5 2 0 36
6 1 1 96

As a check, note that 91 = 1011011, = 26 +2* + 23 + 2 + 20, Finally, we have

61 = 62° - 62" - 62" - 62-6=96-56-16-36-6 =56 (mod 100).

Summary of above table: The first column, labeled i, is just to keep track
of i. The second column, labeled m, is got by dividing the entry above it by 2
and taking the integer part of the result. The third column, labeled ¢;, simply
records whether or not the second column is odd. The forth column is computed
by squaring, modulo 100, the entry above it.

Some examples in PARI to convince you that powering isn’t too difficult:

? Mod(17,389) 5000

%13 = Mod (330, 389)

7 Mod(2903,49084098) ~498494
%14 = Mod (13189243, 49084098)

These both take no noticeable time.
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7.3 A Probabilistic Primality Test

Recall,

Theorem 7.3.1. A natural number p is prime if and only if for every a Z 0
(mod p),
a®'=1 (modp).

Thus if p € N and, e.g., 2! # 1 (mod p), then we have proved that p is not
prime. If, however, aP~! = 1 (mod p) for a couple of a, then it is “highly likely”
that p is prime. I will not analyze this probability here, but we might later in this
course.

Ezample 7.3.2. Let p = 323. Is p prime? Let’s compute 23?2 modulo 323. Making
a table as above, we have

i m &i 22" mod 323
0 322 0 2

1 161 1 4

2 80 0 16

3 40 0 256

4 20 0 290

5 10 0 120

6 5 1 188

7 2 0 137

8 1 1 35

Thus
2322 = 4.188-35 = 157 (mod 323),
so 323 is not prime. In fact, 323 = 17 - 19.

It’s possible to prove that a large number is composite, but yet be unable to
(easily) find a factorization! For example if

n = 95468093486093450983409583409850934850938459083,

then 2”1 # 1 (mod n), so n is composite. This is something one could verify in a
reasonable amount of time by hand. (Though finding a factorization by hand would
be very difficult!)

7.3.1 Finding large numbers that are probably prime

? probprime(n, a=2) = Mod(a,n) " (n-1) == Mod(1,n)

7?7 x = 0948609348698406983409580934859034509834095809348509834905809345
%36 = 948609348698406983409580934859034509834095809348509834905809345
? for(i=0,100,if (probprime (x+2*i,2) ,print(i)))

27
?7p=x + 2527
%37 = 948609348698406983409580934859034509834095809348509834905809399

? probprime(p,3)
%39 =1
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Chapter 8

Public-key Crypto I:
Diffie-Hellman Key Exchange

Key Ideas
e Public-key cryptography

e The Diffie-Hellman key exchange

8.1 Public-key Cryptography

Nikita must communicate vital information to Michael, who is a thousand
kilometers away. Their communications are being monitored by The Collective,
which must not discover the message. If Nikita and Michael could somehow agree
on a secret encoding key, they could encrypt their message. Fortunately, Nikita
knows about an algorithm developed by Diffie and Hellman in 1976.

8.2 The Diffie-Hellman Key Exchange Protocol

Nikita and Michael agree on a prime number p and an integer g that has order p—1
modulo p. (So ¢ ! =1 (mod p), but g" Z 1 (mod p) for any positive n < p — 1.)
Nikita chooses a random number n < p, and Michael chooses a random number
m < p. Nikita sends ¢g" (mod p) to Michael, and Michael sends g™ (mod p) to
Nikita. Nikita can now compute the secret key:

s=g""=(¢g")" (mod p).
Likewise, Michael computes the secret key:
s=g"" =(g")" (mod p).

Now Nikita uses the secret key s to send Michael an encrypted version of her critical
message. Michael, who also knows s, is able to decode the message.
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Meanwhile, hackers in The Collective see both ¢g" (mod p) and g™ (mod p),
but they aren’t able to use this information to deduce either m, n, or g"" (mod p)
quickly enough to stop Michael from thwarting their plans. Yeah!

The Diffie-Hellman key exchange is the first public-key cryptosystem every pub-
lished (1976). The system was discovered by GCHQ (British intelligence) a few
years before Diffie and Hellman found it, but they couldn’t tell anyone about their
work; perhaps it was discovered by others before. That this system was discovered
independently more than once shouldn’t surprise you, given how simple it is!

8.2.1 Some Quotes

A review of Diffie and Hellman’s groundbreaking article is amusing, because the
reviewer, J.S. Joel, says “They propose a couple of techniques for implementing the
system, but the reviewer was unconvinced.”

Diffie, Whitfield; Hellman, Martin E.
New directions in cryptography.
IEEE Trans. Information Theory IT-22 (1976), no. 6, 644--654.

The authors discuss some of the recent results in communications the-
ory that have arisen out of the need for security in the key distribution
channels. They concentrate on the use of ciphers to restrict the extrac-
tion of information from a communication over an insecure [channel].
As is well known, the transmission and distribution is then likely to
become a problem, in efficiency if not in security. The authors suggest
various possible approaches to avoid these further problems that arise.
The first they call a “public key distribution system”, which has the fea-
ture that an unauthorized “eavesdropper” will find it computationally
infeasible to decipher the message since the enciphering and deciphering
are governed by distinct keys. They propose a couple of techniques for
implementing the system, but the reviewer was unconvinced.

Somebody named Alan Westrope wrote in 1998 about political implications:

The 1976 publication of “New Directions in Cryptography”, by Whitfield
Diffie and Martin Hellman, was epochal in cryptographic history. Many
regard it as the beginning of public-key cryptography, analogous to a first
shot in what has become an ongoing battle over privacy, civil liberties,
and the meaning of sovereignty in cyberspace.

Here is what Diffie and Hellman look like, respectively:
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8.3 Let’s try it!

To make finding g easier, let’s choose a prime p such that (p — 1)/2 = ¢ is prime (so
p — 1 = 2q, with ¢ prime). Since for any g with ged(g,p) = 1,

¢??=1 (mod p),

the order of g is 1, 2, ¢, or 2¢ = p — 1, so the order of g is easy to compute.

For our first example, let p = 23. Then g = 5 has order p — 1 = 22. (I found
g = 5 using the function znprimroot in PARI. You can also just compute the order
of 2, 3, etc., until you find a number with order p — 1.)

Nikita: Chooses secret n = 12; sends ¢'? = 5'2 = 18 (mod 23).
Michael: Chooses secret n = 5; sends g° = 5° = 20 (mod 23).

Compute Shared Secret:
Nikita: 20'2 = 3 (mod 23)
Michael: 18° = 3 (mod 23).

8.4 The Discrete Logarithm Problem

Let a,b,n be positive real numbers. Recall that
logy(a) = n if and only if a = b".

Thus the log;, function solves the following problem: Given a base b and a power a
of b, find an exponent n such that

a=>b".

That is, given b™ and b, find n.
Ezample 8.4.1. a = 19683, b = 3. A calculator quickly gives that

n = log(19683)/log(3) = 9.
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The discrete log problem is the analogue of this problem modulo p:

Discrete Log Problem: Given b (mod p) and " (mod p), find n. Put another
way, compute log,(a), when a,b € Z/pZ.

As far as we know, this problem is VERY HARD to solve quickly. Nobody
has admitted publicly to having proved that the discrete log can’t be solved quickly,
but many very smart people have tried hard and not succeeded. It’s easy to write
a slow program to solve the discrete log problem. (There are better methods but
we won’t discuss them in this class.)

? dislog(x,g, s) = s=g; for(n=1,znorder(g),if (x==s, return(n), s=s*g)); 0;
? dislog(18,Mod(5,23))

%6 = 12
? dislog(20,Mod(5,23))
%7 =5

So the example above was far too simple. Let’s try a slightly larger prime:

? p=nextprime(9584)

%8 = 9587

? isprime((p-1)\2)
% =1

? znorder (Mod(2,p))
%10 = 9586

? g=Mod(2,p)

%11 = Mod (2, 9587)

? a = g~389

%15 = Mod (7320, 9587)

? dislog(a,g)
%16 = 389

This is still very easy to “crack”. Let’s try an even bigger one.

? p = 9048610007

Al 9048610007

? g = Mod(5,p)

%2 = Mod(5, 9048610007)

? a = g~948603

%3 = Mod (3668993056, 9048610007)

? dislog(a,g) \\ this take a while
h4 = 948603
? znlog(a,g) \\ builtin super-optimized version takes about 1/2 second

%31 = 948603

Computing the discrete log gets slow quickly, the larger we make the p. Doubling
the number of digits of the modulus makes the discrete log much much harder.

8.4.1 The State of the Art

Discrete logarithms in GF(2°n)
From: Reynald LERCIER <lercier@club-internet.fr>
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To: NMBRTHRYQLISTSERV.NODAK.EDU
Date: Tue, 25 Sep 2001 13:37:18 -0400

We are pleased to announce a new record for the discrete logarithm
problem. We were able to compute discrete logarithms in

GF(2°521). This was done in one month on a unique 525MHz
quadri-processors Digital Alpha Server 8400 computer. The approach
that we followed is a careful implementation of the general Function
Field Sieve as described from a theoretical point of view by Adleman
[Ad94].

As far as we know, the largest such computation previously done was
performed in GF(27401) [GoMc92] using an algorithm due to Coppersmith
[Co84].

[...]

So, as a conclusion, time that we need for computing discrete
logarithms in GF(2°521) on a 525 MHz quadri-processor alpha server
8400 computer is approximatively 12 hours for each, once the sieving
step (21 days) and the linear algebra step (10 days) is performed.

Antoine JOUX (DCSSI, Issy les Moulineaux, France, Antoine.Joux@ens.fr),
Reynald LERCIER (CELAR, Rennes, France, lercierQcelar.fr).

8.5 Realistic Example

? p=nextprime(93450983094850938450983409583)

%17 = 93450983094850938450983409611

? isprime((p-1)\2)

%18 =0

? nextgoodprime(p) = while(!isprime((p-1)\2), p=nextprime(p+1)); p
? nextgoodprime (p)

%19 = 93450983094850938450983409623

7 g=2

%21 = 2

? znorder (Mod(g,p))

»22 = 93450983094850938450983409610

? 7random

random({N=2"31}): random integer between 0 and N-1.

? nikita = random(p)

%23 = 18319922375531859171613379181

? michael = random(p)

%24 = 82335836243866695680141440300

? nikita_say = Mod(g,p) "nikita

%26 = Mod(17037287637415625385373411504, 93450983094850938450983409611)
? michael_say=Mod(g,p) “michael

%27 = Mod(2201425894324369970772940547, 93450983094850938450983409611)
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7 secret = nikita_say michael
%28 = Mod(255919380148433126529239952955, 93450983094850938450983409611)
? secret = michael_say nikita
%29 = Mod(25591938014843312529239952955, 93450983094850938450983409611)
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Chapter 9

The RSA Public-Key
Cryptosystem, I

Key Ideas:
e Creating an RSA public key
e Encrypting and decrypting messages

e Breaking RSA and factoring
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9.1 How RSA works

9.1.1 One-way Functions

The fundamental idea behind RSA is to try to construct a “one-way function”, i.e.,

an “encryption” function
E:X—>X

such that it is easy for Nikita, say, to compute E—!, but very hard for anybody else
to compute E 1.

9.1.2 How Nikita Makes an RSA Public Key

Here is how Nikita makes a one-way function F:

1. Nikita picks two large primes p and ¢, and lets n = pq.
2. It is easy for Nikita to then compute
p(n) = o(p) - plg) = (p—1)-(¢—1).
3. Nikita next chooses a “random” integer e with
1< e<p(n)and ged(e,p(n)) =1.

4. Finally, Nikita uses the algorithm from Lecture 7 to find a solution d to the
equation
ez =1 (mod ¢(n)).

The Encoding Function:
Nikita defines a function E : Z/nZ — Z/nZ

E(z) = z°.

(Recall that Z/nZ = {0,1,...,n — 1} with addition and multiplication modulo n.)
Then anybody can compute E fairly quickly using the repeated-squaring algorithm
from Lecture 7.

Nikita’s public key is the pair of integers (n, €), which is just enough informa-
tion for people to easily compute E. Nikita knows a number d such that ed = 1
(mod ¢(n)), so, as we will see below, she can quickly compute E~L.

Now Michael or even The Collective can send Nikita a message whenever they
want, even if Nikita is asleep. They look up how to compute E and compute
E(their message).
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9.1.3 Sending Nikita an Encrypted Message
Encode your message as a sequence of numbers modulo n (see Section 9.2):
mi,...,my € Z/nZ.

Send

to Nikita. (Recall that E(m) = m*°.)

9.1.4 How Nikita Decrypts a Message
When Nikita receives an F(m;), she finds m; as follows:

m; = E-HE(m;)) = B(mi)? = (m§)? = m;.
The following proposition proves that the last equality holds.

Proposition 9.1.1. Let n be a square-free integer and let d,e € N such that p—1 |
de — 1 for each prime p | n. Then a% = a (mod n) for all a € 7.

Proof. Since n | a% —a if and only if p | % —a for each prime divisor of p, it suffices
to prove that a%® = a (mod p) for each prime divisor p of n. If ged(a,p) # 0, then
a =0 (mod p), so a® = a (mod p). If ged(a, p) = 1, then Fermat’s Little Theorem
asserts that a?~! = 1 (mod p). Since p — 1 | de — 1, we have a?*~! = 1 (mod p) as
well. Multiplying both sides by a shows that a® = a (mod p). O

9.2 Encoding a Phrase in a Number

Think of a sequence of letters and spaces as a number in base 27. Let a single-space
correspond to 0, the letter A to 1, B to 2, ..., Z to 26. Thus, e.g., “HARVARD?”
denotes a number written in base 27. The corresponding number written in decimal
is 1808939906:

HARVARD <« 8+27-1+27%2.184+27%.224+27%.14+27%.184+275.4 = 1808939906

To recover the digits of the number, repeatedly divide by 27:

1808939906 = 66997774-27 + 8 H
66997774 = 2481399-27 + 1 A

and so on.

9.2.1 How Many Letters Can a Number “Hold”?

If 27% < n, then k letters can be encoded in a number < n. Put another way,

k < log(n)/log(27) = logyr(n).
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9.3 Examples

9.3.1 A Small Example

So the arithmetic is easy to follow, we use small primes p and ¢ and encrypt the
single letter “X”.

1. Choose p and ¢: Let p =17, ¢ = 19, so n = pq = 323.
2. Compute ¢(n):

p(n) = ¢(p-q) = o(p)-¢(q) = (p—1)(¢—1) = pg—p—g+1 = 323-17-19+1 = 288.
3. Randomly choose an e € Z/3237: We choose e = 95.

4. Solve
95z =1 (mod 288).

Using the GCD algorithm, we find that d = 191 solves the equation.
The public key is (323,95). So E : Z /3237 — 7. /323Z is defined by
E(z) = z%.

Next, we encrypt the letter “X”. It is encoded as the number 24, since X is the
24th letter of the alphabet. We have

E(24) = 24% = 294 € 7./3237.
To decrypt, we compute E':
E~1(294) = 294" = 24 € 7./3237Z.

9.3.2 A Bigger Example in PARI

? p=nextprime(random(10~30))

%3 = 738873402423833494183027176953

? g=nextprime(random(10°25))

W4 = 3787776806865662882378273

7 n=p*q

%5 = 2798687536910915970127263606347911460948554197853542169
? e=random(n)

%6 = 1483959194866204179348536010284716655442139024915720699
? phin=(p-1)*(qg-1)

%7 = 2798687536910915970127262867470721260308194351943986944
? while(gcd(e,phin) !=1,e=e+1)

7 e

%8 = 1483959194866204179348536010284716655442139024915720699
? d = lift(Mod(e,phin)~(-1));

%9 = 2113367928496305469541348387088632973457802358781610803
? (e*d)%phin

%10 =1

? log(n)/log(27)

%11 = 38.03851667699197952338510248
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We can encode single blocks of up to 38 letters. Let’s encode “HARVARD”:

? m=8+27*1+2772%18+27"3%22+27"4*1+27"5%18+27"6*4

%12 = 1808939906

? E(x)=1ift(Mod(x,n)"e)

? D(x)=1lift(Mod(x,n)"d)

?7 secret_message = E(m)

»14 = 625425724974078486559370130768554070421628674916144724
? D(secret_message)

%15 = 1808939906

The following complete PARI program automates the whole process, though it
is a little clumsy. Call this file rsa.gp. It uses { and } so that functions can be
extended over more than one line.

/* rSa.gp ——— === m—mm */
{alphabet=[ll n s IIAII , IIBII s IICII s IIDII s IIEII s IIFII s IIGII , IIHII s IIIII s IIJII s IIKII s IILII s IIMII R
IINII s IlOll , HPII s |IQ|I s |IR|| s ||S|l s ||Tl| s |lU|l s llVll , llwll s |lx|| s |IY|| , llle] ;

}
{letter_to_number(1,
n)=
for(n=1,27,if (alphabet [n]==1,return(n-1)));
error("invalid input.")
}
{number_to_message(n,
S=Illl)=
while(n>0, s = concat(s,alphabet[n’27+1]); n = n \ 27);
return(s)
}
{message_to_number (w,
i,n=0)=
for(i=1,length(w), n = n + 27" (i-1)*letter_to_number(w[i]));
return(n) ;
}
{make_rsa_key(len,
p,q,n,e,d)=
p = nextprime(random(10~ (len\2+1)));
q = nextprime(random(10~(1len\2+3)));
n = p*q; phin = (p-1)*(q-1);
e = random(phin) ;
while(gcd(e,phin) !=1,e=e+1);
d = 1lift (Mod(e,phin) ~(-1));
return([n,e,d]);
}

encrypt (message, n, e) lift(Mod (message_to_number (message),n)"e);
decrypt (secret, n, d) number_to_message (1ift (Mod (secret,n)"d));
/* rsa.gp ——————-mm oo */

Here is an example that uses the above little program.
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? \r rsa

? setrand(1) \\ default random number seed is 1!

? rsa=make_rsa_key(20) \\ returns [n, e, d]

%2 = [89050154117716728145939, 33735260657253161660951,
49244741969289756040079]

? n = rsal[l]; e = rsa[2]; d = rsal3];

? public_key = [n,e]

%3 = [89050154117716728145939, 33735260657253161660951]

? msg = ["H", "A", "R", "V, "A", "R", "D"]; \\ clumsy!!!

? secret = encrypt(msg,n,e)

%36 = 75524965161901413275866

? decrypt(secret, n, d)

%37 = "HARVARD"

9.4 A Connection Between Breaking RSA and Factor-
ing Integers

Nikita’s public key is (n,e). If we compute the factorization of n = pgq, then we can
compute ¢(n) and hence deduce her secret decoder number d.

It is no easier to p(n) than to factor n:

Suppose n = pg. Given @(n), it is very easy to compute p and q. We have

en)=(p-1)(¢-1)=pg—(p+q) +1,
so we know pg=n and p+ g =n+1— ¢(n). Thus we know the polynomial
2” = (p+q)z +pg=(z —p)(z — q)

whose roots are p and gq.
There is also a more complicated “probabilistic algorithm” to find p and ¢ given
the secret decoding number d. I might describe it in the next lecture.
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Chapter 10

Attacking RSA

Nikita’s public key is (n, e). If we compute the factorization of n = pq, then we can
compute ¢(n) and hence deduce her secret decoding number d. Thus attempting to
factor n is a way to try to break an RSA public-key cryptosystem. In this lecture
we consider several approaches to “cracking” RSA, and relate them to the difficulty
of factoring n.

10.1 Factoring n Given ¢(n)

If you know ¢(n) then it is easy to factor n:
Suppose n = pg. Given ¢(n), it is very easy to compute p and q. We have

pn)=@-1@-1)=pg—(p+q) +1,

so we know both pg =n and p+ ¢ =n+1— ¢(n). Thus we know the polynomial

2 — (p+ @)z +pg = (z — p)(z — q)

whose roots are p and ¢g. These roots can be found using the quadratic formula.

Ezxample 10.1.1.

? n=nextprime(random(10710))*nextprime (random(10°10));
? phin=eulerphi(n);

? f = x"2 - (n+tl-phin)*x + n

%6 = x~2 - 12422732288*x + 31615577110997599711
? polroots(f)

%7 = [3572144239, 8850588049]

?n

%8 = 31615577110997599711

7 3572144239%*8850588049

%9 = 31615577110997599711

10.2 When p and q Are Close

Suppose that p and g are “close” to each other. Then it is easy to factor n using a
factorization method of Fermat.
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Suppose n = pg with p > ¢, say. Then

() ()

Since p and ¢ are “close”,

is small,

is only slightly larger than /n, and t? — n = s? is a perfect square. So we just try
t = ceil(v/n), t=ceil(v/n)+1, t=ceil(y/n)+2,...
until t? — n is a perfect square s>. Then
p=t+s, g=1t—s.
Ezample 10.2.1. Suppose n = 23360947609. Then
v/n = 152842.88....

If t = 152843, then /12 —n = 187.18....

If t = 152844, then v/t2 —n = 583.71....

If t = 152845, then v/t2 —n = 804 € Z.

Thus s = 804. We find that p =t + s = 153649 and g =t — s = 152041.

Here is a bigger example in PARI:

? g=nextprime(random(10~50))

%20 = 78177096444230804504075122792410749354743712880803

? p=nextprime(gq+l) \\ a nearby prime

%21 = 78177096444230804504075122792410749354743712880899

7 n=p*q

%22 = 6111658408450564697085634201845976850509908580949986889525704. . .
...2569650342157399279163289651693722481897

? t=floor(sqrt(n))+1

***%  precision loss in truncation
7 \p150 \\ set precision of floating-point computations.
realprecision = 154 significant digits (150 digits displayed)

? t=floor(sqrt(n))+1

%29 = 78177096444230804504075122792410749354743712880851

? sqrt(t"2-n)

%30 = 48.000000000000000000000000000000000000000000000000000000. ...

? s=48

%31 = 48

?7t+ 8 \\ p

%33 = 78177096444230804504075122792410749354743712880899
7t -s \\ q

%35 = 78177096444230804504075122792410749354743712880803
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10.3 Factoring n Given d

Suppose that we crack an RSA cryptosystem by finding a d such that

a“=a (mod n)

for all a. Then we've found an m (= ed — 1) such that ™ =1 (mod n) for all a
with ged(a,n) = 1. Knowing a does not lead to a factorization of n in as direct a

manner as knowing ¢(n) does (see Section 10.1). However, there is a probabilistic
procedure that, given an m such that ¢ = 1 (mod n), will with high probability

find a factorization of n.

Probabilistic procedure to factor n:

1.

m is even since (—1)™ =1 (mod n).

2. Ifa™? =1 (mod n) for all a coprime to n, replace m by m/2. In practice,

it is not possible to determine whether or not this condition holds, because
it would require doing a computation for too many a. Instead, we try a few

random a; if a™/? = 1 (mod n) for the a we check, then we divide m by 2.
(If there exists even a single a such that ™/ # 1 (mod n), then at least half
the a have this property.)

Keep repeating this step until we find an a such that a”/2 # 1 (mod 7).

There is a 50% chance that a randomly chosen a will have the property that
a™? =41 (mod p), a™?=-1 (mod q)

or
a™?=-1 (mod p), a™?=+1 (mod g).

If the first case occurs, then
p|am/2—1, butq)(am/2—1,

SO
ged(@™? — 1,pq) = p,

and we have factored n. Just keep trying a’s until one of the cases occurs.

? \r rsa \\ load the file rsa.gp, available at Lecture 9 web page.
? rsa = make_rsa_key(10)

%34
?7n
?7m
%38

= [32295194023343, 29468811804857, 11127763319273]
= rsal[l1]; e = rsa[2]; d = rsal3];

= ex*xd-1

= 327921963064646896263108960

? for(a=2,20, if (Mod(a,n) m!=1,print(a))) \\ prints nothing...

?7m
%39

= m/2
163960981532323448131554480

? for(a=2,20, if (Mod(a,n) m!=1,print(a)))

?7m
%40

= m/2
= 81980490766161724065777240
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? for(a=2,20, if (Mod(a,n) m!=1,print(a)))
?m=m/2

%41 40990245383080862032888620

? for(a=2,20, if (Mod(a,n) m!=1,print(a)))
?m=m/2

%42 = 20495122691540431016444310

? for(a=2,20,if (Mod(a,n) "m!=1,print(a)))

2
5
6
. etc.
? gcd(2°m,n)

**x%  power overflow in pow_monome.

? x = 1lift(Mod(2,n) "m)-1
%43 = 4015382800098
? gcd(x,n)

%46 = 737531

? p = gcd(x,n)

%53 = 737531

7 q=n/p

7 pxq

%54 = 32295194023343
?7n

%55 = 32295194023343

10.4 RSA Challenge n

The easiest challenge at
http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html

is the 576-bit number

Name: RSA-576
Prize: $10000
Digits: 174
Digit Sum: 785

188198812920607963838697239461650439807163563379417382700763356422988859
715234665485319060606504743045317388011303396716199692321205734031879550
656996221305168759307650257059
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Chapter 11

Primitive Roots

Key Idea: There is an element of (Z/pZ) of order p — 1.

11.1 Polynomials over Z/pZ

Proposition 11.1.1. Let f € (Z/pZ)[z] be a nonzero polynomial over the ring
Z[pZ. Then there are at most deg(f) elements o € Z/pZ such that f(a) =
Proof. We proceed by induction on deg(f). The cases deg(f) = 0,1 are clear. Write
f=apnz™ + - a1z + ap. If f(a) =0 then
f(z) = f(z) = f(a)

=ap(z" — ") +---a1(x —a) +ap(l —1)
=(z—a)(an(z" '+ +a" )+ ra)

= (z — a)g(z),
for some polynomial g(z) € (Z/pZ)[x]. Next suppose that f(8) = 0 with 8 # a.
Then (8 — a)g(B) = 0, so, since § — a # 0 (hence ged(8 — a,p) = 1, we have
g(B) = 0. By our inductive hypothesis, g has at most n — 1 roots, so there are at
most n — 1 possibilities for 8. It follows that f has at most n roots. O

Proposition 11.1.2. Let p be a prime number and let d be a divisor of p—1. Then
f(z) = 2% — 1€ (Z/pZ)[z] has exactly d solutions.
Proof. Let e be such that de = p — 1. We have
Pl —1= (29 -1

= (@t (@) @ et )

= (z" - 1)g(=),
where deg(g(z)) = p—1—d. Recall that Fermat’s little theorem implies that zP ' —1
has exactly p — 1 roots in Z/pZ. By Proposition 11.1.1, f(z) has at mostp —1—d

roots and % — 1 has at most d roots, so g(z) has exactly p — 1 roots and % — 1 has
exactly d roots, as claimed. O

WARNING: The analogue of this theorem is false for some f € (Z/nZ)[z] with n
composite. For example, if n = nq - no with ny,no # 1, then f = nz has at least
two distinct zeros, namely 0 and ng # 0.
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11.2 The Structure of (Z/pZ)* = {1,2,...,p— 1}

In this section, we prove that the group (Z/pZ)* is cylic.

Definition 11.2.1. A primitive root modulo p is an element of (Z/pZ)* of order
p—1.

Question: For which primes p is there a primitive root? (Ans. Every prime.)

Lemma 11.2.2. Suppose a,b € (Z/nZ)* have orders r and s, respectively, and that
ged(r,s) = 1. Then ab has order rs.

This is a general fact about commuting elements of a group.

Proof. Since (ab)™ = a™b"® = 1, the order of ab is a divisor r1s; of rs, where r1 | r
and sp | s. Thus
a1yt = (ab)t = 1.

Raise both sides to the power o, where rir9 = r. Then

aTlTZSIbT1T251 — 1,

S0, since g"172%1 — (0]"17"2)51 — 1,

BTt =1,

This implies that s | 717951, and, since ged(s,r1re) = 1, it follows that s = s;. A
similar argument shows that r = r1, so the order of ab is rs. O

Theorem 11.2.3. For every prime p there is a primitive root mod p. In other
words, the group (Z/pZ)* is a cyclic group of order p — 1.

Proof. Write

ny _no

p—1=gqq

Tip
* gy

as a product of distinct primes g;. .
By Proposition 11.1.2, the polynomial z%  — 1 has exactly ;" roots, and the

ni—1 - .
polynomial 2%  —1 has exactly ¢" ! roots. Thus there is an a; € Z /pZ such that

n;—1

agi =1 but agi # 1. This a; has order ¢;". For each ¢ = 1,...,r, choose such

an a;. By repeated application of Lemma 11.2.2, we see that

a = a1a2 - ay

—

& p— 1, so a is a primitive root. ]

has order ¢} --- ¢

Remark 11.2.4. There are ¢(p — 1) primitive roots modulo p, since there are ¢;"* —
q;”*l ways to choose a;. To see this, we check that two distinct choices of sequence
a1,.-.,a, define two different primitive roots. Suppose that

!

1!
a1a2...a,r:a1a2...a'r’
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with a;, a of order ¢}, for ¢ = 1,...,7. Upon raising both sides of this equality to
the power s = gh? - - - g7, we see that af = af’. Since ged(s, ¢}'") = 1, there exists ¢
such that st =1 (mod ¢7*). It follows that

a1 = (a})' = (af)' = af.
Upon canceling a1 from both sides, we see that as---a, = a)---al; by repeating
the above argument, we see that a; = a} for all . Thus, different choices of the a;
must lead to different primitive roots; in other words, if the primitive roots are the
same, then the a; were the same.
For example, there are ¢(16) = 2* — 2% = 8 primitive roots mod 17:

? for(n=1,16,if (znorder (Mod(n,17))==16,print1(n," ")))
3567 10 11 12 14

Ezample 11.2.5. In this example, we illustrate the proof of Theorem 11.2.3 when
p = 13. We have
p—1=12=2%.3,

The polynomial z* — 1 has roots {1,5,8,12} and z2 — 1 has roots {1,12}, so we
take a1 = 5. The polynomial 2> — 1 has roots {1,3,9}, so set ap = 3. Finally,
a=>5-3 =15 = 2. Note that the successive powers of 2 are

2,4,8,3,6,12, 11,9, 5, 10, 7, 1,

so 2 really does have order 12.

Ezample 11.2.6. The result is false if, e.g., p is replaced by a big power of 2. The
elements of (Z/8Z)* all have order dividing 2, but ¢(8) = 4.

Theorem 11.2.7. Let p™ be a power of an odd prime. Then there is an element of
(Z/p™Z)* of order ¢(p™). Thus (Z/p"Z)* is cyclic.

I will not prove Theorem 11.2.7 in class. I will probably put a problem on your
next homework set that will guide you to a proof.

11.3 Artin’s Conjecture

Conjecture 11.3.1 (Emil Artin). Ifa € Z is not —1 or a perfect square, then the
number N(z,a) of primes p < x such that a is a primitive root modulo p is asymp-
totic to C(a)w(z), where C(a) is a constant that depends only on a. In particular,
there are infinitely many primes p such that a is a primitive root modulo p.

Nobody has proved this conjecture for even a single choice of a. There are partial
results, e.g., that there are infinitely many p such that the order of a is divisible
by the largest prime factor of p — 1. (See, e.g., Moree, Pieter, A note on Artin’s
conjecture.)
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Chapter 12

Quadratic Reciprocity I

Key Ideas:
e FEuler’s Criterion: When is a a square modulo p?
e Quadratic reciprocity

e Lemma of Gauss

12.1 Euler’s Criterion

Proposition 12.1.1 (Euler’s Criterion). Let p be an odd prime and a an integer
not divisible by p. Then x> = a (mod p) has a solution if and only if

a2 =1 (mod p).

Proof. By the theorem from Lecture 11, there is an integer g that has order p — 1
modulo p. Every integer coprime to p is congruent to a power of g. First suppose
that a is congruent to a perfect square modulo p, so

a= (gT)Q =g (mod p)
for some r. Then
a(p_l)/2 = g27"% = gr(p_l) =1 (mod p)-

Conversely, suppose that a®1)/2 = 1 (mod p). We have a = g (mod p) for some
integer r. Thus ¢"?~1)/2 = 1 (mod p), so

p—1|r(p—1)/2

which implies that r is even. Thus a = (¢"/?)? (mod p), so a is congruent to a
square modulo p. O

Corollary 12.1.2. If 22 = a (mod p) has no solutions if and only if a?~1)/% = —1
(mod p).

Proof. This follows from Proposition 12.1.1 and that the polynomial 2 — 1 has no
roots besides +1 and —1. O
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Ezample 12.1.3. Suppose p = 11. By squaring each element of (Z/117Z)*, we see
exactly which numbers are squares modulo 11:

12=1,22=4,32=9,42=5,52=3,62=3,72=5,82=9, 92 =4, 10° = 1.
Thus the squares are {1,3,4,5,9}. Next, we compute a?~1)/2 = 45 for each a €
(Z/11Z)*.
1°=1,22=-1,33=1,4=1,5"=1,6"=-1,7=-1,8=-1,9"=1,10° = —1.

The a with a® = 1 are {1,3,4, 5,9}, which is exactly the same as the set of squares,
just as Proposition 12.1.1 predicts.

Ezample 12.1.4. Determine whether or not 3 is a square modulo p = 726377359.
Answer: We compute 3(?~1/2 modulo p using PARI:

? Mod(3,p) " ((p-1)/2)
%5 = Mod (726377358, 726377359) \\ class of -1 modulo 726377359.

Thus 3 is not a square modulo p. This computation wasn’t too difficult, but it would
have been very tedious to carry about by hand. The law of quadratic reciprocity,
which we will state in the next section, is a vastly more powerful way to answer
such questions. For example, you could easily answer the above question by hand
using quadratic reciprocity.

Remark 12.1.5. Proposition 12.1.1 can be reformulated in more group-theoretic
language as follows. The map

(Z/pZ)" — {1}

that sends a to a(P—1)/2 (mod p) is a homomorphism of groups, whose kernel is the
subgroup of squares of elements of (Z/pZ)*.

Definition 12.1.6. An element a € Z with p { a is called a quadratic residue
modulo p if a is a square modulo p.

12.2 The Quadratic Reciprocity Law

Let p be an odd prime and let a be an integer with p { a. Set

—1 otherwise.

(a) _ {—I—l if ¢ is a quadratic residue, and
p

Proposition 12.1.1 implies that

(2) =aP~Y/2  (mod p).
p

)G =)

because (1—)) is a homomorphism (see Remark 12.1.5).

Also, notice that
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The symbol (%) only depends on the residue class of a modulo p. Thus tabu-
lating the value of (%) for hundreds of a would be silly. Would it be equally silly to

make a table of (%) for hundreds of primes p? Let’s begin making such a table and

see whether or not there is an obvious pattern. (To compute (%) in PARI, use the

command kronecker (a,b).)

P (g) p mod 5
7 -1 2
11 1 1
13 -1 3
17 -1 2
19 1 4
23 -1 3
29 1 4
31 1 1
37 -1 2
41 1 1
43 -1 3
47 -1 2

The evidence suggests that (g) depends only on the congruence class of p; more

precisely, (%) = 1 if and only if p = 1,4 (mod 5), i.e., p is a square modulo 5.

However, when I think directly about the equation
5(p_1)/2 (mod p)’

I see no way that knowing that p = 1,4 (mod 5) helps us to evaluate that strange
expression! And yet, the numerical evidence is so compelling! Argh!

Based on such computations, various mathematicians found a conjectural ex-
planation for this mystery in the 18th century. Finally, on April 8, 1796, at your
age (age 19), Gauss proved their conjecture.

Theorem 12.2.1 (The Law of Quadratic Reciprocity). Suppose that p and q

are odd primes. Then
p p=1 q-1 [ @
— ] =(=1) 2 2 =1].
(5) - ()

We will prove this theorem in the next lecture.
In the case considered above, this theorem implies that

(§> (12 (1_9) _ (1_)) 41 ifp=1,4 (mod 5)
p 5/ \5/ -1 ifp=23 (mod5).
Thus the quadratic reciprocity law “explains” why knowing p modulo 5 helps in

computing 5% (mod p).
Here is a list of almost 200 proofs of Theorem 13.3.1:

http://www.rzuser.uni-heidelberg.de/ hb3/rchrono.html
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12.3 A Lemma of Gauss

The proof we will give of Theorem 13.3.1 was first discovered by Gauss, though
not when he was 19. This proof is given in many elementary number theory texts
(including Davenport). It depends on the following lemma of Gauss:

Lemma 12.3.1. Let p be an odd prime and let a be an integer Z 0 (mod p). Form

the numbers
p—1
2

and reduce them modulo p to lie in the interval (=5, B). Let v be the number of
negative numbers in the resulting set. Then

()=

Proof. In defining v, we expressed each number in

p—1
S = 2a,...
{a, a,..., 2 a}

as congruent to a number in the set

a, 2a, 3a, ..., a

No number 1,2, ... prl appears more than once, with either choice of sign, because
if it did then either two elements of S are congruent modulo p or 0 is the sum of
two elements of S, and both events are impossible. Thus the resulting set must be

of the form
p—1
T = 81-1,62-2,...,8(p_1)/2-T ;

where each ¢; is either +1 or —1. Multiplying together the elements of S and of T,
we see that

(1a) - (2a) - (3a) - - - (P;1a> = (e1-1)-(e2-2)--- (6(1)_1)/2‘1%1) (mod p),

SO
a? 2= gyt Ep-1)/2 (mod p).

The lemma, then follows from Proposition 12.1.1. U
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Chapter 13

Quadratic Reciprocity 11

IN-CLASS MIDTERM THIS WEDNESDAY, OCTOBER 17!

Monday’s lecture will be a review lecture; Grigor’s review session is on Monday at
4pm; I will have an extra office hour in SC 515, Tuesday, 2:35-3:30.

13.1 Recall Gauss’s Lemma

We proved the following lemma, in the previous lecture.

Lemma 13.1.1. Let p be an odd prime and a an integer with p{ a. Form the num-

bers a, 2a, 3a, ..., p%la and reduce them modulo p to lie in the interval (=5, ).

Let v be the number of negative numbers in the resulting set. Then (%) = (-1)~.

13.2 Euler’s Conjecture
Lemma 13.2.1. Let a,b € Q. Then for any n € Z,
#((a,b)NZ)=#((a,b+20)NZ) = # ((a+2n,b) NZ) (mod 2).
Proof. If n > 0, then
(a,b+2n) = (a,b) U[b,b+ 2n),

where the union is disjoint. Let [z] denote the least integer > z. There are 2n
integers,

], [6] + 1,...,[b] + 2n — 1,

in the interval [b, b+ 2n), so the assertion of the lemma is true in this case. We also

have
(a,b —2n) = (a,b)\[b — 2n,b)

and [b—2n,b) also contains exactly 2n integers, so the lemma is also true when n is
negative. The statement about # ((a + 2n,b) N Z) is proved in a similar manner. O

The following proposition was first conjectured by Euler, based on extensive
numerical evidence. Once we’ve proved this proposition, it will be easy to deduce
the quadratic reciprocity law.

61



Proposition 13.2.2 (Euler’s Conjecture). Let p be an odd prime and a € N a
natural number with p t a.

1. The symbol (%) depends only on p modulo 4a.

2. If q is a prime with ¢ = —p (mod 4a), then (%) = (%)

Proof. To apply Gauss’s lemma, we have to compute the parity of the intersection

of .
S = {a,2a,3a,...p_ a}

2

= (o) o) (- o)

where b = %a or %(a — 1), whichever is an integer. (Why? We have to check that
every element of S that reduces to something in the interval (—%,0) lies in I. This is clear
ifb=1la< p—gla. Ifb=1%(a—1), then bp+ 2 > pz;la, so ((b— %)p, bp) is the last interval
that could contain an element of of S that reduces to (—£,0).) Also note that the integer
endpoints of I are not in S, since those endpoints are divisible by p, but no element of S is
divisible by p.

Dividing I through by a, we see that

and

#(SﬂI):#(ZﬂéI),

1. _((p p 3p 2p (26—1)p bp
aI_((Qa’a)U<2a’a>U U( 20 ’a))
Write p = 4ac + r, and let
ror 3r 2r (2b —1)r br
J‘((%’EW(%’E)U'"U(im —)>

The only difference between I and J is that the endpoints of intervals are changed
by addition of an even integer. By Lemma 13.2.1,

where

1
v=+# (Zﬂ EI> =#(ZnNnJ) (mod 2).
Thus (£) = (—1)" depends only on r, i.e., only on p modulo 4a. WOW!
P

If g = —p (mod 4a), then the only change in the above computation is that r is
replaced by 4a — r. This changes éI into

r r 3r 2r (20 — )r br
— _ 4L Sl gAY ey a2 4 Y )
K ((2 o a)u(ﬁ 8 a)u u(b S db a))

Thus K is the same as —%I , except even integers have been added to the endpoints.
By Lemma 13.2.1,

1
#(KQZ)E#(<5I> ﬂZ) (mod 2),
SO (%) = (%), which completes the proof. O
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The following more careful analysis in the special case when a = 2 helps illustrate
the proof of the above lemma, and is frequently useful in computations.

Proposition 13.2.3. Let p be an odd prime. Then
(2) _J 1 ifp=+£1 (mod 8)
p) |-1 ifp=+3 (mod8)’
Proof. When a = 2, the set S = {a,2a,...,2- ’%1} is

{2,4,6,...,p— 1}

We must count the parity of the number of elements of S that lie in the interval
I = (£,p). Writing p = 8c+ r, we have

#uns)—#(310z) - #((%.5)nz)

(e e D) 02) =4 (55 07) ooz

where the last equality comes from Lemma 13.2.1. The possibilities for r are 1, 3, 5, 7.
When r = 1, the cardinality is 0, when r = 3,5 it is 1, and when r =7 it is 2. [

13.3 The Quadratic Reciprocity Law

With the lemma in hand, it is straightforward to deduce the quadratic reciprocity
law.

Theorem 13.3.1 (Gauss). Suppose that p and q are distinct odd primes. Then

(2)-(2) = o=

Proof. First suppose that p = ¢ (mod 4). By swapping p and ¢ if necessary, we
may assume that p > ¢, and write p — ¢ = 4a. Since p = 4a + q,

()= () =(0)=6)
(=57 -)-G)-G)

Proposition 17.2.4 implies that ( ) ( ), since p = ¢ (mod 4a). Thus

and

a
p

0)- () ()= -

where the last equality is because ”Tl is even if and only if 4~ is even.

Next suppose that p Z ¢ (mod 4), so p = —q (mod 4). erte p+q=4a. We

have (g) ) (4@(1_(1) ) (g) . (1%) B (4ap—p) _ (g)

Since p = —¢q (mod 4a), Proposition 17.2.4 implies that (%) = (%). Since (—1)"7 7"
1, the proof is complete.
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13.3.1 Examples
Ezample 13.3.2. Is 6 a square modulo 3897 We have

6 2-3 2 3
— === )=—=)|=)=(-1)-(-1)=1.
389 389 389 389
Here, we found that (%) = —1 using Proposition 13.2.3 and that 389 = 3 (mod 8).
We found (i) as follows:

@0

Thus 6 is a square modulo 389.
Annoyingly, though we know that 6 is a square modulo 389, we still don’t know
an x such that z2 = 6 (mod 389)!

? for(a=1,388,if (Mod(a,389) “2==6,printi(a, " ")))
28 361

Ezample 13.3.3. Is 3 a square modulo p = 7263773597 We proved that the answer
is “no” in the previous lecture by computing 37~! (mod p). It’s easier to prove that
the answer is no using Theorem 13.3.1:

3 _ s (THSTIS50N (1Y
726377359 ) 3 - \3) "

13.4 Some Homework Hints

Spend time studying for the midterm in addition to doing the homework. To point
you in the right direction on the homework problems, here are some hints.

(i) Use the quadratic reciprocity law, just like in the above examples.
(ii) Use the quadratic reciprocity law.
(iii) Relate the statement for n = 3 to the statement for n > 3.
)

(iv) Write down an element of (Z/p?Z)* that looks like it might have order p, and
prove that it does. Recall that if a,b have orders n,m, with ged(n,m) = 1,
then ab has order nm.

(v)
(vi)
(vii) Replace ), (%) by > (%’) and use that (%’) = (;‘—)) . (%).

(viii) Write a little program.
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Chapter 14

The Midterm Exam

Today I will briefly describe some key ideas that we’ve covered in this course up
until now. Make sure you understand these, so you can do well on the midterm,
which is Wednesday, October 17, and is worth 20% of your grade.

14.1 Some Basic Definitions

Greatest common divisor:

ged(a,b) = max{d :d|a and d | b}

Congruence: a =b (mod n) means that n | a —b.
Ezample 14.1.1. We have 7 = —19 (mod 13) since 13 | 7 — (—19) = 26.
If g is an integer such that gcd(a,n) = 1, then the order of @ modulo n is

min{i eN:a"'=1 (modn)}.

For example, the order of 2 modulo 15 is 4.

Some Rings and Groups: We let Z/nZ denote the ring of equivalence classes
of integers modulo n. We also frequently consider the group

(Z/nZ)* ={a : 1 <a<mnand ged(a,n) =1}.
The order of ¢ modulo n is then the order of the image of a in the multiplicative

group (Z/nZ)*.

14.2 Equations Modulo n

14.2.1 Linear Equations

The equation az = b (mod n) must have a solution if ged(a,n) = 1. Warning: It
might still have a solution even if ged(a,n) # 1.

Ezample 14.2.1. The equation 3z = 2 (mod 5) has the solution z = 4.
The equation 3z =9 (mod 18) has a solution z = 3 even though gcd(3,18) =3 # 1.
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14.2.2 Quadratic Equations

Suppose a is an integer that is not divisible by p. The solvability or nonsolvability

of the quadratic equation 22 = a (mod p) is addressed by quadratic reciprocity. (So

far we have not discussed how to find a solution, only whether or not one exists.)
The quadratic residue symbol is

(a) B {-i—l if 22 =a (mod p) has a solution

p —1 otherwise.

We have

(ﬁ) =aP1/2  (mod p).
p

The Quadratic Reciprocity Law, which was proved by Gauss, asserts that if p
and g are distinct odd primes then

()= ()

This is the deepest result that we’ve proved in the course so far. On the midterm,
you will not be held responsible for understanding the proof I gave last Friday.
However, you should know the statement of the quadratic reciprocity law and have
some practice applying it.

14.3 Systems of Equations

Suppose that n and m are coprime integers. Then the Chinese Remainder The-
orem (CRT) asserts that the system of equations

z=a (modm),

z=b (modn)

has solutions. (There is exactly one nonnegative solution z < nm.)
Ezample 14.3.1. Because of CRT, I know that there is an z such that

z=1 (mod 37),
z =17 (mod 23)

even though I am too lazy to find z right now.

14.4 The Euler ¢ Function

Define a function ¢ : N — N by
o(n) =#{a:1<a<nand ged(a,n) =1} = #(Z/nZ)".

Using the Chinese Remainder Theorem we proved that ¢ is a multiplicative function,
i.e., if m,n € N and gcd(m,n) = 1, then

p(mn) = p(m) - p(n).

n
Also, if p is a prime then ¢(p") = p" — % =p" —p" L
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Ezxample 14.4.1.

(23 -5%) = (23) - p(5%) = (22 — 2?) - (5% — 5) = 4 - 20 = 80.

14.5 Public-key Cryptography

14.5.1 The Diffie-Hellman Key Exchange

1. Nikita chooses a prime p and a number g that is a primitive root modulo p.
She tells Michael both p and g.

2. Nikita secretely chooses a random number n and sends Michael g" (mod p).
3. Michael secretely chooses a random number m and sends Nikita ¢™ (mod p).

4. The secret key is s = g™ (mod p). Both Michael and Nikita can easily
compute s, but The Collective can’t because of the difficulty of the “discrete
logarithm problem”.

14.5.2 The RSA Cryptosystem

1. Nikita creates her public key as follows:

(a) She chooses two distinct large primes p and ¢, then computes both n = pq
and p(n) = (p—1)(¢ — 1).

(b) She picks a random natural number e < ¢(n) such that ged(e, p(n)) = 1.

(c) She computes a number d such that ed =1 (mod ¢(n)).

(d) Her public key is (n,e). (And her private decoding key is d.)

2. To send Nikita a message, Michael encodes it (or a piece of it) as a number
m (mod n). He then sends m® (mod n) to Nikita.

3. Nikita recovers m from m® (mod n) by using that

(m€)?  (mod n).

m

14.6 Important Algorithms

14.6.1 Euclid’s Algorithm

Given integers a and b, a slight extension of Euclid’s ged algorithm enables us to
find integers x and y such that

az + by = ged(a, b).

Ezample 14.6.1. ¢ =12, b = 101.

101 =8-12+5 5=101-8-12
12=2-5+2 2=-2-101+17-12
5=2-2+1 1=5-2.2=5-101 —42-12.
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Thus z = —42, y = 5 works, and gecd(a,b) = 1.
We can use the result of this computation to solve

12z =1 (mod 101).

Indeed, 1 = (—42) - 12+ 5- 101, so z = —42 is a solution.

14.6.2 Powering Algorithm

There is a clever trick that makes computing a” easier. Write n in binary, that is
is write n = Y7, €;2" with &; € {0,1}. Then

a" = H a?.
1 with €;#0
14.6.3 PARI
The midterm will NOT test knowledge of PARI.

14.7 The Midterm Exam

The students had 52 minutes to do all of these problems with no external aids such
as a calculator or notes.

1. (5 points) Prove that a positive number n is divisible by 11 if and only if the
alternating sum of the digits of n is divisible by 11.

2. Let ¢ : N — N be the Euler ¢ function.

(i) (3 points) Find all natural numbers 7 such that p(n) = 1.
(ii) (2 points) Do there exist natural numbers m and n such that p(mn) #
@(m) - ¢(n)?
3. (6 points) Nikita and Michael decide to agree on a secret encryption key using

the Diffie-Hellman key exchange protocol. You observe the following:

e Nikita chooses p = 13 for the modulus and g = 2 as generator.
e Nikita sends 6 to Michael.
e Michael sends 11 to Nikita.

What is the secret key?
4. Consider the RSA public-key cryptosystem defined by (n,e) = (77,7).

(i) (3 points) Encrypt the number 4 using this cryptosystem.
(ii) (3 points) Find an integer d such that ed =1 (mod ¢(n)).

213

5. (5 points) How many natural numbers z < satisfy the equation

z2=5 (mod 2'% —1)?

213

(You may assume that — 1 is prime.)
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6. (10 points) Which of the following systems of equations have at least one
solution? Briefly justify your answers.

(a) i i ((Esg 3)) (b) 2z =1 (mod 1234567891011121314151)
:v =5 (mod 29) z =3 (mod 29)

() 22 =3 (mod 47) () 2 =5 (mod 47)

() 2 =3 (mod 29)

® 22=5 (mod 47).

7. (5 points) Find the natural number z < 97 such that z = 4*® (mod 97). (You
may assume that 97 is prime.)
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14.8 Abbreviated Solutions

1.

We use that 10 = —1 (mod 11) and facts about modular arithmetic. Write
n=>3"_od;10°. Thenn = >_,(—1)%d; (mod 11), so n =0 (mod 11) if and
only if the alternating sum of the digits > (—1)’d; is congruent to 0 modulo 11.

For the first part, the answer is n = 1,2. On a previous homework we proved
that n = 1,2 are the only n such that ¢(n) is odd. For the second part, the fact
that ¢ is multiplicative means that if gecd(m,n) = 1 then p(mn) = ¢(m)-¢(n).
When ged(m,n) # 1 this implication can fail; for example,

2=0(2-2) #¢(2) - ¢(2) = 1.

Since 2" = 6 (mod 13), a table of powers of 2 modulo 13 quickly reveals that n
must be 5 (we solve the discrete log problem easily in this case since 13 is so
small). Likewise, since g™ = 11 (mod 13) we see that m = 7. The secret key
is s = 7 since ¢"™ = 2% = 21! = 7 (mod 13). (Some people who attempted
this problem incorrectly thought the secret key should be g" - g™ = g"*t™.)

(a) We must compute 47 (mod 77). Working modulo 77, we have that
47 =64.-64-4=132.4=169-4=15-4 = 60,

so 4 encrypts as 60.

(b) First, ¢(n) = o(77) = ¢(7)-¢(11) = 6-10 = 60. (Some people incorrectly
thought that ¢(n) = 77 for some reason.) We then use the extended
Euclidean algorithm to find an integer e such that 7e =1 (mod 60). We
find that 2-60 —17-7 =1, so e = —17 is a solution.

First we use the law of quadratic reciprocity to decide whether or not there is
a solution. We have

5 N ey (2821 (1) _
(213—1>_( 2 5 =\5)="

2

so the equation 22 = 5 (mod 23 — 1) has at least one solution a. Since the
polynomial z? — 5 has degree two and 2!3 — 1 is prime, there are at most 2
solutions. Since —a is also a solution and a # 0, there are exactly two
solutions.

(a) has no solutions because z = —1 (mod 9) implies that z = —1 (mod 3).
(b) has a solution because ged(2,1234567891011121314151) = 1. (c) has
a solution because (25—9) = (43—7) = 1 so there are a and b such that a> = 5
(mod 29) and b? = 3 (mod 47); the Chinese Remainder Theorem then implies
that there is an z such that z = a (mod 29) and z = b (mod 47). (d) has a
solution by the Chinese Remainder Theorem, since gcd(29,47) = 1. (e) has
no solution since (%) = —1, so the first of the two equations doesn’t even
have a solution.

Since 97 is prime, Fermat’s Little Theorem implies that 4% = 2% = 1
(mod 97).
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Chapter 15

Programming in PARI, II

15.1 Beyond One Liners

In today’s relaxing but decidely non-mathematical lecture, you will learn a few new
PARI programming commands. Feel free to try out variations of the examples below
(especially because there is no homework due this coming Wednesday). Also, given
that you know PARI fairly well by now, ask me questions during today’s lecture!

15.1.1 Reading Files

The \r command allows you to read in a file.

Ezxample 15.1.1. Create a file pm.gp that contains the following lines

{powermod(a, p, n) =
return (lift(Mod(a,p)"n));}

Now use \r to load this little program into PARI:

> 7powermod
***%x  powermod: unknown identifier.
> \rpm \\ \rpm.gp would do the same thing
? 7powermod
powermod(a, p, n) = return(lift(Mod(a,p)"n));
? powermod(2,101,7)
%l =27

If we change pm.gp, just type \r to reload it (omitting the file name reloads the
last file loaded). For example, suppose we change return (1ift(Mod(a,p)~n)) in
pm.gp to return (lift(Mod(a,p) "n)-p). Then

? \r
? powermod(2,101,7)
%2 = -74
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15.1.2 Arguments

PARI functions can have several arguments. For example,

{add(a, b, c)=

return (a + b + c);}
? add(1,2,3)
%3 =6

If you leave off arguments, they are set equal to 0.

? add(1,2)
%4 =3

If you want the left-off arguments to default to something else, include that infor-
mation in the declaration of the function:

{add(a, b=-1, c=2)=
return (a + b + c);}

? add(1,2)

%6 =5

? add(1)

W =2

? add(1,2,3)

%8 =6

15.1.3 Local Variables Done Right

Amidst the haste of a previous lecture, I mentioned that an unused argument can
be used as a poor man’s local variable. The following example illustrates the right
way to declare local variables in PARI.

Ezample 15.1.2. The function verybad below sums the integers 1,2,...n whilst
wreaking havoc on the variable 1.

{verybad(n)=
i=0;
for(j=1,n, i=i+j);
return(i);}
? verybad(3)
%9 =6
? i=4;
? verybad(3);
7 i
%13 =6 \\ ouch!! what have you done to my eye!
The function poormans is better, but it uses a cheap hack to simulate a local variable.
{poormans(n, i=0)=
for(j=1,n, i=i+j);

return(i);}
? i=4;
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? poormans (3)

%16 = 6
71
W7 = 4 \\ good

The following function is the best, because i is local and it’s clearly declared as
such.

{best (n)=
local(di);
i=0; for(j=1,n, i=i+j);
return(i);}
? i=4;
? best(3)
%18 = 6
7 i
%19

4

15.1.4 Making Your Program Listen

The input command reads a PARI expression from the keyboard. The expression
is evaluated and the result returned to your program. This behavior is at first
disconcerting if, like me, you naively expect input to return a string. Here are
some examples to illustrate the input command:

7 7input

input(): read an expression from the input file or standard input.

? s = input();

1+1

?7s \\ s is not the string "1+1", as you might expect
%24 = 2

? s=input ()

hi there

%25 = hithere

? type(s) \\ PARI views s as a polynomial in the variable hithere
%26 = "t_POL"

? s=input ()

"hi there"

%27 = "hi there"

? type(s) \\ now it’s a string

%28 = "t_STR"

15.1.5 Writing to Files
Use the write command:
? ?write

write(filename,a): write the string expression a to filename.
? write("testfile", "Hello Kitty!")
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The write command above appended the line “Hello Kitty!” to the last line of
testfile. This is useful if, e.g., you want to save key bits of work during a session
or in a function. There is also a logging facility in PARI, which records most of
what you type and PARI outputs to the file pari.log.

7 \1
log = 1 (on)
? 242
%29 = 4
7 \1
log = 0 (off)
[logfile was "pari.log"l]

15.2 Coming Attractions

The rest of this course is about continued fractions, quadratic forms, and elliptic
curves. The following illustrates some relevant PARI commands which will help us
to explore these mathematical objects.

? 7contfrac

contfrac(x,{b},{1lmax}): continued fraction expansion of x ...

? contfrac(7/9)

»30 = [0, 1, 3, 2]

? contfrac(sqrt(2))

%31 =111, 2, 2, 2, 2, 2, 2, 2,2, 2,2, 2, ...]

? 7qfbclassno

gfbclassno(x,{flag=0}): class number of discriminant x using Shanks’s
method by default. If (optional) flag is set to 1, use Euler products.
? gfbclassno(-15,1) \\ ALWAYS use flag=1, since ‘‘the authors were too

%32 = 2 \\ lazy to implement Shanks’ method completely...’’
? E=ellinit([0,1,1,-2,0]);
? P=[0,0];

? elladd(E,P,P)

%36 = [3, 5]

? elladd(E,P,[3,5])
%37 = [-11/9, 28/27]

? a=-11/9;b=28/27; \\ this is an ‘‘amazing’’ point on the curve.
? b"2+b == a"3+a"2-2*a
%38 =1
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Chapter 16

Continued Fractions, I

16.1 Introduction

A continued fraction is an expression of the form

1

1
a1+ —/—1—
et

ao +

which may or may not go on indefinitely. We denote! the value of this continued
fraction by
[ag, a1, a9, ...]

The a,, are called the partial quotients of the continued fraction (we will see why at
the end of this lecture). Thus, e.g.,

1 3
1.2/ =14+ -=—
L2 =1+5=15,
and
172 1
— =103,2,1,2,6] =3 + ——
51 [7575] +2+ 11

1+—r2+6

Continued fractions have many applications, from the abstract to the concrete.
They give good rational approximations to irrational numbers, and the have been
used to understand why you can’t tune a piano perfectly.? Continued fractions also
suggest a sense in which e appears to be “less transcendental” than .

There are many places to read about continued fractions, including Chapter X of
Hardy and Wright’s Intro. to the Theory of Numbers, §13.3 of Burton’s Elementary
Number Theory, Chapter IV of Davenport, and Khintchine’s Continued Fractions.
The notes you're reading right now draw primarily on Hardy and Wright, since
their exposition is very clear and to the point. I found Davenport’s chapter IV
uneccessarily tedious; I felt marched through a thick jungle to see a beautiful river.

! Warning: This notation clashes with the notation used in Davenport. Our notation is standard.
2See http://wuw.research.att.com/ njas/sequences/DUNNE/TEMPERAMENT . HTML
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16.2 Finite Continued Fractions

Definition 16.2.1. A finite continued fraction is an expression
1

ag+ ———1——
PR S
Lt artto,

where each a,, is a rational number and a,, > 0 for all n > 1. If the a,, are integers,
we say that the continued fraction is integral.

To get a feeling for continued fractions, observe that

[GJO] = aop,
1 aga + 1
[ap,a1] =ap+ — = ——,
a1 a1
[a a a]—a—l- 1 _a0a1a2+ao+a2
0,1, 2 0 al—i-% ajag +1 '
Also,
[@g,a1,...,am—1,am] = [ag,a1,...,am—2,0m—1 + —]
am
1
= ao + —
[@1,...,am]
= [ao,[al,...,am]].

16.2.1 Partial Convergents
Fix a continued fraction [ay, ..., am)].

Definition 16.2.2. For 0 < n < m, the nth convergent of the continued fraction
[ag,--.,am] is [ag,- .., ap]-

For each n > —1, define real numbers p,, and ¢,, as follows:

p-1=1,  po=ay, pr=aapo+p-1=aiao+1l,  pp=appp_1+pn—2,

qg-1 =0, @0=1  q=aq +q9-1=ai, dn = nGn—-1 + Gn—2-
Ezercise 16.2.3. 2 Compute p, and g, for the continued fractions [-3,1,1,1,1, 3]
and [0,2,4,1,8,2]. Observe that the propositions below hold.

] =2n

Proposition 16.2.4. [ag,...,a,
an

3Try to do this exercise, which is not part of the regular homework, before the next lecture.
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Proof. We use induction. We already verified the assertion when n = 0,1. Suppose
the proposition is true for all continued fractions of length n — 1. Then

1
[ag, - - -, an] = [ap, ..., an-2,an-1 + —]
Qnp

(anfl + i) Pn-2+DPn-3

(anfl + i) 9n—2 +qn-3

o (anflan + 1)pn72 + apPn—3
B (an—lan + 1)q'n—2 + angn—3
an (an—lpn—Z + pn—3) + Pn—2
an(@n—1qn—2 + qn—3) + gn—2
GpPpn—1+Pn—2 DPn

angn—1 + gn—2 dn )

Proposition 16.2.5. For n <m,

1. the determinant of ( " pn_l) is (=1)""1; equivalently,

qdn dn—1
Pn _ Pn-t_( pynr 1
dn dn—1 QnCIn—l’

2. the determinant of (p" pn—2) is (—1)"ay; equivalently,

dn 49n-2
p_n _ pn—2 — (_1)n . an .
qn qn—2 qnqn—2

Proof. For the first statement, we proceed by induction. The case n = 0 holds
ao

. 1\ . .
because the determinant of (1 O) is —1 = (—1)~!. Suppose the statement is

true for n — 1. Then

Pnqn—-1 — gnPn—1 = (anpnfl +pn72)Qn71 - (ananl + Qn72)pn71
= Pn—29n—-1 — gn—-2Pm—1
= _(pn—IQn—Q - pn—QQn—l)
e

This completes the proof of the first statement. For the second statement,

Pndn—2 — Pn—29n = (anpn—l +pn—2)q'n—2 _pn—Z(anQn—l + q'n—2)
- an(pn—lQn—2 - pn—ZQH—l)

= (-1)"ay.
O
Corollary 16.2.6. The fraction P s in lowest terms.
qn
Proof. If p| p, and p | g, then p | (—1)"7L. O
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16.2.2 How the Convergents Converge

Let [ag, - .- ,a;,] be a continued fraction and for n < m let
Pn
Cn = [ao,"'aan] =
an

denote the nth convergent.

Proposition 16.2.7. The even convergents co, increase strictly with n, and the
odd convergents con+1 decrease strictly with n. Moreover, the odd convergents copy1
are greater than all of the even convergents.

Proof. Forn > 1 the a, are positive, so the g, are all positive. By Proposition 16.2.5,

for n > 2,
anp

Indn-—2’

Cp — Cn—o = (=1)"
which proves the first claim.
Next, Proposition 16.2.5 implies that for n > 1,
1
dnqn-1

has the sign of (—1)"7!, so that copi1 > con. Thus if there exists 7,n such that
Con+1 < Cor, then 7 #£ n. If r < n, then copy1 < cor < c2p, & contradiction. If r > n,
then cory1 < cony1 < cor, also a contradiction. O

n—1

Cp —Cp—1= (_1)

16.3 Every Rational Number is Represented

Proposition 16.3.1. Every rational number is represented by a continued fraction.

Proof. Let a/b, where b > 0, be any rational number. Euclid’s algorithm gives:

a=>b-ayg+r7, O0<ri<b
b=ri-a1+ 19, O<ro<mr
Tp—2 = Tp—1*0n—1+ Tn, 0<ry <rp_q

Tp—1 = Tn " ay + 0.
Note that a; > 0 for 7 > 0. Rewrite the equations as follows:
a/b=ayg+ri/b=ap+1/(b/r1),
b/ri = a1 +ra/r1 = a1+ 1/(r1/re),
r1/re = az + 13/ = ag +1/(r2/13),

Tn—1/Tn = Gn.

It follows that a
g = [a(), QAly.-- an].

list of good links:
http://mathforum.org/electronic.newsletter/mf.intnews2.44.html
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Chapter 17

Continued Fractions II: Infinite
Continued Fractions

17.1 The Continued Fraction Algorithm

Let z € R and write
T =ag + 1o

with ag € Z and 0 < tg < 1. If £y # 0, write

1 +1
— = Q
o 1+
with a1 € Nand 0 <t; < 1. Thus ty = —a1it1 = [0, a1 + t1], which is a (nonintegral)

continued fraction expansion of t3. Continue in this manner so long as t, # 0
writing

1 ant1 + tny1

tn
with a,4+1 € Nand 0 < t,41 < 1. This process, which associates to a real number x
the sequence of integers ag, a1, ao, - . ., is called the continued fraction algorithm.

Erample 17.1.1. Let z = 8 Thenz = 2+ 2,50 ap = 2 and tg = 2. Then

3 3 3
%z%zl—l—%,soalzlandtl:%. Then%zz S0 as = 2, to = 0, and the
sequence terminates. Notice that

8
-=[2,1,2
3 [ 7 7 ]’

so the continued fraction algorithm produces the continued fraction of g.

Proposition 17.1.2. For every n such that a, is defined, we have
T = [a07a‘17"'7a‘n +tn]>
and if t, # 0 then x = [ag, a1,...,an, i]

Proof. Use induction. The statements are both true when n = 0. If the second
statement is true for n — 1, then

1 1

— ] =lag,a1,-.-,an_1,an +t,] = [ag,a1,.-.,0n_1,07,, —].

T = [CI,(), aiy-..,0p-1,
tn—1 tn
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Similarly, the first statement is true for n if it is true for n — 1.

Ezxample 17.1.3. Let z = # Then

-1
€T = 1 _I_ ﬂ’
2
soag =1 and tg = %‘/5 We have
1 2 —2-2/5 1445
to —1+v56 -4 2
so again a; = 1 and ¢; = _1%*/5 Likewise, a, = 1 for all n. Does the following

crazy-looking equality makes sense??

1++/5 1
v5_ .. 1
2 1+ ﬁ
1+*ﬁ1+1+m

Ezample 17.1.4. Next suppose = e. Then
ag,a1,as,...=2,1,2,1,1,4,1,1,6,1,1,8,1,1,..

? contfrac(exp(1))
»n=1,1,2,1,1, 4,1, 1,6, 1,1, 8, 1, 1, 10, 1, 1,
12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 2]

? \\ to get more terms, increase the real precision:

? \p60

? contfrac(exp(1),[1)

12 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1,
12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1,
1, 24,1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34,
1,1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 2]

The following program uses a proposition we proved yesterday to compute the
partial convergents of a continued fraction:

{convergents(v)=

local(pp,qq,p,q,tp,tq,answer) ;

pp=1; qq=0; p=v[1]l; g=1; \\ pp is p_{n-1} and p is p_n.

answer = vector(length(v)); \\ put answer in this vector

answer[1] = p/q;

for(n=2,length(v),
tp=p; tq=q; p=vinl*p+pp; q=vInl*q+qq; pp=tp; qa=tq;
answer[n] = p/q;

);

return(answer) ;

80



Let’s try this with 7

? contfrac(Pi)

%26 = [3, 7, 15, 1, 292, 1, 1, ...]

? convergents([3,7,15])

%27 = [3, 22/7, 333/106]

? convergents([3,7,15,1,292])

%28 = [3, 22/7, 333/106, 355/113, 103993/33102]
7 %[51*1.0

%29 = 3.1415926530119026040. ..
? % - Pi
%30 = -0.000000000577890634. . .

17.2 Infinite Continued Fractions

Theorem 17.2.1. Let ag,a1,a9,... be a sequence of integers such that a, > 0 for
all n > 1, and for each n > 0, set ¢, = [ag,a1,--.ay|. Then li_>m cn, exists.
n—oo

Proof. For any m > n, the number ¢, is a partial convergent of [ag, . .., am]. Recall
from the previous lecture that the even convergents co, form a strictly increasing
sequence and the odd convergents co,, 1 form a strictly decreasing sequence. More-
over, the even convergents are all < ¢; and the odd convergents are all > ¢y. Hence
ag = limy,_yo0 con and a1 = limy,_, o0 cony1 both exist and oy < 1. Finally, by a
proposition from last time

1 1
Conp — Cop—1| = < —0
le2n -1l @n - Gon—1 ~ 2n(2n — 1) ’
SO Qg = Q. |
We define
[ag,a1,...] = lim c,.
n—oQ

Ezample 17.2.2. We use PARI to illustrate the convergence of the theorem for z = .

? a = contfrac(Pi)
%38 = [3, 7, 16, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, ...]
? ¢ = convergents(a)

%39 = [3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, ...]
7 \p9 \\ so we can see.

realprecision = 9 significant digits
? [c[1]1%1.0, c[3]1%1.0, c[6]*1.0, c[7]1*1.0] \\ odd ones converge up to pi
%43 = [3.00000000, 3.14150943, 3.14159265, 3.14159265]
? [c[2]*1.0,c[4]*1.0,c[6]1*1.0,c[8]*1.0] \\ even ones swoop down on pi.
%44 = [3.14285714, 3.14159291, 3.14159265, 3.14159265]

Theorem 17.2.3. Let x € R be a real number. Then
z = [ag,a1,a2,...],

where ag, a1, as,... is the sequence produced by the continued fraction algorithm.

81



Proof. If the sequence is finite then some ¢, = 0 and the result follows by Proposi-
tion 17.1.2. Suppose the sequence is infinite. By Proposition 17.1.2,

1
z = [ag,a1,--.,an, t_]
n
By a proposition from the last lecture!,
o= %pn + Pn-1
%QR + qn—1 .
Thus if ¢, = [ag,a1,-..,ay], then
Pn
T—cCp=o— —
qn

 3ePntn F Pa-1dn — 3= Pndn — Prdn—1
an (%Qn + %171)
_ Pn—14n — Pngn-1
an (iqn + Qn71>
_ (="
an (%Qn + Qn—l)

Thus
1
|z — cnl = 1
dn (ZQTL + anl)
1
<
@n(@n+1Gn + Gn-1)
1 1

= < — 0.
G Gn+1 ~ n(n+1)

(In the inequality we use that a1 is the integer part of i, and is hence < i)
O

Proposition 17.2.4. If = is a rational number then the sequence agy,a1,as,... ter-
minates (at n say) and

T = [ag, a1, a2, - - -, an]-
Proof. Let [bg,b1,...,by] be the continued fraction representation of z that we

obtain using the Euclidean algorithm. Then
x=by+1/[b1,-.-,bm).

If [b1,...,bm] = 1 then m = 1 and b; = 1, which would never happen using the

Euclidean algorithm since z is expressed in lowest terms. Thus [b1,...,b,] > 1,
so in the continued fraction algorithm we choose ay = by and ty = 1/[by, ..., bn].
Repeating this argument enough times proves the claim. O

'Which we apply in a case when the partial quotients of the continued fraction are not integers!
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Chapter 18

Continued Fractions III:
Quadratic Irrationals

In this lecture we prove that the continued fraction expansion of a number is periodic
if and only if the number is a quadratic irrational.

18.1 Quadratic Irrationals

Definition 18.1.1. An element o € R is a quadratic irrational if it is irrational
and satisfies a quadratic polynomial.

Thus, e.g., (1 ++/5)/2 is a quadratic irrational. Recall that

1++5
2

=[1,1,1,...].

The continued fraction of v/2 is [1,2,2,2,2,2,...], and the continued fraction of

V/389 is
[19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38,...].

Does the [1,2,1,1,1,1,2,1, 38] pattern repeat over and over again??

18.2 Periodic Continued Fractions

Definition 18.2.1. A periodic continued fraction is a continued fraction [ag, a1, ..., ap, - -

such that
Qp = Qn+th

for a fixed positive integer h and all sufficiently large n. We call h the period of the
continued fraction.

Ezample 18.2.2. Consider the periodic continued fraction [1,2,1,2,...] = [1,2].
What does it converge to?
— 1
1,2]=1+ ,
e 2+ 1+ =
2+t
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so if @ = [1,2] then

Thus 2a+o? =2+ a +1, so

=147

?+a-3=0 and « 5

Theorem 18.2.3. An infinite integral continued fraction is periodic if and only if
it represents a quadratic irrational.

Proof. (=) First suppose that

(@05 @1, - -+ 3 Gy @iy - - -5 Gth)
is a periodic continued fraction. Set o = [an41,an42,...]. Then
o =[ant1,---,anih, A,

SO
_ OPpip Tt Prth-1

© QGnih t i1

(We use that « is the last partial convergent.) Thus « satisfies a quadratic equation.
Since the a; are all integers, the number

[ag,a1,...] = [ao,a1,...,an,q]
n 1
= a’O 1
a1+ az+-+a
can be expressed as a polynomial in « with rational coefficients, so [ag,a1,...] also

satisfies a quadratic polynomial. Finally, o & QQ because periodic continued fractions
have infinitely many terms.

(«<=) This direction was first proved by Lagrange. The proof is much more exciting!
Suppose a € R satisfies a quadratic equation

acd? +ba+c=0
with a,b,c € Z. Let [ag, a1,...] be the expansion of a. For each n, let
Tn = [n,Gnt1,-- -],

so that

a=[ag,a1,--.,0n 1,Tn)-

We have
- TnPn + Pn—1

Tndn + gn—1 .
Substituting this expression for « into the quadratic equation for «, we see that

Anr?1 + Bpry + Cp =0,
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where

Ap = apifl + bpn—lQn—l + qu,fla
B, = 2apy_1pp—2 + b(panQn72 + pn72Qn71) + 2¢cgn—19n—2,
Cn = ap?;—Q + bpp—_2gn—2 + Cp?;—2-

Note that A, B,,C, € Z, that C,, = A,,_1, and that
B? — 4A,C, = (b2 —4ac)(pn—19n-—2 — anlpn72)2 = b* — 4ac.

Recall from the proof of Theorem 2.3 of the previous lecture that

_ 1
‘Oé - Pn-1 < )
dn—1 dndn—1
Thus
1 1
|04an1 _pnfl‘ < —< s
dn dn+1
SO
Pn—1 = Qgn_1 + with |0] < 1.
dn—1
Hence
2
) ) 9
A, =a agp_1 + +b| agn_1+ gn—1+cqg,_1
dn—1 dn—1
52
= (a0® + ba + ¢)g2_; + 2aad +a 5— +bd
n—1
2
= 2aad + a 5 + bd.
n—1
Thus

52
|An| = [2aad +aq2 + bé| < 2|ac| + |a| + |b].

n—1

Thus there are only finitely many possibilities for the integer A,,. Also,

|Cp| = |An_1] and |B,|=+/b? —4(ac — A,C,),

so there are only finitely many triples (A4,, By, Cy), and hence only finitely many
possibilities for r, as n varies. Thus for some h > 0,

Tn = Tn_|_h.

This shows that the continued fraction for « is periodic. O

18.3 What About Higher Degree?
Definition 18.3.1. An algebraic number is a root of a polynomial f € Q[z].

Open Problem: ! What is the continued fraction expansion of the algebraic
number /2?7

1 As far as I know this is still an open problem.
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? contfrac(2°(1/3))

s = [1, 3,1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3,
2,1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1,
121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1,1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7,
6, 1,1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4, 1, 1,
i, 1, 1, 89, 1, 22, 186, 5, 2, 4, 3, 3, 1, \ldots]

I sure don’t see a pattern, and that 534 strips me of any confidence that I ever
will. One could at least try to analyze the first few terms of the continued fraction
statistically (see Lang and Trotter, 1972).

Khintchine (1963), page 59:

No properties of the representing continued fractions, analogous to those
which have just been proved, are known for algebraic numbers of higher
degree. [...] It is of interest to point out that up till the present time no
continued fraction development of an algebraic number of higher degree
than the second is known. It is not even known if such a development
has bounded elements. Generally speaking the problems associated with
the continued fraction expansion of algebraic numbers of degree higher
than the second are extremely difficult and virtually unstudied.

Richard Guy Unsolved Problems in Number Theory (1994), page 260:

Is there an algebraic number of degree greater than two whose simple
continued fraction has unbounded partial quotients? Does every such
number have unbounded partial quotients?
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Chapter 19

Continued Fractions IV:
Applications

In this lecture we will learn about two applications of continued fractions. The first
is a solution to the computational problem of recognizing a rational number using
a computer. The second application is to the following ancient question: Given a
positive nonsquare integer d, find integers z and y such that z? — dy? = 1.

19.1 Recognizing Rational Numbers

Suppose that you can compute approximations to a rational number using a com-
puter, and desparately want to know what the rational number is. As Henri Cohen
explains in his book A Course in Computational Algebraic Number Theory, contin-
ued fraction are very helpful.

Consider the following apparently simple problem. Let z € R be given
by an approximation (for example a decimal or binary one). Decide if
z is a rational number or not. Of course, this question as posed does
not really make sense, since an approximation is usually itself a rational
number. In practice however the question does make a lot of sense
in many different contexts, and we can make it algorithmically more
precise. For example, assume that one has an algorithm which allows us
to compute z to as many decimal places as one likes (this is usually the
case). Then, if one claims that z is (approximately) equal to a rational
number p/q, this means that p/q should still be extremely close to
whatever the number of decimals asked for, p and ¢ being fixed. This is
still not completely rigorous, but it comes quite close to actual practice,
so we will be content with this notion.

Now how does one find p and ¢ if = is indeed a rational number? The
standard (and algorithmically excellent) answer is to compute the con-
tinued fraction expansion [ag, a1, ...] of z. The number z is rational if
and only if its continued fraction expansion is finite, i.e., if and only if
one of the a; is infinite. Since z is only given with the finite precision, x
we be considered rational if z has a very large partial quotient a; in its
continued fraction expansion.
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The following example illustrates Cohen’s remarks:

Ezxzample 19.1.1. 7 x

%13 = 9495/3847

? xx1.0

%14 = 2.4681570054587990642058747075643358461138549519105

? contfrac(x)

%15 =12, 2,7,2,1,5,1,1, 1, 1, 2]

? contfrac(2.468157005458799064)

%16 = [2, 2, 7,2, 1,5, 1, 1, 1, 1, 1, 1, 328210621945, 2, 1, 1, 1, 1, 7]
? contfracpngn([2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1])

w7 =

[9495 5852]

[3847 2371]

? contfrac(2.4681570054587990642058747075643)

%8 =12, 2,7,2,1,5,1, 1,1, 1, 1, 1, 1885009518355562936415046, 1, 4]
? \p300

? xx1.0 \\ notice that no repeat is immediately evident in the digits of x

%19 = 2.468157005458799064205874707564335846113854951910579672472056147647517 . .

? \\ in fact, the length of the period of the decimal expansion
\\ of 1/3847 is 3846 (the order of 10 modulo 3847)!!

19.2 Pell’s Equation

In February of 1657, Pierre Fermat issued the following challenge:

Given a positive integer d, find a positive integer y such that dy® + 1 is
a perfect square.

In other words, find a solution to 22 — dy? = 1 with y € N.
Note Fermat’s emphasis on integer solutions. It is easy to find rational solutions
to the equation 22 — dy? = 1. Simply divide the relation

(r? + d)? — d(2r)* = (r* — d)?
by (r? — d)? to arrive at
r?+d 2r
T = —5—— = ——.
r2od YT g
Fermat said: “Solutions in fractions, which can be given at once from the merest
elements of arithmetic, do not satisfy me.”
The equation 22 — dy? = 1 is called Pell’s equation. This is because Euler (in
about 1759) accidently called it “Pell’s equation” and the name stuck, though Pell

(1611-1685) had nothing to do with it.
If d is a perfect square, d = n?, then

(@ +ny)(x—ny) =2° —dy’ =1
which implies that z + ny =z —ny = 1, so

z+ny+z—ny 141
€r = = =

1.
2 2
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We will thus always assume that d is not a perfect square. You can read about Pell’s
equation in Section 0.6 of Kato-Kurokawa-Saito and on pages 107-111 of Davenport.
Pell’s equation is best understood in terms of units in real quadratic fields.

19.3 Units in Real Quadratic Fields
Let d be a nonsquare positive integer, and set

Q(\/E):{a—l-b\/g:a,be(@}
Z[Vd) = {a+bVd:a,be Z}.

Then Q(v/d) is a real quadratic field and Z[v/d) is a ring. There is a homomorphism
called norm:

N :QWd)* — Q, N(a+b\/c_i):(a+b\/c_i) (a—b\/c_i)zaz—bzd.

Definition 19.3.1. An element x € R is a unit if there exists y € R such that
zy = 1.

Proposition 19.3.2. The units of Z[/d] are ezactly the elements of norm +1 in

Z[Vd).
Proof. Suppose u € Z[V/d] is a unit. Then
1=N(1)=N(uu™')=N(u)-N@").
Since N(u), N(u~!) € Z, we have N(u) = N(u!) = £1 O

Thus Fermat’s challenge amounts to determing the group U™ of units in Z[v/d]
of the form a + bv/d with a,b > 0.

Theorem 19.3.3. The group U* is an infinite cyclic group. It is generated by
Pm + gmVd, where Z—Z is one of the partial convergents of the continued fraction

expansion of Vd. (In fact, if m is the period of the continued fraction of V/d then
n =m — 1 when m is even and 2n — 1 when m is odd.)

The theorem implies that Pell’s equation always has a solution! Warning: the
smallest solution is typically shockingly large. For example, the value of z in the
smallest solution to z2 — 1000099y? = 1 has 1118 digits.

The following example illustrates how to use Theorem 19.3.3 to solve Pell’s
equation when d = 61, where the simplest solution is already quite large.

Ezxample 19.3.4. Suppose d = 61. Then

Vd=7,1,4,3,1,2,2,1,3,4,1, 14],
which has odd period n = 11. Thus the group U™ is generated by

T = po1 = 1766319049
Yy = go1 = 226153980.

89



That is, we have
Ut = (u) = (1766319049 + 226153980+/61),

and z = 1766319049, y = 226153980 gives a solution to 2 — dy? = 1. All the other
solutions arise from 4™ for some n. For example,

u? = 6239765965720528801 + 798920165762330040+/ 61

leads to another solution.
Remark 19.3.5. To help with your homework, note that if the equation

2 —dy* =n

has at least one (nonzero) solution (zg,y9) € Z X Z, then it must have infinitely
many solutions. This is because if 73 — dy? = n and u is a generator of the cyclic
group U™, then for any integer 1,

N (u'(z + yoVd)) = N(u') - N(zg + yoVd) = 1-n =mn,

SO

T1+ yn/g = ui(:co + yo\/c_i)

provides another solution to z% + dy? = n.

19.4 Some Proofs

The rest of this lecture is devoted to proving most of Theorem 19.3.3. We will prove
that partial convergents to continued fractions contribute infinitely many solutions
to Pell’s equation. We will not prove that every solution to Pell’s equation is a
partial convergent, though this is true.

Fix a positive nonsquare integer d.

Definition 19.4.1. A quadratic irrational a = a + bV/d is reduced if & > 1 and if
the conjugate of , denoted by o/, satisfies —1 < o/ < 0.

For example, the number o = 1 + /2 is reduced.

Definition 19.4.2. A continued fraction is purely periodic if it is of the form
[(10, Aiy--- ,an].

The continued fraction [2] of 1 + /2 is purely periodic.

Lemma 19.4.3. If a is a reduced quadratic irrational, then the continued fraction
expansion of « is purely periodic. (The converse is also true, and is easy to prove.)

Proof. The proof can be found on pages 102-103 of Davenport’s book. O

Lemma 19.4.4. The continued fraction ezpansion of V/d is of the form

[ag, a1, - -, an-1,2a0].

!There is a complete proof in Section 13.5 of Burton’s Elementary Number Theory. It just
involves more of the same sort of computations that we’ve been doing with continued fractions.
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Proof. Let ag be the floor of Vd. Then a = vd + ag is reduced because o > 1
and o/ = —V/d + aq satisfies —1 < o/ < 0. Let [ag,a1,az,...] be the continued
fraction expansion of v/d. Then the continued fraction expansion of v/d + ag is
[2ag,a1,as,...]. By Lemma 19.4.3, the continued fraction expansion of v/d + ay is
purely periodic, so

[20,0, ai,ag, .. ] = [2(10, a1,a9,. .. ,an,l],
where n is the period. It follows that a,, = 2ag, as claimed. O

The following proposition shows that there are infinitely many solutions to Pell’s
equation that arise from continued fractions.

Proposition 19.4.5. Let p;/qx be the partial convergents of the continued fraction
ezpansion of Vd, and let n be the period of the ezpansion of Vd. Then

p%n—1 - dql%nfl = (—1)kn
fork=1,2,3,....

Proof. 2 By Lemma 19.4.4, for k > 1, the continued fraction of v/d can be written
in the form
Vd = [ag, a1, 0z, - - ., Gkn—1,Tkn]

where
Tkn = [2a9,a1, G2, - -, 0] = ag + V.

Because v/d is the last partial convergent of the continued fraction above, we have

\/E _ TknPkn—1 + Pkn—2 '
TknQkn—1 + Qkn—2

Upon substituting ry, = ag + V/d and simplifying, this reduces to
Vd(aotkn—1 + Gkn—2 — Phn—1) = 60Pkn—1 + Pkn—2 — dqkn—1-
Because the right-hand side is rational and v/d is irrational,
a00kn—1 + Gkn—2 = Pkn—1, and  @oPkn—1 + Pkn—2 = dqkn—1-

Multiplying the first of these equations by pg,—1 and the second by —qk,—1, and
then adding them, gives
2 2 _
Pin—1 — Wn—1 = Pkn—19kn—2 — Qkn—1Pkn—2-
But
Pkn—19kn—2 — 9kn—1Pkn—2 = (_1)Im—2 = (_1)kn’

which proves the proposition. O

2This proof is from Section 13.5 of Burton’s Elementary Number Theory.
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Chapter 20

Binary Quadratic Forms I:
Sums of Two Squares

Today we study the question of which integers are the sum of two squares.

20.1 Sums of Two Squares

During the next four lectures, we will study binary quadratic forms. A simple
example of a binary quadratic form that will occupy us today is

z? -|—y2.

A typical question that one asks about a quadratic form is which integers does it
represent. “Are there integers = and y so that 22 4+ y? = 3897 So that 2% 4+ ¢ =
20017”

20.1.1 Which Numbers are the Sum of Two Squares?

The main goal of today’s lecture is to prove the following theorem.

Theorem 20.1.1. A number n is a sum of two squares if and only if all prime
factors of n of the form 4m + 3 have even exponent in the prime factorization of n.

Before tackling a proof, we consider a few examples.

Ezample 20.1.2.

5 =12 4 22,

7 is not a sum of two squares.

2001 is divisible by 3 because 2 + 1 is, but not by 9 since 2 4 1 is not, so 2001
is nmot a sum of two squares.

2-.3%.5.72.13 is a sum of two squares.

389 is a sum of two squares, since 389 =1 (mod 4) and 389 is prime.

e 21 =3 -7 is not a sum of two squares even though 21 =1 (mod 4).
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In preparation for the proof of Theorem 20.1.1, we recall a result that emerged
when we analyzed how partial convergents of a continued fraction converge.

a
Lemma 20.1.3. If z € R and n € N, then there is a fraction — in lowest terms

b
such that 0 < b <n and .
a
-l —.
‘x bl = b(n+1)
Proof. Let [ag,a1,...] be the continued fraction expansion of z. As we saw in the

proof of Theorem 2.3 in Lecture 18, for each m

1

< —
gm " gm+1

‘ Pm
x _ —
Gm

Since g,+1 is always at least 1 bigger than g, and gy = 1, either there exists an m
such that g, < n < g¢nyt1, or the continued fraction expansion of z is finite and n
is larger than the denominator of the rational number z. In the first case,

1 1
‘37 — p_m < S ,
dm 9m " 9m+1 qm - (n + 1)
a DPm . . . a
lo} Pl satisfies the conclusion of the lemma. In the second case, just let 7= T.
dm

U
Definition 20.1.4. A representation n = x? + y? is primitive if ged(z,y) = 1.

Lemma 20.1.5. If n is divisible by a prime p of the form 4m + 3, then n has no
primitive representations.

Proof. If n has a primitive representation, n = z? 4 y2, then
plz®+y? and  ged(z,y) = 1,

sop{x and p{y. Thus 22+ 32 =0 (mod p) so, since Z /pZ is a field we can divide
by 3% and see that

(z/y)*=—-1 (mod p).

Thus the quadratic residue symbol (_71) equals +1. However,

(—_1) = ()" =(-1)"% " = (—1)2mtl = 1,
O

Proof of Theorem 20.1.1. (=) Suppose that p is of the form 4m + 3, that p" || n
(exactly divides) with r odd, and that n = 22 + y?. Letting d = ged(z,y), we have

z=di', y=dy, n=dn
with ged(z’,9y') =1 and
(551)2 + (yl)2 — ’)’L,.
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Because 7 is odd, p | n/, so Lemma 20.1.5 implies that gcd(z’,y’) > 1, a contra-
diction.
(¢<=) Write n = n?ny where ny has no prime factors of the form 4m + 3. It suffices
to show that mo is a sum of two squares. Also note that

(1 4+ 42) (23 + v3) = (z122 + y192)® + (3192 — z211)?,

so a product of two numbers that are sums of two squares is also a sum of two
squares.! Also, the prime 2 is a sum of two squares. It thus suffices to show that
if p is a prime of the form 4m + 1, then p is a sum of two squares.

Since B i
(1) = ()" =,
—1 is a square modulo p; i.e., there exists r such that 2 = —1 (mod p). Taking

n = [/p] in Lemma 20.1.3 we see that there are integers a, b such that 0 < b < /p
and

‘_2_9 <L L
p bl bn+1) byp
If we write
c=rb+ pa
then ob ’
||<ﬁ:%:\/ﬁ
and

0< b+ < 2p.
But ¢ =rb (mod p), so

P+E= 4+ =02(1+72) =0 (mod p).

Thus b + ¢ = p. U

20.1.2 Computing = and y

Suppose p is a prime of the form 4m + 1. There is a construction of Legendre
of z and y that is explained on pages 120-121 of Davenport. I'm unconvinced that
it is any more efficient than the following naive algorithm: compute /p — 22 for
z =1,2,... until it’s an integer. This takes at most ,/p steps. Here’s a simple PARI
program which implements this algorithm.

{sumoftwosquares(n) =
local(y);
for(x=1,floor(sqrt(n)),
y=sqrt(n-x~2);
if (y-floor(y)==0, return([x,floor(y)]))
)3

error(n," is not a sum of two squares.")

!This algebraic identity is secretely the assertion that the norm map N : Q(3)* — Q* sending
z + iy to (z + iy)(x — iy) = 2° + »* is a homomorphism.
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20.2 Sums of More Squares

Every natural number is a sum of four squares. See pages 124-126 of Davenport

for a proof.

A natural number is a sum of three squares if and only if it is not a power of 4
times a number that is congruent to 7 modulo 8. For example, 7 is not a sum of
three squares. This is more difficult to prove.
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Chapter 21

Binary Quadratic Forms II:
Basic Notions

21.1 Introduction

A binary quadratic form is a homogeneous polynomial
az’® + bzy + ey’ € L[z, y).

(There is a theory of quadratic forms in n-variables, but we will not study it in this
course.) Chapter VI of Davenport’s book is clear and well written. Read it.

The Classic Problem: Given a binary quadratic form f(z,y) = az? + bzy + cy?,
what is the set of integers {f(z,y) : z,y € Z}?

That is, for which integers n are there integers  and y such that
az? + bxy + cy? = n?

We gave a clean answer to this question in the last lecture in the case when f(z,y) =
22 4 y2. The set of sums of two squares is the set of integers n such that any prime
divisor p of n of the form 4m + 3 exactly divides n to an even power (along with 0).
In your homework (Problem 5), you will give a simple answer to the question of
which numbers are of the form z? + 2y2. Is there a simple answer in general?

21.2 Equivalence

Definition 21.2.1. The modular group SLy(Z) is the group of all 2 x 2 integer
matrices with determinant +1.

If g = (2%) € SLy(Z) and f(z,y) = azx? + bxy + cy? is a quadratic form, let

flg(z,y) = flpz +qy,rz+sy) = f ((p q) [Q:D,

r s/ |y

where for simplicity we will sometimes write f ([ﬂ) for f(z,y).
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Proposition 21.2.2. The above formula defines a right action of the group SLa(Z)
on the set of binary quadratic forms, in the sense that

flgn = (f1g)ln-

flarto) =1 (an [2] ) = 11, (1([2])) = (Slollaten.

Proposition 21.2.3. Let g € SLy(Z) and let f(z,y) be a binary quadratic form.
The set of integers represented by f(x,y) is exactly the same as the set of integers
represented by fl,(x,y).

Proof.

O

Proof. If f(xg,1y0) = n then since g~! € SLy(Z), we have ¢! BO] € 72, so
0

flg (g_l BSD = f(z0,0) = n.

Thus every integer represented by f is also represented by f|,. Conversely, if

flg(zo,v0) = n, then f (g Bﬂ) =mn, so f represents n. O
0

Define an equivalence relation ~ on the set of all binary quadratic forms by
declaring that f is equivalent to f’ if there exists g € SLy(Z) such that f|, = f’.

For simplicity, we will sometimes denote the quadratic form az? + bzy + cy?
by (a,b,c). Then, for example, since g = ((1) _(1)) € SLy(Z), we see that (a,b,c) ~
(¢, —b,a), since if f(z,y) = ax? + bzy + cy?, then f(—y,z) = ay? — bxy + cz?.

Example 21.2.4. Consider the binary quadratic form
f(z,y) = 45822 + 214zy + 25¢°.

Solving the representation problem for f might, at first glance, look hopeless. We
find f(z,y) for a few values of z and y:

f(=1,-1) =17-41
f(=1,0) =2-229
f(0,-1) = 52
£(1,1) = 269
f(-1,2)=2-5-13
f(=1,3) =41

Each number is a sum of two squares! Letting g = (71‘7l I:? ), we have

flg = 458(4z — 3y)? + 214(4z — 3y) (— 17z + 13y) +25(— 172+ 13y)* = - - - = 2% + 4!

By Proposition 21.2.3, f represents an integer n if and only if n is a sum of two
squares.

97



21.3 Discriminants

Definition 21.3.1. The discriminant of f(z,y) = az? + bzy + cy? is b — 4ac.

Ezample 21.3.2. disc(z? 4+ y?) = —4 and
disc(458,214,25) = 214% — 4. 25 . 458 = —4.

That the discriminants are the same is a good hint that (1,0,1) and (458,214, 25)
are closely related. Inspecting discriminants is more effective than simply computing
f(z,y) for many values of z and y and staring at the result.

Proposition 21.3.3. If f ~ f', then disc(f) = disc(f’).

Proof. By tedious but elementary algebra (see page 133 of Davenport’s book), one
sees that if g € SLy(Z), then

disc(flg) = disc(f) - (det(g))” = disc(f).
Since f' = f|, for some g € SLy(Z), the proposition follows. O

WARNING: The converse of the proposition is false! Forms with the same dis-
criminant need not be equivalent. For example, the forms (1,0,6) and (2,0,3)
have discriminant —24, but are not equivalent. To see this, observe that (1,0,6)
represents 1, but 222 + 3y? does not represent 1.

Proposition 21.3.4. The set of all discriminants of forms is exactly the set of
integers d such that d =0 or 1 (mod 4).

Proof. First note that b? —4ac is a square modulo 4, so it must equal 0 or 1 modulo 4.
Next suppose d is an integer such that d =0 or 1 (mod 4). If we set

| =d/4, ifd=0 (mod 4)
- —(d-1)/4 ifd=1 (mod 4),

then disc(1,0,¢) = d in the first case and disc(1, 1,¢) = d in the second. O

Definition 21.3.5. The form (1,0,—-d/4) or (1,1,—(d — 1)/4) of discriminant d
that appears in the proof of the previous proposition is called the principal form of
discriminant d.

d principal form
—4 (1,0,1) z2 + 1?
5 (1,1,-1) 2% + oy — y?
-7 (1,1,2) 22 + 2y + 29°
8 (1,0,-2) x? — 292
—-23 (1,1,6) 72 + zy + 6y>
389 (1,1,-97) z% + zy — 97y?
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21.4 Definite and Indefinite Forms

Definition 21.4.1. A quadratic form with negative discriminant is called definite.
A form with positive discriminant is called indefinite.

Let (a,b,c) be a quadratic form. Multiply by 4a and complete the square:

4a(az?® + bry + cy?) = 4’2 + 4abzy + dacy?
= (2az + by)? + (4ac — b*)y?

If disc(a, b, c) < 0 then 4ac — b? = — disc(a, b,c) > 0, so az? + bzy + cy? takes only
positive or only negative values, depending on the sign of a. In this sense, (a, b, c) is
very definite about its choice of sign. If disc(a, b, c) > 0, then (2az+by)?+(4ac—b?)y?
takes both positive and negative values, so (a, b, ¢) does also.

We will consider only definite forms in the next two lectures.

21.5 Real Life

The following text is from the documentation for binary quadratic forms in the
MAGMA computer algebra system. A quick scan of the buzzwords emphasized (by
me) below conveys an idea of where binary quadratic forms appear in mathematics.

A binary quadratic form is an integral form az? + bzy + cy? which is repre-
sented in MAGMA by a tuple (a,b,c). Binary quadratic forms play an central
role in the ideal theory of quadratic fields, the classical theory of complexr mul-
tiplication, and the theory of modular forms. Algorithms for binary quadratic
forms provide efficient means of computing in the ideal class group of orders
in a quadratic field. By using the explicit relation of definite quadratic forms
with lattices with nontrivial endomorphism ring in the complex plane, one can
apply modular and elliptic functions to forms, and exploit the analytic theory
of complex multiplication.

The structures of quadratic forms of a given discriminant D correspond to or-
dered bases of ideals in an order in a quadratic number field, defined up to
scaling by the rationals. A form is primitive if the coefficients a, b, and ¢
are coprime. For negative discriminants the primitive reduced forms in this
structure are in bijection with the class group of projective or invertible ide-
als. For positive discriminants, the reduced orbits of forms are used for this
purpose. Magma holds efficient algorithms for composition, enumeration of re-
duced forms, class group computations, and discrete logarithms. A significant
novel feature is the treatment of nonfundamental discriminants, corresponding
to nonmaximal orders, and the collections of homomorphisms between different
class groups coming from the inclusions of these orders.

The functionality for binary quadratic forms is rounded out with various func-
tions for applying modular and elliptic functions to forms, and for class poly-
nomials associated to class groups of definite forms.
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Chapter 22

Binary Quadratic Forms III:
Reduction Theory

Recall that a binary quadratic form is a function f(z,y) = az? + bzy + cy?. Our
motivating problem is to decide which numbers are “represented” by f; i.e., for
which integers n do there exist integers z,y such that az? + bzy + cy? = n? If

g € SLy(Z) then f(z,y) and fl4(z,y) = f (g [ﬂ) represent exactly the same set

of integers. Also, disc(f) = disc(f|y), where disc(f) = b? — 4dac, and f is called
positive definite if disc(f) < 0 and a > 0.

In today’s lecture, we will learn about reduction theory, which allows us to
decide whether or not two positive definite binary quadratic forms are equivalent
under the action of SLy(Z).

If, in the future, you would like to pursue the theory of binary quadratic forms in
either a more algebraic or algorithmic direction, I highly recommend that you look
at Chapter 5 of Henri Cohen’s book A Course in Computational Algebraic Number
Theory (GTM 138).

22.1 Reduced Forms

Definition 22.1.1 (Reduced). A positive definite quadratic form (a,b,c) is re-
duced if |b| < a < ¢ and if, in addition, when one of the two inequalities is an
equality (i.e., either |b| = a or a = ¢), then b > 0.

There is a geometric interpretation of reduced, which we will not use this later.
Let D = disc(a,b,c) = b? — 4ac and set 7 = %, so T is the root of az? +
bz + ¢ with positive imaginary part. The right action of SLy(Z) on positive definite
binary quadratic forms corresponds to the left action of SLy(Z) by linear fractional
transformations on the complex upper half plane h = {z € C : Im(z) > 0}. The
standard fundamental domain for the action of SL2(Z) on b is

11

—§,§>,|7'|>10r |T|:1andRe(7)§O}.

J—":{Teb:Re(T)e[

Then (a, b, ) is reduced if and only if the corresponding complex number 7 lies in F.
For example, if (a,b,c) is reduced then Re(7) = —b/2a € [-1/2,1/2) since |b] < a
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and if |b| = a then b > 0. Also

[b2 + 4ac — b2 c
=4/ = [=>1
I 4a? \/;_
0

and if |7| = 1 then b > 0 so Re(7) <
The following theorem (which is not proved in Davenport) highlights the impor-
tance of reduced forms.

Theorem 22.1.2. There is exactly one reduced form in each equivalence class of
positive definite binary quadratic forms.

Proof. We have to prove two things. First, that every class contains at least one
reduced form, and second that this reduced form is the only one in the class.

We first prove that there is a reduced form in every class. Let C be an equivalence
class of positive definite quadratic forms of discriminant D. Let (a,b,c) be an
element of C such that a is minimal (amongst elements of C). Note that for any
such form we have ¢ > a, since (a,b,c) is equivalent to (¢, —b,a) (use the matrix
(%75))- Applying the element (}%) € SLa(Z) to (a,b,c) for a suitably chosen
integer k (precisely, k = [(a — b)/2a]) results in a form (a’,b', ') with @’ = a and
b € (—d,d']. Since @’ = a is minimal, we have just as above that o' < ¢/, hence
(@', b, ) is “just about” reduced. The only possible remaining problem would occur
if o/ = ¢ and ¥/ < 0. In that case, changing (a',¥',c') to (¢",b",a") = (¢, -V, d’)
results in an equivalent form with 4" > 0, so that (¢”,b”,a") is reduced.

Next suppose (a,b,c) is a reduced form. We will now establish that (a,b,c) is
the only reduced form in its equivalence class. First, we check that a is minimal
amongst all forms equivalent to (a,b,c). Indeed, every other o' has the form o’ =
ap? + bpr + cr? with p,r coprime integers (see this by hitting (a,b,c) by (29)). The
identities

b b
ap2+bp7“+c7"2 :ap2 (1-!— —C> +or? = ap2 + cr? <1+ —8)
ap cr

then imply our claim since |b| < a < ¢ (use the first identity if 7 /p < 1 and the second
otherwise). Thus any other reduced form (a’, ¥, ¢') equivalent to (a,b,c) has o’ = a.
But the same identity implies that the only forms equivalent to (a, b, c) with a’ = a

k .
01 (corresponding to
p=1,r=0). Thus b’ = b+ 2ak for some k. Since a = a' we have b,b’ € (—a,a], so
k = 0. Finally

. . . 1
are obtained by applying a transformation of the form (

, (®)?-D »¥-D
c = = =,

4a! 4a
so (a',b',c) = (a,b,c). O

22.2 Finding an Equivalent Reduced Form

Here is how to find the reduced form equivalent to a given positive definite form
(a,b,c). This algorithm is useful for solving problems 8 and 9 on the homework
assignment. Consider the following two operations, which can be used to diminish
one of a and |b|, without altering the other:
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1. If ¢ < a, replace (a, b, c) by the equivalent form (¢, —b, a).
2. If |b| > a, replace (a,b,c) by the equivalent form (a,b’,c’) where b' = b+ 2ka
and k is chosen so that & € (—a,a] (more precisely, k = [“Z—_ij), and ¢ is

found from the fact that (b')? — 4ac’ = D = disc(a, b,c), so ¢’ = W'

Starting with (a, b, c), if you iterate the appropriate operation, eventually you will
find the reduced form that is equivalent to (a,b,c).

Ezample 22.2.1. Let f = 45822 + 214zy + 25y2.

Equivalent form | What I did Matrix
(458,214, 25)

(25, —214,458) | (1) )
(25, —14,2) (2) with k = 5
(2,14, 25) (M) (7))
(2,2,1) (2) withk=-3][ (§ °)
(1’_2’2) (1) ((1) Bl)
(1,0,1) @) withk=1 | (11)

CEDEIEDEDEDE

Then
flg = z? + ¢!

22.3 Some PARI Code

The following PARI code checks whether or not a form is reduced, and computes
the reduced form equivalent to a given form. You can download it from my web
page if you don’t want to type it in.

\\ true if and only if (a,b,c) is reduced.
{isreduced(a,b,c) =
if (b~2-4%a*c>=0 || a<o0,
error ("reduce: (a,b,c) must be positive definite."));
if (! (abs(b)<=a && a<=c), return(0));
if(abs(b)==a || a==c, return(b>=0));
return(l);

}

\\ reduces, printing out each step. returns the reduced form
\\ and a matrix that transforms the input form to the reduced form.
{reduce(a,b,c,s) =

local(D, k, t, g);

D=b"2-4*ax*c;
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if(D>=0 || a<0, error("reduce: (a,b,c) must be positive definite
g=[1,0;0,11;
while(!isreduced(a,b,c), \\ ! means ‘‘not’’
if(c<a,
b=-b; t =a; a=c; ¢c=t;
g = g*[0,-1;1,0];
print([a,b,c], " \t(1)"), \\ backslash t means ‘‘tab’’
\\ else

if (abs(b)>a || -b==a,
k = floor((a-b)/(2*a));
b = b+2*k*a;
c = (b"2-D)/(4x*a);
g = gx[1,k;0,1]1;

print([a,b,c], " \t(2) with k=",k)

);
return([a,b,c,gl)

/* Here is an example:

? \r quadform

? reduce(458,214,25)

[25, -214, 458] (1)

[25, -14, 2] (2) with k=4

2,
2,
(1,
(1,

14, 25] (1)

2, 1] (2) with k=-3
-2, 2] (1)

0, 1] (2) with k=1

%22 = [1, 0, 1, [3, 4; -13, -17]1]

*/
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Chapter 23

Binary Quadratic Forms IV:
The Class Group

23.1 Can You Hear the Shape of a Lattice?

After Lecture 23, Emanuele Viola asked me whether or not the following is true:
“If f1 and fo are binary quadratic forms that represent ezxactly the same integers,
is f1 ~ f22” The answer is no. For example, f; = (2,1,3) = 222 + zy + 332 and
fo = (2,-1,3) = 222 — zy + 3y? are inequivalent reduced positive definite binary
quadratic forms that represent exactly the same integers. Note that disc(f1) =
disc(f2) = —23. There appears to be a sense in which all counterexamples resemble
the one just given.

Questions like these are central to John H. Conway’s book The sensual (quadratic)
form, which I’ve never seen because the Cabot library copy is checked out and the
Birkhoff copy has gone missing. The following is taken from the MATHSCINET
review (I changed the text slightly so that it makes sense):

Chapter 2 begins by posing Mark Kac’s question of “hearing the shape
of a drum”, and the author relates the higher-dimensional analogue of
this idea on tori—quotients of R" by a lattice—to the question of what
properties of a positive definite integral quadratic form are determined
by the numbers the form represents. A property of such a form is called
“audible” if the property is determined by these numbers, or equiva-
lently, by the theta function of the quadratic form. As examples, he
shows that the determinant of the form and the theta function of the
dual form are audible. He also provides counterexamples to the higher-
dimensional Kac question, the first of which were found by J. Milnor...

23.2 Class Numbers

Proposition 23.2.1. Let D < 0 be a discriminant. There are only finitely many
equivalence classes of positive definite binary quadratic forms of discriminant D.

Proof. Since there is exactly one reduced binary quadratic form in each equivalence
class, it suffices to show that there are only finitely many reduced forms of discrim-
inant D. Recall that if a form (a,b,c) is reduced, then |b] < a < ¢. If (a,b,c) has

104



discriminant D then b2 —4ac = D. Since b* < a? < ac, we have D = b®>—4ac < —3ac,
SO
3ac < —D.

There are only finitely many positive integers a, ¢ that satisfy this inequality. [
Definition 23.2.2. A binary quadratic form (a, b, ¢) is primitive if gcd(a, b, c) = 1.

Definition 23.2.3. The class number hp of discriminant D < 0 is the number of
equivalence classes of primitive positive definite binary quadratic forms of discrim-
inant D.

I computed the following table of class number hp for —D < 839 using the
built-in PARI function gqfbclassno(D,1). Notice that there are just a few 1s at
the beginning and then no more.

-D hp||-D hp||—-D hp||—-D hp||—-D hp||—-D hp
3 1 123 2 243 3 363 4 483 4 603 4
7 1 127 5 247 6 367 9 487 7 607 13
11 1 131 5 251 7 371 8 491 9 611 10
15 2 135 6 255 12 || 375 10 || 495 16 || 615 20
19 1 139 3 259 4 379 3 499 3 619 5
23 3 143 10 || 263 13 || 383 17 || 503 21 || 623 22
21t 1 147 2 267 2 387 4 507 4 627 4
31 3 151 7 271 11 || 391 14 | 511 14 || 631 13
35 2 155 4 275 4 395 8 515 6 635 10
39 4 159 10 || 279 12 || 399 16 || 519 18 || 639 14
43 1 163 1 283 3 403 2 523 5 643 3
47 5 167 11 || 287 14 || 407 16 || 527 18 || 647 23
51 2 171 4 291 4 411 6 531 6 651 8
55 4 175 6 295 8 415 10 || 535 14 || 655 12
59 3 179 5 299 8 419 9 539 8 659 11
63 4 183 8 303 10 || 423 10 || 543 12 || 663 16
67 1 187 2 307 3 427 2 547 3 667 4
T 191 13 || 311 19 || 431 21 || 551 26 || 671 30
o2 195 4 315 4 435 4 556 4 675 6
79 5 199 9 319 10 || 439 15 || 559 16 || 679 18
8 3 203 4 323 4 443 5 563 9 683 5
87 6 207 6 327 12 || 447 14 || 567 12 || 687 12
91 2 211 3 331 3 451 6 571 5 691 5
9% 8 215 14 || 335 18 || 455 20 || 575 18 || 695 24
9 2 219 4 339 6 459 6 579 8 699 10
103 5 223 7 343 7 463 7 583 8 703 14
107 3 227 5 347 5 467 7 587 7 707 6
111 8 231 12 || 351 12 || 471 16 || 591 22 || 711 20
115 2 235 2 355 4 475 4 595 4 715 4
119 10 || 239 15 || 359 19 || 479 25 || 599 25 || 719 31
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—-D hp
723 4
727 13
731 12
735 16
739 5
743 21
747 6
751 15
755 12
759 24
763 4
767 22
7716
775 12
779 10
783 18
787 5
791 32
795 4
799 16
803 10
807 14
811 7
815 30
819 8
823 9
827 7
831 28
835 6
839 33

We can compute these numbers using Proposition 23.2.1. The following PARI
program enumerates the primitive reduced forms of discriminant D.

{isreduced(a,b,c) =
if(b"2-4*axc>=0 || a<o0,
error ("reduce: (a,b,c) must be positive definite."));
if (! (abs(b)<=a && a<=c), return(0));
if(abs(b)==a || a==c, return(b>=0));
return(l);
}
{reduce(f) =
local(D, k, t, a,b,c);
a=f[1]; b=f[2]; c=f[3]; D=b~2-4x*ax*c;

if(D>=0 || a<0, error("reduce: (a,b,c) must be positive definite."));
while(!isreduced(a,b,c), \\ ! means ‘‘not’’
if(c<a,

b=-b; t=a; a=c; c=t,
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}

\\ else
if (abs(b)>a || -b==a,
k = floor((a-b)/(2%a));
b b+2*k*a;
c (b"2-D)/(4x*a);

)
)

return([a,b,c])

{reducedforms (D)=

?D
h21

local(bound, forms, b, r);
if (D > 0 || D%4 == 2 || D%4==3, error("Invalid discriminant"));
bound = floor(-D/3);
forms = [];
for(a 1, bound,
for(c = 1, bound,
if (3%axc<=-D && issquare(4*axc+D),
b = floor(sqrt (4*a*c+D));
r = reduce([a,b,c]);
printi([a,b,c], " ----> ", r);
if (ged(r[1],gcd(r[2],r[3]1)) == 1,
forms = setunion(forms, [r]); print(""),
\\ else
print (" \t(not primitive)")

)

return(eval (forms)) ; \\ eval gets rid of the annoying quotes.

For example, when D = —419 the program finds exactly 9 reduced forms:

-419
= -419

? qfbclassno(D,1)

%22
?7r
(1,
(1,
(1,
(1,
(1,
(1,
(3,
(3,
(3,
(3,

=9
educedforms (D)

1, 105] ----> [1,
3, 1071 ----> [1,
5, 111] ----> [1,
7, 117] -———> [1, 105]
9, 125] ----> [1, 1, 105]
11, 135] ——-> [1, 1, 105]
1, 35] ----> [3, 1, 35]

5, 371 ——-> [3, -1, 35]
7, 39] ----> [3, 1, 35]
11, 45] ---—> [3, -1, 35]

105]
105]
105]

-

-

-

e
M
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[6, 1, 21] -—--> [5, 1, 21]

5, 9, 251 -———> [5, -1, 21]
5, 11, 271 -———> [5, 1, 21]
[7, 1, 151 ———-> [7, 1, 15]
9, 7, 131 -———-> [9, 7, 13]
[9, 11, 151 -—--> [9, -7, 13]
[13, 7, 91 -——-> [9, -7, 13]
[15, 1, 71 -——-> [7, -1, 15]
[15, 11, 9] ----> [9, 7, 13]
[21, 1, 51 -———-> [5, -1, 21]
[25, 9, 5] ———-> [5, 1, 21]
[27, 11, 51 -———> [5, -1, 21]
[35, 1, 3] -——-> [3, -1, 35]
[37, 5, 3] -——-> [3, 1, 35]
[39, 7, 31 -——-> [3, -1, 35]
[45, 11, 3] ----> [3, 1, 35]
[105, 1, 11 -——-> [1, 1, 105]
[107, 3, 11 --—-> [1, 1, 105]
[111, 5, 1] -——> [1, 1, 105]
[117, 7, 11 -——-> [1, 1, 105]
[125, 9, 11 -——-> [1, 1, 105]
[135, 11, 1] —---> [1, 1, 105]

%23 = [[1, 1, 1051, [3, -1, 351, [3, 1, 351, [5, -1, 211, [5, 1, 21],
(7, -1, 181, [7, 1, 151, [9, -7, 131, [9, 7, 13]1]

? length(%23)

%24 =9

Theorem 23.2.4 (Heegner, Stark-Baker, Goldfeld-Gross-Zagier). Suppose D
is a negative discriminant that is either square free or 4 times a square-free number.
Then

e hp =1 only for D =-3,—4,-7,-8,—11,-19,—43, —67, —163.

e hp =2 only for D = —15, —20, —24, —35, —40, —51, —52, —88, —91,
115,123, —148, —187, —232, —235, — 267, —403, —427.

e hp =3 only for D = —23,—31, 59, —83, —107, —139, —211, —283, —307,
—331, —379, —499, —547, —643, —883, —907.

e hp =4 only for D = -39, —55,—56, —68, ..., —1555.

To quote Henri Cohen: “The first two statements concerning class numbers 1
and 2 are very difficult theorems proved in 1952 by Heegner and in 1968-1970 by
Stark and Baker. The general problem of determing all imaginary quadratic fields
with a given class number has been solved in principle by Goldfeld-Gross-Zagier,
but to my knowledge the explicit computations have been carried to the end only
for class numbers 3 and 4 (in addition to the already known class numbers 1 and 2).
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23.3 The Class Group

There are much more sophisticated ways to compute hp than simply listing the
reduced binary quadratic forms of discriminant D, which is an O(|D|) algorithm.
For example, there is an algorithm that can compute hp for D having 50 digits in a
reasonable amount of time. These more sophisticated algorithms use the fact that
the set of primitive positive definite binary quadratic forms of given discriminant is
a finite abelian group.

Definition 23.3.1. Let fi; = (a1,b1,¢1) and fo = (ag, b, c2) be two quadratic forms
of the same discriminant D. Set s = (by + b2)/2, n = (by — b2)/2 and let u,v,w
and d be such that

uay + vag + ws = d = ged(aq, az, 8)

(obtained by two applications of Euclid’s algorithm), and let dy = ged(d, c1,c2,n).
Define the composite of the equivalence classes of the two forms f; and fy to be the
equivalence class of the form

by + —=(v(s — be) — wea),

aiao 2a9 b% - D
a2’ d '

’b 7 = d

(a3, bs, c3) ( 0 1o,
This mysterious-looking group law is induced by “multiplication of ideals” in the

“ring of integers” of the quadratic imaginary number field Q(+/D). The following

PARI program computes this group operation:

{composition(fl, £f2)=
local(al,bl,cl1,a2,b2,c2,D,s,n,bz0,bzl,u,v,w);
al=f1[1]; bi1=f1[2]; c1=f1[3];
a2=f2[1]; b2=f2[2]; c2=f2[3];

D = b1°2 - 4%al*ci;

if(b2°2 - 4*a2*c2 != D, error("Forms must have the same discriminant."));
s = (bl1+b2)/2;

n = (b1-b2)/2;

bezout (al,a2);

bezout (bz0[3],s);

u = bz1[1]*bz0[1];

v = bz1[1]*bz0[2];

o o
N N
= O
o

w = bz1[2];

d = bz1[3];

d0 = gcd(gcd(ged(d,cl),c2),n);
a3 = dO*al*a2/d"2;

b3 = b2+2*a2* (v*(s-b2)-wxc2)/d;
c3 = (b3"2-D)/(4%a3);

£3 = reduce([a3,b3,c3]);
return(£3);

}

Let’s try the group out in the case when D = —23.

? reducedforms(-23)
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[1, 1: 6] —-——=> [1, 1, 6]

[2, 1, 3] —> [2, 1, 3]
3, 1, 21 ————> [2, -1, 3]
6, 1, 11 ----> [1, 1, 6]
w56 = [[1, 1, 61, [2, -1, 3], [2, 1, 3]]

Thus the group has elements (1,1,6), (2,—1,3), and (2,1,3). Since h_93 = 3, the
group must be cyclic of order 3. Let’s find the identity element.

? composition([1,1,6],[2,-1,3]1)
%58 = [23 _1’ 3]

Thus the identity element must be (1,1,6). The element (2, —1,3) is a generator
for the group:

? composition([2,-1,3],[2,-1,3])
%59 = [2, 1, 3]
? composition([2,-1,3],[2,1,3])
%60 = [1, 1, 6]
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Chapter 24

Elliptic Curves 1: Introduction

24.1 The Definition

Finally we come to elliptic curves, which I think are the most exciting and central
easily accessibly objects in modern number theory. There are so many exciting
things to tell you about elliptic curves, that the course is suddenly going to move
more quickly than before.

Definition 24.1.1. An elliptic curve F over a field K is a plane cubic curve of the
form
y2 +a12y + a3y = 23 + ag2? + gz + ag,

where a1,a9,a3,a4,06 € K and
A = —b2bg — 8b3 — 27b2 + 9bobsbg # 0,

where
by = a% +4a9, by =2a4+aiaz, bg= a% + 4ag.

Help! Don’t worry, when 2 and 3 are not equal to 0 in K, using completing
the square and a little algebra we find a change of coordinates that transforms the
above cubic equation into the form

y? =23 + az + b,

and then A = —16(4a® + 27b%). We will consider only elliptic curves of the form
y? = 23 4+ az + b for a while.

Hey! That’s not an ellipse! You're right, elliptic curves are not ellipses; they are
curves that first arose when 19th century mathematicians studied integral formulas
for the arc lengths of ellipses.

In these lectures, I'll give you a glimpse into two main ways in which elliptic
curves feature in mathematics. On the left hand, they provide the simplest example
of a class of diophantine equations that we still can’t totally solve. On the right
hand, when K is a finite field (or, more sneakily, a finite ring), elliptic curves can
be used as a tool for both making and breaking cryptosystems.
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24.2 Linear and Quadratic Diophantine Equations

Consider the following question:

Let F(z,y) be an irreducible polynomial in two variables over Q. Find
all rational numbers xg,yo such that F(zg,yo) = 0.

When F is linear, this problem is easy. The equation
F(z,y) =ax+by+c=0

defines a line, and letting y = ¢, the solutions are

{(i-i)ree)

When F is quadratic, the solution is not completely trivial, but it is well un-
derstood. In this case, the equation F' = 0 has infinitely many rational solutions if
and only if it has at least one solution. Moreover, it is easy to describe all solutions
when there is one. If (zg,y0) is a solution and L is a non-tangent line through
(0,Y0), then L will intersect the curve F' = 0 in exactly one other point (z1,z1).
Also z1,y1 € Q since a quadratic polynomial over Q with 1 rational root has both
roots rational. Thus the rational points on F' = 0 are in bijection with the slopes
of lines through (zg, yo)-

Chapter 2 of [Kato et al.] is about how to decide whether or not an F' of degree 2
has a rational point. The answer is that F' = 0 has a rational solution if and only
if F = 0 has a solution with zp,y0 € R and a solution with zg,yo € Q, for every
“p-adic field” Q,. This condition, though it might sound foreboding, is easy to
check in practice. I encourage you to flip through chapter 2 of loc. cit.

24.3 Points on Elliptic Curves

Next suppose that F' is an irreducible cubic polynomial. The question of whether
or not F' = 0 has a rational solution is still an open problem! We will not consider
this problem further until we discuss the Birch and Swinnerton-Dyer conjecture.

Suppose that F' = 0 has a given rational solution. Then one can change coor-
dinates so that the question of finding the rational solutions to F' = 0 is equivalent
to the problem of finding all rational points on the elliptic curve

y? =% + ax +b.

Recall that when F' has degree 2 we can use a given rational point P on the
graph of F' = 0 to find all other rational points by intersecting a line through P
with the graph of F = 0. The graph of y? = 23 + az + b looks like

[egg and curvy line] or [curvier line]

Notice that if P is a point on the graph of the curve, then a line through P (usually)
intersects the graph in exactly two other points. In general, these two other points
usually do not have rational coordinates. However, if P and @) are rational points
on the graph of y?> = #3 + ax + b and L is the line through P and @Q, then the third
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point of intersection with the graph will have rational coordinates. Explicitly, if
P = (z1,%1) and Q = (x2,%2) then the third point of intersection has coordinates’

2

(Y2~ _Y2—M Y21 — Y172

r3=\—""-] —T1—x2 Ys = T3 — .
T2 — X1 T2 — T T2 — T

Thus, given two points on E, we can find another. Also, given a single point, we
can draw the tangent line to E through that point and obtain a third point.

24.3.1 To Infinity!

At first glance, the above construction doesn’t work if z; = x9. [draw picture].
Fortunately, there is a natural sense in which the graph of F is missing one point,
and when z1 = z2 this one missing point is the third point of intersection.

The graph of E that we drew above is a graph in the plan R?. The plane is a
subset of the projective plane P?, which I will define in just a moment. The closure
of the graph of y? = 234 ax +b in P? has exactly one extra point, which has rational
coordinates, and which we denote by co. Formally, P? can be viewed as the set of
triples (a, b, ¢) with a,b, c not all 0 modulo the equivalence relation

(a,b,c) ~ (Aa, Ab, Ac)

for any nonzero A. Denote by (a : b : ¢) the equivalence class of (a,b,c). The closure
of the graph of y? = x3 + azx + b is the graph of 4%z = z® 4+ axz? + bz3 and the extra
point oo is (0:1:0).

Venerable Problem: Find an algorithm that, given an elliptic curve F over Q,
outputs a complete description of the set of rational points (xg,yg) on E.

This problem is difficult. In fact, so far it has stumped everyone! There is
a conjectural algorithm, but nobody has succeeded in proving that it is really an
algorithm, in the sense that it terminates for any input curve E. Several of your
profs at Harvard, including Barry Mazur, myself, and Christophe Cornut (who will
teach Math 129 next semester) have spent, or will probably spend, a huge chunk of
their life thinking about this problem. (Am I being overly pessimistic?)

How could one possible “describe” the set of rational points on E in the first
place? In 1923, Louis Mordell proved an amazing theorem, which implies that there
is a reasonable way to describe the rational points on E. To state his theorem, we
introduce the “group law” on FE.

24.4 The Group Law

Consider the set E(Q) = {00} U {(z0,y0) : ¥3 = 2} + azo + b}. There is a natural
way to endow the set E(Q) with a group structure. Here’s how it works. First,
the element co € E(Q) is the 0 element of the group. Next, suppose P and @ are
elements of E(Q). Just like we did earlier, draw the line through P and @ and let
R = (z3,y3) be the third point of intersection. Define P + @ = (z3,—y3). There

1t is traditional in a course like ours for me to derive these formulas. I’'m not going to, because
it’s simple algebra and once you see the geometric picture it is easy to carry out. You should do
this as an exercise, or read the derivation in [Kato et al.] or [Davenport].
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are various special cases to consider, such as when P = @ or the third point of
intersection is oo, but I will let your read about them in [Kato et al.]. It is clear
that this binary operation on E(Q) satisfies P + Q = @ + P. Also, the inverse of
P = (z1,y1) is —P = (x1,—y1)- The only other axiom to check in order to verify
that + gives E(Q) an abelian group structure is the associative law. This is simple
but wery tedious to check using only elementary methods?. Fortunately, we can
coerce the computer algebra system MAGMA into verifying the associative law for
us:

// The field K = Q(a,b,x0,x1,x2)

K<a,b,x0,x1,x2> := FieldOfFractions(PolynomialRing(Rationals(),5));

// The polynomial ring R = K[y0,y1,y2]

R<y0,yl,y2> := PolynomialRing(K,3);

// A maximal ideal of R.

I := ideal<R | y0~2 - (x0°3+a*x0+b), y1~2 - (x173+a*xl+b), y2°2-(x2"3+a*x2+b)>;
// The field L contains three distinct "generic" points on E.

L := quo<R|I>;

E := EllipticCurve([L| a,b]); // The elliptic curve y~2 = x~3 + a*x + b.
PO := E![L]|x0,y0]; P1 := E![L]|x1,y1]; P2 := E![L]x2,y2];

lhs := (PO + P1) + P2; rhs := PO + (P1 + P2);

lhs eq rhs;

true // yeah!

24.5 Mordell’s Theorem

Theorem 24.5.1 (Mordell). The group E(Q) is finitely generated.

This means that there are points Pj,...,P. € E(Q) such that every element
of E(Q) is of the form n1P; + --- + n, P, for some ny,...n, € Z. 1 won’t prove
Mordell’s theorem in this course. You can find an elementary proof of most of it in
§1.3 of [Kato et al.].3

Ezample 24.5.2. Consider the elliptic curve E given by y? = 23+z+1. Then E(Q) =~
Z with generator (0,1). We have 2(0,1) = (—1/4,-9/8), 3(0,1) = (72,611), and

_ (_ 287 40879
4(0,1) = (— 1395 16656)-

2The right way to prove that the associate law holds is to develop the theory of algebraic curves
and define the group law in terms of divisors; this is way outside the scope of this course.

3Matt Baker is teaching a graduate course (255r) this semester, and he is just about to present
a proof of Weil’s generalization of Mordell’s theorem.
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Chapter 25

The Elliptic Curve Group Law

25.1 Some Graphs

Recall that an elliptic curve over a field K (in which 2 and 3 are invertible) can be

defined by an equation
V=23 +ar+0

with a,b € K. Here are some examples over Q.

v’ =12® + 1, E(Q) ~ Z/6Z
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EQ) ~(Z/27Z) x Z
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(Exercise: Add the indicated points.)

25.2 The Point O at Infinity

The graphs of the previous section are each missing a point at infinity. They are
graphs in the plane R?. The plane is a subset of the projective plane P?. The
“closure” of the graph of y?> = z3 4+ az + b in P? has exactly one extra point O,
which has rational coordinates, and which we sometimes call “the point at infinity”.

Definition 25.2.1. The projective plane P? is the set of triples (a, b, c), with a, b, c
not all 0, modulo the equivalence relation

(a,b,c) ~ (Aa, Ab, \c)
for any nonzero A. We denote by (a:b:c) the equivalence class of (a, b, c).
The “closure” in P? of the graph of 4> = 2% + ax + b is the graph of
v’z = 2® + axz® + b2®
and the extra point is @ = (0:1:0). All finite points are of the form (a:b:1).
For more about the projective plane, see page 28 of [Kato et al.].
25.3 The Group Law is a Group Law

Let E be an elliptic curve of the form y? = 2% 4 az + b over a field K. Consider the
set
E(K) ={0}U{(z,y) € K x K : y* =2’ +az +b}.

Recall from the last lecture that there is a natural way to endow the set E(K) with
a group structure. Here’s how it works. First, the element O € E(K) is the zero
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element of the group. Next, suppose P and Q) are elements of E(K). Just like
we did earlier, let R = (z3,y3) be the third point of intersection of E' and the line
determined by P and @ (try this with the graphs on pages 1 and 2). Define

P+ Q = (r3,—y3).

(For what goes wrong if you try to define P + Q = (z3,y3), see your homework
assignment.) There are various special cases to consider, such as when P = @ or
the third point of intersection is O, but I will let you read about them in [Kato et
al.].

It is not surprising that this binary operation on E(K) satisfies P+ @Q = Q + P.
Also, the inverse of P = (z1,y1) is —P = (z1,—y1). The only other axiom to check
in order to verify that + gives E(K) an abelian group structure is the associative
law. This is simple but tedious to check using only elementary methods. The right
way to prove that the associate law holds is to develop the theory of algebraic curves
and define the group law in terms of divisor classes, but this is outside the scope of
this course. For fun, we can coerce the amazingly cool (but complicated) computer
algebra system MAGMA into verifying the associative law (over Q) for us:

// Define the field K = Q(a,b,x0,x1,x2)
K<a,b,x0,x1,x2> := FieldOfFractions(PolynomialRing(Rationals(),5));
// Define the polynomial ring R = K[y0,y1,y2]
R<y0,y1l,y2> := PolynomialRing(K,3);
// Define a maximal ideal of R:
I := ideal<R | y0~2 - (x0"3+a*x0+b),
y1°2 - (x1"3+a*x1+b),
y2°2 - (x273+a*x2+b)>;
// The quotient L = R/I is a field that contains three
// distinct "generic" points on E.

L := quo<R|I>;
// Define the elliptic curve y"2 = x"3 + a*x + b over L.
E := EllipticCurve([L]| a,b]);

// Let PO, P1, and P2 be three distinct "generic" points on E.

PO := E![L]|x0,y0]; P1 := E![L]|x1,y1]; P2 := E![L]x2,y2];

// The algebraic formulas for the group law are built into MAGMA.
lhs := (PO + P1) + P2; rhs := PO + (P1 + P2);

// Verify the associative law.

lhs eq rhs;

true // Yeah, it works!

25.4 An Example Over a Finite Field

Let E be the elliptic curve y? = z® + 3z + 3 over the finite field
K =7/5Z = {0,1,2,3,4}.

First, we find all points on E using PARI:

? for(x=0,4, for(y=0,4, if((y~2-(x"3+3*x+3))%5==0, printi([x,y]l," "))))
[3, 21 [3, 31 1[4, 21 [4, 3]
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Thus E(K) = {0, (3,2),(3,3),(4,2),(4,3)} , so E(K) must be a cyclic abelian group
of order 5. Let’s verify that E(K) is generated by (3, 2).

? e = ellinit([0,0,0,Mod(3,5) ,M0d(3,5)])

7 7ellpow \\ type 75 for a complete list of elliptic-curve functions
ellpow(e,x,n): n times the point x on elliptic curve e (n in Z).

? x = [3,2];

? for(n=1,5,print(n,"*[3,2] = ",lift(ellpow(e,x,n))))
1x[3,2] = [3, 2]

2%[3,2] = [4, 3]

3x[3,2] = [4, 2]

4x[3,2] = [3, 3]

5x[3,2] = [0]

25.5 Mordell’s Theorem

Venerable Problem: Find an algorithm that, given an elliptic curve E over Q,
outputs a complete description of the set of rational points (z¢,yo) on E.

This problem is difficult. In fact, so far it has stumped everyone! There is
a conjectural algorithm, but nobody has succeeded in proving that it is really an
algorithm, in the sense that it terminates for any input curve E. Several of your
profs at Harvard, including Barry Mazur, myself, and Christophe Cornut (who will
teach Math 129 next semester) have spent, or might spend, a huge chunk of their
life thinking about this problem.

How could one possible “describe” the group E(Q), since it can be infinite? In
1923, Mordell proved that there is always a reasonable way to describe E(Q).

Theorem 25.5.1 (Mordell). The group E(Q) is finitely generated.

This means that there are points Py,..., P € E(Q) such that every element
of E(Q) is of the form nyP; + --- + nyPs for some ny,...ns € Z. 1 will not prove
Mordell’s theorem in this course, but see §1.3 of [Kato et al.].

Ezample 25.5.2. Consider the elliptic curve E given by y2 = 23 — 62 — 4. Then
E(Q) = (Z/27) x Z with generators (—2,0) and (—1,1). We have

5(=1,1) = 131432401 1481891884199
T 121462441’ 1338637562261 )

Trying finding that point without knowing about the group law!
(0,1) +(0,1) = (—~1/4,-9/8), (0,1) + (0,1) + (0,1) = (72,611), and (0,1) +
(0,1) +(0,1) +(0,1) = ({555 To055)-
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Chapter 26

Torsion Points on Elliptic
Curves and Mazur’s Big
Theorem

26.1 Mordell’s Theorem

Venerable Problem: Find an algorithm that, given an elliptic curve E over Q,
outputs a complete description of the set of rational points (zg,y0) on E.

This problem is difficult. In fact, so far it has stumped everyone! There is
a conjectural algorithm, but nobody has succeeded in proving that it is really an
algorithm, in the sense that it terminates for any input curve E. Several of your
profs at Harvard, including Barry Mazur, myself, and Christophe Cornut (who will
teach Math 129 next semester) have spent, or might spend, a huge chunk of their
life thinking about variants of this problem.

How could one possible “describe” the group E(Q), since it can be infinite? In
1923, Mordell proved that there is always a reasonable way to describe E(Q).

Theorem 26.1.1 (Mordell). The group E(Q) is finitely generated.

This means that there are points Py,...,Ps; € E(Q) such that every element
of E(Q) is of the form n1P; + --- + nyPs for some ni,...ns € Z. 1 will not prove
Mordell’s theorem in this course. See §1.3 of [Kato et al.] for a proof in the special
case when E is given by an equation of the form y? = (z — a)(z — b)(z — c).

Ezample 26.1.2. Consider the elliptic curve E given by y? = z® — 6z — 4. Then
E(Q) = (Z/27Z) x Z with generators (—2,0) and (—1,1). We have

5(_1.1) = 131432401 1481891884199
N 121462441° 1338637562261 /)

Trying finding that point without knowing about the group law!
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26.2 Exploring the Possibilities

As FE varies over all elliptic curves over (), what are the possibilities for E(Q)?
What finitely generated abelian groups occur? Mordell’s theorem implies that

E(Q) ~ ZT @ E(Q)t0r7

where E(Q)or is the set of points of finite order in E(Q) and Z" = E(Q)/E(Q)sor-
The number r is called the rank of E.

26.2.1 The Torsion Subgroup

Theorem 26.2.1 (Mazur, April 16, 1976). Let E be an elliptic curve over Q.
Then E(Q)tor is isomorphic to one of the following 15 groups:

Z/nZ for n <10 or n = 12,
(Z)2Z) x (Z/2nZ) forn < 4.

As we will see in the next section, all of these torsion subgroups really do occur.
Mazur’s theorem is very deep, and I can barely begin to hint at how he proved
it. The basic idea is to define, for each positive integer N, a curve Y;(N) with
the magnificient property that the points of Y7(/N) with complex coordinates are
in natural bijection with the (isomorphism classes of) pairs (E, P), where F is an
elliptic curve and P is a point of E of order N. Moreover, Y1(N) is amazing in that
it has a rational point if and only if there is an elliptic curve over Q with a rational
point of order N. I won’t define Y;(NN), but here it is for the first few N:

N A curve that contains Y7 (V)

1—10, 12 | a straight line; these have lots of points!

11 v +y=a3—2°

13 y? =28 +22° + 2 + 223 + 622 + 42 + 1

14 V4ry+y=2x° —z

15 v+ oy +y = 2%+ 17

16 v =(z—1)(z+1)(z%2 -2z - 1)(2? + 1)

17 The intersection of the hypersurfaces in P* defined by:
ac — b? + 5bd — 3be — ¢® — 4ced + 2ce — 4d? + Tde — 2€2,
ad — bc + bd — be + ¢ — 2¢d — 2d? + 4de — €2, and
ae — be — cd + 2d? — 2de + €.

18 y? = 28 + 425 + 102* + 1023 + 522 + 2z + 1

(Some of the curves in the right hand column have a few obvious rational points,
but these points “don’t count”.)

Mazur proved that if N = 11 or N > 13, then Y;(/N) has no rational points.
This result, together with the theory surrounding Y7 (), yields his theorem.

26.2.2 The Rank

Conjecture 26.2.2. There exist elliptic curves over Q of arbitrarily large rank.
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As far as I know, nobody has any real clue as to how to prove Conjecture 26.2.2
(Doug Ulmer recently wrote a paper which gives theoretical evidence). The current
“world record” is a curve of rank > 24. It was discovered in January 2000 by Roland
Martin and William McMillen of the National Security Agency. For security
reasons, I won’t tell you anything about how they found it.

Theorem 26.2.3. The elliptic curve

y2+my+y = 2% -120039822036992245303534619191 1667963742 +4+504224992484910670010801799168082726759443756222911415116

over Q has rank at least 24. The following points Py, ..., Pa4 are independent points
on the curve:

P; = (2005024558054813068, —16480371588343085108234888252)
Py = (—4690836759490453344, —31049883525785801514744524804)
Pz = (4700156326649806635, —6622116250158424945781859743)
Py = (6785546256295273860, —1456180928830978521107520473)
P5 = (6823803569166584943, —1685950735477175947351774817)
Pg = (7788809602110240789, —6462981622972389783453855713)
P; = (27385442304350994620556, 4531892554281655472841805111276996)
Pg = (54284682060285253719/4, —296608788157989016192182090427/8)
Py = (—94200235260395075139/25, —3756324603619419619213452459781/125)
P1p = (—3463661055331841724647/576, —439033541391867690041114047287793/13824)
P11 = (—6684065934033506970637/676, —473072253066190669804172657192457/17576)
P12 = (—956077386192640344198/2209, —2448326762443096987265907469107661/103823)
P13 = (—27067471797013364392578/2809, —4120976168445115434193886851218259/148877)
P14 = (—25538866857137199063309/3721, —7194962289937471269967128729589169/226981)
P15 = (—1026325011760259051894331/108241, —1000895294067489857736110963003267773/35611289)
P16 = (9351361230729481250627334 /1366561, —2869749605748635777475372339306204832/1597509809)
P17 = (10100878635879432897339615 /1423249, —5304965776276966451066900941489387801/1697936057)
P1g = (11499655868211022625340735/17522596, —1513435763341541188265230241426826478043/73349586856)
P19 = (110352253665081002517811734/21353641, —461706833308406671405570254542647784288/98675175061)
Pao = (414280096426033094143668538257 /285204544, 266642138924791310663963499787603019833872421/4816534339072)
P31 = (36101712290699828042930087436/4098432361, —2995258855766764520463389153587111670142292/262377541318859)
Pao = (45442463408503524215460183165/5424617104, —3716041581470144108721590695554670156388869/399533898943808)
Pz = (983886013344700707678587482584 /141566320009, —126615818387717930449161625960397605741940953/53264752602346277)
Pyy = (1124614335716851053281176544216033/152487126016, —37714203831317877163580088877209977295481388540127/59545612760743936)

Proof. See
http://listserv.nodak.edu/scripts/wa.exe?A2=ind0005&L=nmbrthry&P=R182
O

26.3 How to Compute E(Q)io;

The following theorem yields an algorithm to compute E(Q)or-

Theorem 26.3.1 (Nagell-Lutz). Suppose that y*> = z3 4+ ax + b (with a,b € 7)
defines an elliptic curve E over Q, let A = —16(4a® + 27b%) be the discriminant,
and suppose that P = (z,y) € E(Q)tor- Then x and y are integers and either y = 0,
in which case P has order 2, or y? | A.

Non-proof. 1 will not prove this theorem. However, you can find a readable proof
in Chapter II of Silverman and Tate’s Rational Points on Elliptic Curves. O
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Warning: Nagell-Lutz is NOT an if and only if statement. There are points of
infinite order that satisfy the conclusion of Theorem 26.3.1. For example, the point
(1,3) on y? = 23 + 8 has integer coordinates and y? = 9 | A = —16-27-32. However,

(1,3) + (1,3) = (—Z-%) |

Since the coordinates of (1,3) + (1,3) are not integers, it follows from the con-
trapositive (not converse!) of Nagell-Lutz that (1,3) must be a point of infinite
order.

Ezample 26.3.2. The following is a list of elliptic curves with each possible torsion
subgroup. Tom Womack (a graduate student in Nottingham, where Robin Hood
lives) has a web page, http://www.tom.womack.net/maths/torsion.htm, which
contains PARI code that lists infinitely many elliptic curve with each torsion sub-

group.

Curve E(Q)tor

y? =123 -2 {0}

y?=a23+8 7|27

y? =23 +4 Z|3Z

y? =23 + 4z Z[AZ

y? —y=x3—2? Z |57

y? =123 +1 Z]6Z

y? = 23 — 43z + 166 Z|TZ

y2 + Toy = 2° + 16z 7./87Z

vV 4ayt+y=23—22-1424+29 | Z/9Z

y? +zy = 2% — 452 + 81 7./107Z

y? + 43zy — 210y = z° — 21022 7.)127

y? =23 — 4z (Z)27) x (Z.]27.)
y? =23 + 222 — 3z (Z/AZ) x (Z.]27)
y? + bzy — 6y = x% — 322 (Z/6Z) x (Z.]27)
y? + 17zy — 120y = 2° — 60> (Z/8Z) x (Z.]2Z)

The elltors function in PARI computes torsion subgroups:

? 7elltors

elltors(e,{flag=0}): torsion subgroup of elliptic curve e: order, structure,
generators. If flag = 0, use Doud’s algorithm; if flag = 1, use Lutz-Nagell.
? e=ellinit([17,-60,-120,0,0]);

? elltors(e)

w4 = [16, [8, 21, [[30, -90], [-40, 400]]]

? e.disc

%5 = 51438240000

? e.disc % 9072 \\ verify Nagell-Lutz

%6 =0

? e.disc % 40072 \\ verify Nagell-Lutz

%7 =0
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Chapter 27

Computing with Elliptic Curves

(in PARI)

27.1 Initializing Elliptic Curves
We are concerned primarily with elliptic curves E given by an equation of the form
v =2 +azr+b

with a and b either rational numbers or elements of a finite field Z/pZ. If a and b
are in (Q, we initialize £ in PARI using the following command:

? E = ellinit([0,0,0,a,b]);
If you wish to view a and b as element of Z/pZ, initialize E as follows:
?7 E = ellinit([0,0,0,a,b]*Mod(1,p));

If A = —16(4a® + 27b%) = 0 then ellinit will complain; otherwise, ellinit
returns a 19-component vector of information about E. You can access some of this
information using the dot notation, as shown below.

? E = ellinit([0,0,0,1,1]1);
? E.a4d

%11 =1

? E.ab

%12 =1

? E.disc

%13 = -496

? E.j

%14 = 6912/31

? E5 = ellinit([0,0,0,1,1]*Mod(1,5));
? Eb.disc

%15 = Mod(4, 5)

? E5.j

%16 = Mod(2, 5)
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Here E. j is the j-invariant of E. It is equal to 42383_%, and has some remarkable
properties that I probably won'’t tell you about.

Most elliptic curves functions in PARI take as their first argument the output
of ellinit. For example, the function ellisoncurve (E,P) takes the output of
ellinit as its first argument and a point P=[x,y], and returns 1 if P lies on E and

0 otherwise.

? P = [0,1]
? ellisoncurve(E, P)
7 =1

? P5 = [0,1]*Mod(1,5)
? ellisoncurve(E5, P)
%18 =1

27.2 Computing in The Group

The following functions implement some basic arithmetic in the group of points on
an elliptic curve: elladd, ellpow, and ellorder. The elladd function simply adds
together two points using the group law. Warning: PARI does not check that the
two points are on the curve.

? P = [0,1]

%2 = [0, 1]

? elladd(E,P,P)

%3 = [1/4, -9/8]

? elladd(E,P,[1,0]) \\ nonsense, since [1,0] isn’t even on E!!!
% = [0, -1]

? elladd(E5,P5,P5)

%12 = [Mod(4, 5), Mod(2, 5)]

? [1/4,-9/8]*Mod(1,5)

%13 = [Mod(4, 5), Mod(2, 5)]

The ellpow function computes nP = P+ P + --- + P (n summands).

? ellpow(E,P,2)
%5 = [1/4, -9/8]
? ellpow(E,P,3)
%6 = [72, 611]

? ellpow(E,P,15)

%7 = [26449452347718826171173662182327682047670541792/9466094804586385762312509661837302961354550401,
4660645813671121765025590267647300672252945873586541077711389394563791/920992883734992462745141522111225908861976098219465616585649245395649]

27.3 The Generating Function L(FE,s)

Suppose E is an elliptic curve over Q defined by an equation y? = 23+ az+b. Then
for every prime p that does not divide A = —16(4a® + 27b%), the same equation
defines an elliptic curve over the finite field Z/pZ. As you will discover in problem
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3 of homework 9, it can be exciting to consider the package of numbers #FE(Z/pZ)
of points on E over all finite fields. The function ellap computes

ap(E) =p+ 1~ #E(Z/pZ).

? E = ellinit([0,0,0,1,1]);

? ellap(E,5)

%19 = -3 \\ this should be 5+1 - #points

? E5 = ellinit([0,0,0,1,1]1*Mod(1,5));

? for(x=0,4, for(y=0,4, if(ellisoncurve(E5, [x,y]),print([x,y]))))
[0, 11

[0, 4]

[2, 1]

[2, 4]

[3, 1]

[3, 4]

[4, 2]

[4, 3]

?7 5+1 -9 \\ 8 points above, plus the point at infinity
%22 = -3

There is a natural way to extend the definition of a, to define integers a, for
every integer n. For example, if a, and a4 are defined as above and p and ¢ are
distinct primes, then a,, = apa,. Today I won’t tell you how to define the a, when,
e.g., p | A. However, you can compute the numbers a,, quickly in PARI using the
function ellan, which computes the first few a,,.

? ellan(E,15)
%24 = [1, 0: O’ 0: _3, O: 3: O: _3’ O: _2’ 09 _4s O, O]

This output means that a1 = 1, a3 = a3 = a4 =0, a5 = —3, ag = 0, and so on.
When confronted by a mysterious list of numbers, it is a “reflex action” for

a mathematician to package them together in a generating function, and see if

anything neat happens. It turns out that for the above numbers, a good way to do

this is as follows. Define -

L(E,s) = Zann_s.

n=1
This might remind you of Riemann’s (-function, which is the function you get if
you make the simplest generating function >, ; n~° of this form.
Using elllseries(E,s,1) I drew a graph of L(E,s) for 4?2 = 23 4+ z + 1.
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That the value of L(FE,s) makes sense at s = 1, where the series above doesn’t
obviously converge, follows from the nontrivial fact that the function

o0

f(Z) — Z ane2m’nz

n=1

is a modular form. Also, keep your eyes on the dot; it plays a central roll in the
Birch and Swinnerton-Dyer conjecture, which asserts that L(E,1) = 0 if and only
if the group E(Q) is infinite.

27.3.1 A Curve of Rank Two
Let E be the simplest rank 2 curve:
y?+y =13 +2? - 21.

The discriminant is 389.
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27.3.2 A Curve of Rank Three

Let E be the simplest rank 3 curve:
v +y=a—Tz+6.

The discrin]!}nant is 5077.
2
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27.3.3 A Cunve of Rank Four
Let FE be the simplest known rank 4 curve:
v+ zy = 23 — 22 — 79z + 289
The conducyor is 2-117223.
2
1
| -
\ T
0 ® - T
-1
-2
0 1 2 3 4 5

27.4 Other Functions and Programs

You can see a complete list of elliptic-curves functions by typing 75:

? 75

elladd ellak ellan ellap

ellbil ellchangecurve ellchangepoint elleisnum

elleta ellglobalred ellheight ellheightmatrix

ellinit ellisoncurve ellj elllocalred

elllseries ellorder ellordinate ellpointtoz

ellpow ellrootno ellsigma ellsub

elltaniyama elltors ellwp ellzeta ellztopoint

I have only described a small subset of these. To understand many of them, you
must first learn how to view an elliptic curve as a “donut”, that is, as quotient of
the complex numbers by a lattice, and also as a quotient of the upper half plane.

There is a Maple package called APECS for computing with elliptic curves,
which is more sophisticated than PARI in certain ways, especially in connection
with algorithms that involve lots of commutative algebra. MAGMA also offers
sophisticated features for computing with elliptic curves, which are built in to the
standard distribution. I will give a demonstrations of MAGMA in the Basic Notions
seminar at 3pm on Monday, December 3 in SC 507. There is also a C++ library
called LiDIA that has libraries with some powerful elliptic curves features.
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Chapter 28

Elliptic Curve Cryptography

Today’s lecture is about an application of elliptic curves to cryptography.

Disclaimer: 1 do not endorse breaking laws, and give the examples below as a
pedagogical tool in the hope of making the mathematics in our course more fun and
relevant to everyday life. I don’t think I have violated the Digital Millenium Copy-
right Act, because I have given very few details about Microsoft’s actual protocols,
and I've given absolutely no source code.

28.1 Microsoft Digital Rights Management

Today I will describe one way to use elliptic curves in cryptography. Our central
example will involve version 2 of the Microsoft Digital Rights Management (MS-
DRM) system, as applied to .wma audio files.

£  Windows
¥ & Media Player for,Win
M

I learned about this protocol from a paper by “Beale Screamer”.

28.1.1 Microsoft’s Favorite Elliptic Curve

The elliptic curve used in MS-DRM is an elliptic curve over the finite field k¥ = Z /pZ,
where
p = 785963102379428822376694789446897396207498568951.

As Beale Screamer remarks, this modulus has high nerd appeal because in hexadec-
imal it is
89ABCDEF012345672718281831415926141424F'7,

which includes counting in hexadecimal, and digits of e, , and v/2. The Microsoft
elliptic curve F is

y? = 23 + 317689081251325503476317476413827693272746955927x
+ 79052896607878758718120572025718535432100651934.

We have
#E(k) = 785963102379428822376693024881714957612686157429,
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and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176,
390157510246556628525279459266514995562533196655).

28.1.2 Nikita and Michael ) & \& Jﬁ
Our heros Nikita and Michael love to share digital music when they

aren’t out thwarting terrorists. When Nikita installed Microsoft’s content rights
management software on her compute, it sneakily generated a private key

n = 670805031139910513517527207693060456300217054473,

which it very stealthily hid in bits and pieces of files (e.g., blackbox.d1l, v2ks.bla,
and IndivBox.key). In order for Nikita to play Juno Reactor’s latest hit juno.wma,
her web browser contacts a Microsoft rights management partner. After Nikita
gives Microsoft her credit card number, she is allowed to download a license to play
juno.wma. Microsoft created the license using the ElGamal public-key cryptosystem
(see below) in the group E(k). Nikita’s license file can now be used to unlock
juno.wma, but only on Nikita’s computer. When she shares both juno.wma and the
license file with Michael, he is very annoyed because he can’t play juno.wma. This
is because Michael’s computer doesn’t know Nikita’s computer’s private key (that
integer n above), so Michael’s computer can’t decrypt the license file.

28.2 The Elliptic Curve Discrete Logarithm Problem

Definition 28.2.1. If F is an elliptic curve over Z/pZ and B is a point on E, then
the discrete log problem on E to the base B is the following problem: given a point
P € FE, find an integer n such that nB = P, if such an integer exists.

For example, let E be the elliptic curve given by y? = z3 4+ z + 1 over the field
Z[TZ. We have
E(z]7z7)={0,(2,2),(0,1),(0,6),(2,5)}.

If B=(2,2) and P = (0,6), then 3B = P, so n = 3 is a solution to the discrete
logarithm problem.

To the best of my knowledge, the discrete logarithm problem on E is really hard
unless #F(Z/pZ) is “smooth”, i.e., a product of small primes, or F is “supersin-
gular” in the sense that p | #FE(Z/pZ). The Microsoft curve has neither of these
deficiencies, and I expect that the discrete logarithm on that curve is quite difficult.
This is not the weekness that “Beale Screamer” exploits in breaking MS-DRM.
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28.3 ElGamal

How can we set up a public-key cryptosystem using an elliptic curve? The only
public-key crytosystem that we’ve studied so far is the RSA cryptosystem; unfor-
tunately, there is no analogue of RSA for elliptic curves! (Informal Exercise: Think
about what goes wrong.)

MS-DRM uses the El Gamal system. Here’s how it works. Start with a fixed,
publicly known prime p, an elliptic curve E over Z/pZ, and a point B € E(Z/pZ).
Michael and Nikita choose random integers m and n, which are kept secret, and
compute and publish mB and nB.

In order to send a message P to Michael, Nikita computes a random integer r and
sends the pair of points (rB, P+ r(mB)). To read the message, Michael multiplies
7B by his secret key m to get m(rB) = r(mB), and subtracts this from the second
point to get

P =P+ r(mB)—r(mB).

As far as I can tell, breaking this cryptosystem requires solving the discrete
logarithm problem, so it’s very difficult.

The following example is based on an example taken from Beale Screamer’s
paper.
Eﬁample 28.3.1. Nikita’s license files contains the pair of points (rB, P + r(nB)),
where

rB = (179671003218315746385026655733086044982194424660, 697834385359686368249301282675141830935176314718)

and

P+r(nB) = (137851038548264467372645158093004000343639118915, 110848589228676224057229230223580815024224875699).
Nikita’s computer sneakily loads the secret key

n = 670805031139910513517527207693060456300217054473

into memory and computes

n(rB) = r(nB) = (328901393518732637577115650601768681044040715701, 586947838087815993601350565488788846203887988162).
It then subtracts this from P + r(nB) to get
P = (14489646124220757767, 669337780373284096274895136618194604469696830074).

That z coordinate, 14489646124220757767, is the top secret magic “content key”
that unlocks juno.wma.

If Nikita knew the private key n that her computer generated, she could com-
pute P herself and unlock juno.wma and share her music with Michael, just like she
used to share her favorite CDs with Michael. Beale Screamer found a weakness in
Microsoft’s system that let him find n:

“These secret keys are stored in linked lists ... interspersed with the code
in the library. The idea is that they can be read by that library, used
internally by that library, and never communicated outside the library.
Since the IndivBox.key file is shuffled in a random way for each client,
these keys would be extremely difficult to extract from the file itself.
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Fortunately, we don’t have to: these keys are part of the object state
that is maintained by this library, and since the offset within this object
of these secret keys is known, we can let the library itself extract the
secret keys! The code for this simply loads up the ‘black box’ library,
has it initialize an instance of the object, and then reads the keys right
out of that object. This is clearly a weakness in the code which can be
corrected by the DRM software fairly easily, but for now it is the basis
of our exploit.”

As you can see, Microsoft has undertaken a difficult and interesting problem.
How can Microsoft store data on Nikita’s computer in such a way that Nikita can
not access it, but Nikita’s computer can?

28.4 Why Use Elliptic Curves?

There are several advantages to using elliptic curves instead of Z/pZ for cryp-
tography, though the people at RSA Corporation might disagree. Elliptic curve
cryptosystems with smaller key sizes appear to be just as secure as “classical” Z/pZ
cryptosystems with much larger key sizes, so elliptic curve cryptosystems can be
more efficient. Another advantage, which I won’t explain at all, is that elliptic curve
cryptosystems appear to be vastly more secure over “large finite fields of charac-
teristic 2”7 than RSA, which is is very important in practical applications. Also,
elliptic curves are simply way cooler than Z/pZ, so they (used to) attract venture
capitalists.

Some mobile phones also use elliptic curve cryptography. Do you have an elliptic
curve in your pocket right now?

/* Base conversion */

function ToDeci(s)

c := [IIOII’Illll’II2II’I13II’II4II’I15II’II6II’Il7ll’Il8ll’llgll’llall’llbll’IICII’IIdII’IleII’llfll];

ans := 0;

b :=1;

for i in [1..#s] do
ans := ans + b*(Index(c,s[#s-i+1])-1);
b := b*16;

end for;

return ans;

end function;

p := 785963102379428822376694789446897396207498568951

k := GF(p);

E := EllipticCurve([317689081251325503476317476413827693272746955927,
B

79052896607878758

:= EN[k|771507216262649826170648268565579889907769254176, 390157510246556628525279459
rB := E![k]|179671003218315746385026655733086044982194424660,6978343853596863682493012826
PrnB := E![k|137851038548264467372645158093004000343639118915,11084858922867622405722923

n := 670805031139910513517527207693060456300217054473;
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PrnB - n*rB;
(14489646124220757767 : 669337780373284096274895136618194604469696830074 : 1)
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Chapter 29

Using Elliptic Curves to Factor,
Part 1

In 1987, Hendrik Lenstra published the landmark paper Factoring Integers with El-
liptic Curves, Annals of Mathematics, 126, 649-673, which you can download from
the Math 124 web page. Lenstra’s method is also described in §1V.4 of Silverman
and Tate’s Rational Points on Elliptic Curves, §VIIL5 of [Davenport], and in §10.3
of Cohen’s A Course in Computational Algebraic Number Theory.

In this lecture and the next, I will tell you about Lenstra’s clever algorithm. It
shines at finding “medium sized” factors of an integer IV, which these days means 10
to 20 decimal digits but probaby not 30 decimal digits. The ECM method is thus not
useful for earning money by factoring RSA challenge numbers, but is essential when
factoring most integers. It also has small storage requirements. Lenstra writes:

“It turns out that ... the elliptic curve method
is one of the fastest integer factorization methods s
that is currently used in practice. The quadratic el =

sieve algorithm still seems to perform better on
integers that are built up from two prime numbers
of the same order of magnitude; such integers are
of interest in cryptography.”

Lenstra’s discover of the elliptic curve method was inspired by Pollard’s (p — 1)-
method. 1 will spend most of the rest of this lecture introducing you to it.

29.1 Power-Smoothness

Definition 29.1.1 (Power-smooth). Let B be a positive integer. A positive
integer n is B-power-smooth if all prime powers dividing n are less than or equal
to B. The power-smoothness of n is the largest B such that n is B-power-smooth.

The following two PARI functions compute whether or not an integer is B-
power-smooth and also the power-smoothness of n.

{ispowersmooth(n, B) = \\ true if and only if n is B-powersmooth
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local(F,i);

F = factor(n);
for(i=1,matsize(F)[1],if(F[i,1]"F[i,2]>B,return(0)));
return(l);

{powersmoothness(n) = \\ the powersmoothness of n.
local(F,L,i);
F = factor(n);
L =1;
for(i=1,matsize(F) [1],L=max(L,F[i,1]"F[i,2]));
return(L);

29.2 Pollard’s (p — 1)-Method

Let N be an integer that we wish to factor. Choose a positive integer B (usually
< 109 in practice). The Pollard (p —1)-method hunts for prime divisors p of N such
that p — 1 is B-power-smooth. Here is the strategy. Suppose that p | N and a > 1
is an integer that is prime to p. By Fermat’s Little Theorem,

a®1=1 (modp).

Assume that further that p — 1 is B-power-smooth and let m = lem(1,2,3,... B).
Then B | m, so p— 1| m, and so
=1 (mod p).
Thus
plged(@™ —1,N) > 1.

Usually ged(a™ — 1, N) < N also, and when this is the case we have split N. In
the unlikely case when ged(a™ — 1, N) = N, then a™ =1 (mod ¢") for every prime
power divisor of N. In this case, repeat the above steps but with a smaller choice
of B (so that m is smaller). Also, it’s a good idea to check from the start whether
or not N is not a perfect power M", and if so replace N by M.

In practice, we don’t know p. We choose a B, then an a, cross our fingers, and
proceed. If we split IV, great! If not, increase B or change a and try again.

For fixed B, this algorithm works when N is divisible by a prime p such that
p — 1 is B-power-smooth. How many primes p have the property that p — 1 is
B-power-smooth? Is this very common or not? Using the above two functions, we
find that roughly 15% of primes p between 10'% and 10%® + 10000 are such that p —1
is 108 power-smooth.

\\ Count the number of B-power-smooth numbers an interval.
{cnt (B)= s=0;t=0;
for(p=10-15, 10°15+10000,
if (isprime(p),
t++;if (ispowersmooth(p-1,B),s++)
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)
);
s/t*1.0
}
? cnt(10°6)
%5 = 0.1482889733840304182509505703

Thus the Pollard (p — 1)-method with B = 10° is blind to 85% of the primes
around 10%. There are nontrivial theorems about densities of power-smooth num-
bers, but I will not discuss them today.

29.3 Pollard’s Method in Action!

We now illustrate the Pollard (p — 1)-method through several examples.

Ezample 29.3.1. Let N = 5917. We try to use the Pollard p — 1 method with B = 5
to split N. We have m = lem(1,2,3,4,5) = 60. Take a = 2. We have

260 _1=3416 (mod 5917), (can compute quickly!)

SO
ged (280 — 1,5917) = ged(3416,5917) = 61.

Wow, we found a prime factor of N!
In PARI, these computations are carried out as follows:

{lcmfirst(B) = \\ compute the lcm of 1,2,3,...,B
local(L,i);
L=1;
for(i=2,B,L=1cm(L,i));
return(L) ;}

? lemfirst(5)

%8 = 60

? Mod(2,5917)°60 - 1

%9 = Mod (3416, 5917)

? gcd(3416,5917)

%10 = 61

Example 29.3.2. Let N = 779167. First try B =15 and a = 2:
260 —1=710980 (mod N),

and ged(2%° — 1, N) = 1. Thus no prime divisor p of N has the property that p — 1
is 5-power-smooth. Next, we try B = 15. We have m = lem(1,2,...,15) = 360360,

and
2360360 _ 1 = 584876 (mod N),

SO
ged (2360360 _ 1) V) = 2003,

and we have split N!
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Ezample 29.3.3. Let N = 61-71. Then both 61—1 =60 = 22.3-5and 711 = 2-5-7
are 7-power-smooth, so Pollard’s (p — 1)-method with any B > 7 will fail, but in a
confidence-inspiring way. Suppose B = 7, so m = lem(1,2,...,7) = 420. Then

220 _1=0 (mod N),

so ged (2420 — 1, N) = N, and we get nothing. If we shrink B to 5, then Pollard
works:
260 _1=1464 (mod N),

and ged(2%° — 1, N) = 61, so we split N.

29.4 Motivation for the Elliptic Curve Method

Fix an integer B. If N = pg with p and ¢ prime and neither p — 1 nor ¢ — 1 a
B-power-smooth number, then the Pollard (p — 1)-method is extremely unlikely to
work. For example, let B = 20 and suppose that N = 59 - 101 = 5959. Note
that neither 59 — 1 = 229 nor 107 — 1 = 2. 53 is B-power-smooth. With m =
lem(1,2,3,...,20) = 232792560, we have

2™ _1=5944 (mod N),

and ged(2™ — 1, N) = 1, so we get nothing.

As remarked above, the problem is that p — 1 is not 20-power-smooth for either
p = 59 or p = 101. However, notice that p — 2 = 3 - 19 is 20-power-smooth! If
we could somehow replace the group (Z/pZ)*, which has order p — 1, by a group
of order p — 2, and compute o™ for an element of this new group, then we might
easily split N. Roughly speaking, this is what Lenstra’s elliptic curve factorization
method does; it replaces (Z/pZ)* by an elliptic curve E over Z/pZ. The order of
the group E(Z/pZ) is p + 1 £ s for some nonnegative integer s < 2,/p (any s can
occur). For example, if E is the elliptic curve

y> =23 +x+54

over Z /597 then E(Z/59Z) is cyclic of order 57. The set of numbers 59 + 1 + s for
s < 15 contain numbers with very small power-smoothness.

I won’t describe the elliptic curve factorization method until the next lecture.
The basic idea is as follows. Suppose that we wish to factor N. Choose an integer B.
Choose a random point P and a random elliptic curve 42 = 23 +ax +b “over Z/NZ”
that goes through P. Let m = lcm(1,2,...,B). Try to compute mP working
modulo N and using the group law formulas. If at some point it is necessary to
divide modulo N, but division is not possible, we (usually) find a nontrivial factor
of N. Something going wrong and not being able to divide is analogous to a™ being
congruent to 1 modulo p.

More details next time!

29.5 The Elliptic Curve Method

{isalmostpowersmooth(p,B)= local(r);
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for(r=p+1-floor(2*sqrt (p)) ,p+1+floor(2*sqrt(p)),

if (ispowersmooth(r,B), return(1l)) ) }

cnt (B)=s=0;t=0;for(p=10"15,10"15+10000,

if (isprime(p) ,t++;if (isalmostpowersmooth(p,B) ,s++,print ("BAD
",p));print(s/t*1.0))); s/t*1.0

29.6 The Method in Action!
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Chapter 30

Using Elliptic Curves to Factor,
Part 11

I constructed N = 800610470601655221392794180058088102053408423 by multiply-
ing together five random (and promptly forgotten) primes p with the property that
p — 1 is not B-power-smooth for B = 108. Since N is a product of five not-too-big
primes, N begs to be factored using the elliptic curve method.

30.1 The Elliptic Curve Method (ECM)

The following description of the algorithm is taken from Lenstra’s paper [Factoring
Integers with Elliptic Curves, Annals of Mathematics, 126, 649-673], which you can
download from the Math 124 web page.

“The new method is obtained from Pollard’s (p — 1)-method by
replacing the multiplicative group by the group of points on a
random elliptic curve. To find a non-trivial divisor of an integer
n > 1, one begins by selecting an elliptic curve E over Z/nZ,
a point P on E with coordinates in Z/nZ, and an integer k as
S above [k = 1lcm(2,3, ..., B)]. Using the addition law of the curve,
" one next calculates the multiple k- P of P. One now hopes that
4 there is a prime divisor p of n for which k& - P and the neutral
& element O of the curve become the same modulo p; if F is given
; v by a homogeneous Weierstrass equation y?z = 23 4+ azz? + bz3,
Cohen and Lenstra with @ = (0 : 1: 0), then this is equivalent to the z-coordinate of
k - P being divisible by p. Hence one hopes to find a non-trivial
factor of n by calculating the greatest common divisor of this
z-coordinate with n.”

If the above algorithm fails with a specific elliptic curve F, there is an option that
is unavailable with Pollard’s (p — 1)-method. We may repeat the above algorithm
with a different choice of E. The number of points on E over Z/pZ is of the form
p+1—t for some ¢ with [t| < 2,/p, and the algorithm is likely to succeed if p+1—1
is B-power-smoth.

Suppose that P = (z1,y1) and @ = (z2,y2) are nonzero points on an elliptic
curve y?> = 2% + ar + b and that P # +Q. Let A\ = (y1 — v2)/(z1 — z2) and
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v =y — Az1. Recall that P+ Q = (z3,y3) where
z3 =X — 21 — 2o and Ys = —AT3 — .

If we do arithmetic on an elliptic curve modulo N and at some point we can not
compute A because we can not compute the inverse modulo N of 1 — z3, then we
(usually) factor N.

30.2 Implementation and Examples
For simplicity, we use an elliptic curve of the form
P =2 +azx+1,

which has the point P = (0, 1) already on it.
The following tiny PARI function implements the ECM. It generates an error
message along with a usually nontrivial factor of N exactly when the ECM succeeds.

{ECM(N, m)= local(E);

E = €l11init([0,0,0,random(N),1]*Mod(1,N));

print("E: y°2 = x~3 + ", 1ift(E[4]),"x+1, P=[0,1]1");

ellpow(E, [0,1]*Mod(1,N) ,m); \\ this fails if and only if we win!
}

The following two functions are also useful:

{lcmfirst(B) =
local(L,i); L=1; for(i=2,B,L=1cm(L,i));
return(L);

}

numpoints(a,p) = return(p+l - ellap(ellinit([0,0,0,a,1]1),p));

First we will try the program on a small integer N, then we will try it on the N
at the top of this lecture. (ECM uses the random function, so the results of your run
may differ from the one below.)

? N = 5959; \\ This number motivated the ECM last time.
\\ Recall what happened when we tried to factor 5959 using the p-1 method.
? m = lcmfirst (20); \\ B = 20.
? Mod(2,N) "m-1
%108 = Mod (5944, 5959)
7 gcd(5944,5959)
%109 = 1 \\ bummer!
\\ Now we try the ECM:
? ECM(N,m)
E: y°2 = x°3 + 1201x+1, P=[0,1]
%112 = [Mod (666, 5959), Mod (3229, 5959)]
? ECM(N,m)
E: y°2 = x°3 + 1913x+1, P=[0,1]
**+*x  impossible inverse modulo: Mod (101, 5959).
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\\ Wonderful!! There’s a factor-------- /\
? factor (numpoints(1913,101))

%120 =

[2 4] \\ #E(Z/101) is 16-power-smooth,
[7 1] \\ so ECM sees 101.

? factor(numpoints(1913,59))

%119 =

[2 1] \\ #E(Z/59) is 29-power-smooth,
[29 1] \\ so ECM doesn’t see 59.

\\ Here’s the view from another angle:
? E = ellinit([0,0,0,1752,0]*Mod(1,5959)) ;
? P = [0,1]1%Mod(1,5959);
? ellpow(E,P,2)
%127 = [Mod (4624, 5959), Mod(1495, 5959)]
? ellpow(E,P,3)
%128 = [Mod(3435, 5959), Mod(1031, 5959)]
? ellpow(E,P,4)
%129 = [Mod(803, 5959), Mod(5856, 5959)]
? ellpow(E,P,8)
%133 = [Mod(1347, 5959), Mod(2438, 5959)]
? ellpow(E,P,m)

***%  impossible inverse modulo: Mod(101, 5959).

Now we are ready to try the big integer N from the begining of the lecture.

N = 800610470601655221392794180058088102053408423;

B = 100;

m = lcmfirst(B);

ECM(N,m) ;

: y72 = x73 + 273687051132207711452727265152539544370874547x+1, P=[0,1]
. many tries ..

ECM(N,m) ;

1 y°2 = x"3 + 174264237886300715545169749498695137077020788x+1, P=[0,1]
B=1000; \\ give up and try a bigger B.

m=lcmfirst (B);

ECM(N,m) ;

1 y°2 = x"3 + 652986182461202633808585244537305097270008449x+1, P=[0,1]
. many tries ...

ECM(N,m) ;

1 y°2 = x"3 + 7550607276458914820952251512819665348766197238x+1, P=[0,1]
B=10000; \\ try an even bigger B

m=lcmfirst(B);

ECM(N,m) ;

1 y°2 = x"3 + 722355978919416556225676818691766898771312229x+1, P=[0,1]
ECM(N,m) ;

1 yT2 = x73 + 124781379199538996805045456359983628056546634x+1, P=[0,1]
ECM(N,m) ;

[ EEES IREEN BEFES AN

[ IRNEENS BEES BRFEN I v x IECS I

L I e B I e x B B I I = RN I
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E: y°2 = x"3 + 350310715627251979278144271594744514052364663x+1, P=[0,1]
? ECM(N,m) ;
E: y°2 = x73 + 39638500146503230913823829562620410547947307x+1, P=[0,1]
**%*%  impossible inverse modulo: Mod(1004320322301182911,
800610470601655221392794180058088102053408423) .

Thus N = N; - No = 1004320322301182911 - 797166454590134548773760793. One
checks that neither Ni nor Ny is prime. Next we try ECM on each:

? N1 = 1004320322301182911; N2 = N / Ni;
? ECM(N1,m);
E: y°2 = x”3 + 725771039569085210x+1, P=[0,1]

*ok ok impossible inverse modulo: Mod (1406051123, 1004320322301182911).
? ECM(N2,m) ;
E: y°2 = x”3 + 573369475441522110156437806x+1, P=[0,1]

**%*  impossible inverse modulo: Mod (2029256729,

797166454590134548773760793) .

Now

N = Ny1-N12-Ng 1-No o = 1406051123-714284357-2029256729-392836669307471617,

and one can check that Ny 1, N1 2, No 1 are prime but that N3 9 is composite. Again,
we apply ECM:

? N22 = 392836669307471617
%173 = 392836669307471617
? ECM(N22,m)
E: y°2 = x"3 + 133284810657519512x+1, P=[0,1]
%174 = [0]
? ECM(N22,m)
E: y°2 = x”3 + 368444010842952211x+1, P=[0,1]
%175 = [Mod(236765299763600601, 392836669307471617),
Mod (63845045623767003, 392836669307471617)]

? ECM(N22,m)
E: y~2 = x"3 + 245772885854824846x+1, P=[0,1]
%176 = [0]
? ECM(N22,m)
E: y*2 = x"3 + 33588046732320063x+1, P=[0,1]

***  impossible inverse modulo: Mod (615433499, 392836669307471617).

This time it took a long time to factor N2 2 because m is too large so we often
get both factors. A smaller m would have worked more quickly. In any case, we
discover that the prime factorization is

N = 1406051123 - 714284357 - 2029256729 - 615433499 - 638308883.

30.3 How Good is ECM?

According to Henri Cohen (page 476 of A Course in Computational Algebraic Num-
ber Theory):
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“Unique among modern factoring algorithms however, it is sensitive to
the size of the prime divisors . In other words, its running time depends
on the size of the smallest prime divisor p of N, and not on N itself.
Hence, it can be profitably used to remove “small” factors [...]. Without
too much trouble, it can find prime factors having 10 to 20 decimal
digits [with B around 10%]. On the other hand, it very rarely finds
prime factors having more than 30 decimal digits.
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Chapter 31

Fermat’s Last Theorem and
Modularity of Elliptic Curves

In this lecture I will sketch an outline of the proof of Fermat’s last theorem, then
give a rigorous account of what it means for an elliptic curve to be “modular”.

The are several exercises below. They are optional, but if you do them and give
them to Grigor, I suspect that he would look at them (whether or not you do the
exercises will not directly affect your course grade in any way).

31.1 Fermat’s Last Theorem

Theorem 31.1.1. Let n > 2 be an integer. If a,b,c € Z and
a +b" =",

then abc = 0.

Proof (sketch). First reduce to the case when n = £ is a prime greater than 3 (see
Exercise 31.1.2). Suppose that
at + bt =t

with a,b,c € Z and abc # 0. Permuting (a, b, ¢), we may suppose that b is even and
that we have a =3 (mod 4). Following Gerhard Frey, consider the elliptic curve E
defined by

y? = z(z — a¥)(z + b°).

The discriminant of E is 2*(abc)? (see Exercise 31.1.3 below).
Andrew Wiles and Richard Taylor [Annals of Math., May 1995] proved that E
must be “modular”. This means that there is a “modular form”

w .
f(Z) — Z an62mnz
n=1

of “level N = abc” such that for all primes p 1 abe,

ap = p+ 1 — #E(Z/pZ).
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Ken Ribet [Inventiones Math., 1991] used that the discriminant of E is a per-
fect £th power (away from 2) to prove that there is a cuspidal modular form

o0
g(z) — Z bne27rinz

n=1
of “level 2” such that
ap =by, (mod ¥) for all p { abe.

This is a contradiction because the space of “cuspidal modular forms” of level 2 has
dimension 0 (see Section 31.3.1). O

Ezercise 31.1.2. Reduce to the prime case. That is, show that if Fermat’s last
theorem is true for prime exponents, then it is true.

Ezercise 31.1.3. Prove that y? = z(z — af)(z + b%) has discriminant 2*(abc)?*.

The rest of this lecture is about the words in the proof that are in quotes.

31.2 Holomorphic Functions
The complex upper half plane is the set
h={z€C: Im(z) > 0}.
A holomorphic function f : h — Cis a function such that for all z € § the derivative

h—0 h

exists. Holomorphicity is a very strong condition because h € C can approach 0 in
many ways.

Ezample 31.2.1. Let SLa(Z) denote the set of 2 x 2 integers matrices with determi-
nant 1. If vy = (‘é g) € SLy(Z), then the corresponding linear fractional transfor-

mation
az+b

cz+d

v(z) =

is a holomorphic function on §. (Note that the only possible pole of 7 is —%, which
is not an element of .)

For future use, note that if f : h — C is a holomorphic function, and vy = (‘é Z) €
SLo(Z), then

flv(z) = f(v(2)(cz +a) 2
is again a holomorphic function.

Ezample 31.2.2. Let g(z) = €. Then ¢ is a holomorphic function on b and
q = 2miq. Moreover, q defines a surjective map from b onto the punctured open
unit disk D ={z € C:0 < |2] < 1}.
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31.3 Cuspidal Modular Forms

Let N be a positive integer and consider the set

Ty(N) = {(Z Z) € SLy(Z) : N | c}.

Definition 31.3.1 (Cuspidal Modular Form). A cuspidal modular form of
level N is a holomorphic function f : §f — C such that

1. fly = f for all v € Ty(N),

2. for every v € SLy(Z),

and

3. f has a Fourier expansion:
o0
f= Z anq".
n=1

Ezercise 31.3.2. Prove that condition 3 is implied by conditions 1 and 2, so condition
3 is redundant. [Hint: Since v = (§1) € [y(V), condition 1 implies that f(z +
1) = f(z), so there is a function F(q) on the open punctured unit disc such that
F(q(2)) = f(z). Condition 2 implies that lim,_,o F'(¢) = 0, so by complex analysis
F extends to a holomorphic function on the full open unit disc.]

Definition 31.3.3. The g-ezpansion of f is the Fourier expansion f =Y > | a,q".

Ezercise 31.3.4. Suppose that f € S3(T'o(N)). Prove that

for all v € T'y(N). [Hint: This is simple algebraic manipulation.]

Ezercise 31.3.5. Let So(T'o(IN)) denote the set of cuspidal modular forms of level N.
Prove that So(T'o(IN)) forms a C-vector space under addition.

31.3.1 The Dimension of S,(I'y(V))

The dimension of So(Ty(N)) is

- P2 B Vo

where 1 = N [T x(1+1/p), and vy = [T, (1 + (—74)) unless 4 | N in which case
v =0,and v3 =[], v (1 + (_73)) unless 2 | N or 9 | N in which case v3 = 0, and

Voo = D g/ ¥(gcd(d; N/d)). For example,

3 1 0o 2
i To(2) =14 ——-—2_2 _
dimc S2(T'o(2)) t5 173 3-9%
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and 12 0 0 2
i DI ~1.
dlm(c SQ(P()(ll)) 1+ 12 4 3 9

One can prove that the vector space S3(I'g(11)) has basis
o0
f=a]J0-a?Q-a""V=q-2 —*+2¢" + " +2¢° —2¢" + -+~ .
n=1
Ezercise 31.3.6. Compute the dimension of S2(I'¢(25)).

31.4 Modularity of Elliptic Curves

Let E be an elliptic curve defined by a Weierstrass equation y? = z3 + az + b with
a,b € Q. For each prime p{ A = —16(4a® + 27b?), set

ap = p+ 1 — #E(Z/pZ).

Definition 31.4.1 (Modular). E is modular if there exists a cuspidal modular
form

F(2) = bg" € Sa(To(A))
n=1

such that b, = a, for all p{ A.

At first glance, modularity appears to be a bizarre and unlikely property for an
elliptic curve to have. When poor Taniyama (and Shimura) first suggested in 1955
that every elliptic curve is modular, people were dubious. But Taniyama was right.
The proof of that conjecture is one of the crowning achievements of number theory.

Theorem 31.4.2 (Breuil, Conrad, Diamond, Taylor, Wiles).

EVERY ELLIPTIC CURVE OVER Q IS MODULAR.
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Chapter 32

The Birch and Swinnerton-Dyer
Conjecture, Part 1

The next three lectures will be about the Birch and Swinnerton-Dyer conjecture,
which is considered by many people to be the most important accessible open prob-
lem in number theory. Today I will guide you through Wiles’s Clay Math Institute
paper on the Birch and Swinnerton-Dyer conjecture.

On Friday, I will talk about the following open problem, which is a frustrating
specific case of the Birch and Swinnerton-Dyer conjecture. Let E be the elliptic
curve defined by

y? + oy = 2 — 2 — 79z + 289.

Denote by L(E,s) = Y. 2, ayn ° the corresponding L-series, which extends to a
function everywhere. The graph of L(E, s) for s € (0,5) is given on the next page.
It can be proved that E(Q) ~ Z* by showing that

120 29 70 81 564 665
8,7 —, = —, = d |—,—
(’)’(27’27>’(8’8>’an (8’64)
generate a “subgroup of finite index” in E(Q). The Birch and Swinnerton-Dyer
Conjecture then predicts that

ords=1 L(E, s) = 4,

which looks plausible from the shape of the graph on the next page. It is relatively
easy to prove that the following is equivalent to showing that ord,—; L(FE, s) = 4:

Open Problem: Prove that L"(E,1) = 0.

If you could solve this open problem, people like Gross, Tate, Mazur, Zagier,
Wiles, me, etc., would be very excited. The related problem of giving an example
of an L-series with ord,—; L(E, s) = 3, was solved as a consequence of a very deep
theorem of Gross and Zagier, and resulting in an effective solution to Gauss’s class
number problem.

John Tate gave a talk about the BSD conjecture for the Clay Math Institute. I
strongly encourage you to watch it online at

http://www.msri.org/publications/1n/hosted/cmi/2000/cmiparis/index-tate.html
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The L-series of the “simplest” known elliptic curve of rank 4.
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Chapter 33

The Birch and Swinnerton-Dyer
Conjecture, Part 2

33.1 The BSD Conjecture

Let E be an elliptic curve over QQ given by an equation
v =z +az+b
with a,b € Z. For p{ A = —16(4a® + 270?), let a, =p + 1 — #E(Z/pZ). Let

1
L —app™®+p

L(E,s)=]]
A

Theorem 33.1.1 (Breuil, Conrad, Diamond, Taylor, Wiles).
L(E, s) extends to an analytic function on all of C.

1-2s"

Conjecture 33.1.2 (Birch and Swinnerton-Dyer). The Taylor ezpansion of
L(E,s) at s =1 has the form

L(E,s) = ¢(s — 1) + higher order terms
with ¢ # 0 and E(Q) = Z" x E(Q)tor-

A special case of the conjecture is the assertion that L(E,1) = 0 if and only if
E(Q) is infinite. The assertion “L(E,1) = 0 implies that E(Q) is infinite” is the
part of the conjecture that secretely motives much of my own research.

33.2 What is Known

On page 5 of Wiles’s paper, he discusses the history of the following theorem.
Theorem 33.2.1 (Gross, Kolyvagin, Zagier, et al.). Suppose that
L(E,s) = c¢(s —1)" + higher order terms

with 7 < 1. Then the Birch and Swinnerton-Dyer conjecture is true for E, that is,
E(Q = Z" ® E(Q)tor-
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I suspect that most elliptic curves satisfy the hypothesis of the above theorem,
i.e., they have rank 0 or 1. For example, almost 96% of the “first 78198” elliptic
curves have r < 1. I suspect that the curves with r > 1 have “density” 0 amongst
all elliptic curves. This doesn’t mean that we are done. In practice it is often the
curves with r > 1 that are interesting and useful, and experts can still be observed
saying “almost nothing is known about the Birch and Swinnerton-Dyer conjecture”.

33.3 How to Compute L(FE,s) with a Computer

33.3.1 Best Models

Let E be an elliptic curve over QQ, defined by a Weierstrass equation
2 _ .3 2
Y+ a1xy + a3y = x° + a2x” + a4 + ag-

There are many choices of Weierstrass equations that define an elliptic curve that
is “essentially the same” as FE. E.g., you found others by completing the square.
Among all of these, there is a best possible model, which is the one with smallest
discriminant. It can be computed in PARI as follows:

? E = ellinit([0,0,0,-43,166]);

7 E.disc

%61 = -6815744

? E = ellchangecurve(E,ellglobalred(E) [2])
%62 = [1, -1, 1, -3, 3, ...]

7 E.disc

%63 = -1664

Thus y? + 2y +y = 2° — 22 — 3z + 3 is a “better” model than y? = 2> — 43z + 166.

WARNING: Some of the elliptic curves functions in PARI will LIFE if you give as
input an elliptic curve that is defined by a model that isn’t the best possible. These
devious liars include elltors, ellap, ellak, and elllseries.

33.3.2 Formula for L(E, s)

As mentioned before, the PARI function elllseries can compute L(FE, s). I figured
out how this function works, and explain it below.

Because E is modular, one can show that we have the following rapidly-converging
series expression for L(E, s), for s > 0:

L(E,s) = N"*?.(21)° - T(s)™" - > an - (Fa(s — 1) — eFy(1 — 5))
n=1

where

Fo(t)=T (t +1, 2”\/—%) : (g)tﬂ.

Here



is the I'-function (e.g., I'(n) = (n — 1)!), and

o0
I'(z, ) :/ t*~letdt
(6]

is the incomplete T'-function. The number N is called the conductor of E and is
very similar to the discriminant of F; it is only divisible by primes that divide the
best possible discriminant of £. You can compute N using the PARI command
ellglobalred(E) [1].

As usual, for p t A, we have

ap =p+1—#E(Z/pZ),

and for r > 2,
ap‘r = (]/pr—lalp — pa/p'r—Z,

and @p; = anay, if ged(n,m) = 1 (I won’t define the a, when p | A, but it’s not
difficult.) Finally, ¢ depends only on E and is either +1 or —1. I won’t define ¢
either, but you can compute it in PARI using ellrootno (E).

At s =1, the formula can be massively simplified, and we have

L(B,1) = (1+e)- Y e /YN,

n=1

This sum converges rapidly, because e 27/ YN 0 quickly as n — oo.

Monday’s lecture will be filled with numerical examples and numerical evidence
for the Birch and Swinnerton-Dyer conjecture. Wednesday’s lecture will be a review
for the take-home FINAL EXAM.
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Chapter 34

The Birch and Swinnerton-Dyer
Conjecture, Part 3

34.1 A Rationality Theorem

In the last lecture, I mentioned that it can be surprisingly difficult to say anything
precise about L(FE, s), even with the above formulas. For example, it is a very deep
theorem of Gross and Zagier that for the elliptic curve y? + y = 2° — 7z + 6 we have

L(E,s) = c¢(s — 1)® + higher order terms,
and nobody has any idea how to prove that there is an elliptic curve with
L(E,s) = c¢(s — 1)* + higher order terms.
Fortunately, it is possible to decide whether or not L(E, 1) = 0.

Theorem 34.1.1. Let y?> = 23 + az + b be an elliptic curve. Let

g [Tt
vy Vrdtaz+b

where «y is the largest real root of x3 + ax +b, and n = 0 if A(E) < 0, n = 1 if
A(E) > 0. Then
L(E,1)
Op

€Q

and the denominator is < 24.

In practice, one computes Qg using the “Arithmetic-Geometric Mean”, NOT nu-
merical integration. In PARI, Qf is approximated by E.omega[1]*2~ (E.disc>0).

Remark 34.1.2. T don’t know if the denominator is ever really as big as 24. It would
be a fun student project to either find an example, or to understand the proof that
the quotient is rational and prove that 24 can be replaced by something smaller.

Ezample 34.1.3. Let E be the elliptic curve y? = 23 — 43z + 166. We compute
L(E,1) using the above formula and observe that L(E,1)/Qr appears to be a
rational number, as predicted by the theorem.
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? E = e11init([0,0,0,-43,166]) ;

? E = ellchangecurve(E, ellglobalred(E)[2]);

? eps = ellrootno(E)

W7 =1

7 N = ellglobalred(E) [1]

%78 = 26

?7 L = (1+eps) * sum(n=1,100, ellak(E,n)/n * exp(-2*Pi*n/sqrt(N)))
h79 = 0.6209653495490554663758626727

? Om = E.omega[1]*2"(E.disc>0)

%80 = 4.346757446843388264631038710
? L/Om

%81 = 0.1428571428571428571428571427
? contfrac(L/0Om)

%84 = [0, 7]

7 1/7.0

%85 = 0.1428571428571428571428571428
? elltors(E)

%86 = [7, [7], [[1, 0]1]1]

Notice that in this example, L(F,1)/Qr = 1/7 = 1/#E(Q). This is shadow of a
more refined conjecture of Birch and Swinnerton-Dyer.

Ezample 34.1.4. In this example, we verify that L(F,1) = 0 computationally.

7 E=ellinit ([0, 1, 1, -2, 0]);

? L1 = elllseries(E,1)

%4 = -6.881235151133426545894712438 E-29
? Omega = E.omega[1]*2~(E.disc>0)

%5 = 4.980425121710110150642715583

? L1/0Omega

%6 = 1.795732353252503036074927634 E-20

34.2 Approximating the Rank

Fix an elliptic curve E over Q.

The usual method to approzimate the rank is to find a series that rapidly con-
verges to LM (E, 1) for r = 0,1,2,3, ..., then compute L(E,1), L'(E, 1), L&(E, 1),
etc., until one appears to be nonzero. You can read about this method in §2.13
of Cremona’s book Algorithms for Elliptic Curves. For variety, I will describe a
slightly different method that I've played with recently, which uses the formula for
L(E, s) from the last lecture, the definition of the derivative, and a little calculus.

Proposition 34.2.1. Suppose that
L(E,s) =c(s —1)" + higher terms.

Then
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Proof. Write
L(s) = L(E,s) = c;(s — 1)" + crp1(s — 1)r+1 + ...
Then

—1)r1 1 1) 4.
lim (s — 1) - :lim(s—l)-rcr(s ) + (r+1)crq1(s )+
. L(s) s>t (s =1 +erpa(s — 1)t +--
_ CT(S_1)T+MCT+1(S—1)T+1+---
=r-lim r
sl cr(s— 1) (s — 1) 4

=T.
O

Thus the rank r is “just” the limit as s — 1 of a certain (smooth) function. We
know this limit is an integer. But, for example, for the curve

v’ + 2y =2® — 22 — 79z + 289

nobody has succeeded in proving that this integer limit is 4. (One can prove that
the limit is either 2 or 4.)
Using the definition of derivative, we heuristically approximate (s — 1) 6:((35)) as

follows. For |s — 1| small, we have

L'(s) s—1 .. L(s+h)—L(s)

C-VT =~ Te) M h

s—1 L(s+ (s —1)%) — L(s)

T L(s) (s —1)?

_ L(s*—s+1) — L(s)

- (s—1)L(s)

Question 34.2.2. Does

) L'(s . L(s?—s+1)—L(s
Slgr%(s—l)- L((s)) :gl_I)I% ( (s—l)I?(s) =

In any case, we can use this formula in PARI to “approximate” r.

? E = ellinit([ 0, 1, 1, -2, 0 1);

? r(E,s) = Li=elllseries(E,s); L2=elllseries(E,s"2-s+1); (L2-L1)/((s-1)*L1);
? r(E,1.01)

%8 = 2.004135342473941928617680057

? r(E,1.001)

%9 = 2.000431337547225544819319104

\\ One can prove that 2 is the correct limit.

Now let’s try the mysterious curve y? + zy = 23 — 22 — 79z + 289 of rank 4:

? E=ellinit([ 1,-1,0,-79,289]1);

? r(E,1.001) \\ takes 6 seconds on PIII 1Ghz
%1 = 4.002222374519085610896440642

? r(E,1.00001)

%2 = 4.000016181256911064613006133
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It certainly looks like lim;_,; 7(s) = 4. We know for a fact that lims_,; 7(s) € Z, and
if only there were a good way to bound the error we could conclude that the limit
is 4. But this has stumped people for years, and maybe it is impossible without a
very deep result that somehow interprets this limit in a different way. This problem
has totally stumped the experts for years. We desperately need a new ideal!

If one of you wants to do a reading or research project on this problem in the
next year or two, let me know. One could draw pictures of L3)(E, s) or investigate
the analogous problem for other more accessible L-series.

? E=ellinit([0,0,1,-7,61);

? r(E,s) = Li=elllseries(E,s); L2=elllseries(E,s"2-s+1); (L2-L1)/((s-1)*L1);
? r(E,1.001)

%2 = 3.001144104985619206504448552
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Chapter 35

Homework

35.1 Primes and the Euclidean Algorithm

1. Let p be a prime number and r and integer such that 1 < r < p. Prove that p
divides the binomial coefficient

p!

ri(p—r)!’
You may not assume that this coefficient is a integer.

2. Compute the following gcd’s using a pencil and the Euclidean algorithm:

ged(15,35),  ged(247,299), ged(51,897), ged(136,304)
3. Using mathematical induction to prove that

1+2434+n=——"2

then find a formula for

1-243-44--tn=>) (1) "a.

4. What was the most recent prime year? I.e., which of 2001, 2000, ... was it?
5. Use the Euclidean algorithm to find integers x, y € Z such that
2261z + 1275y = 17.
[I did not tell you how to do this; see §1.8 of Davenport’s book.]

6. Factor the year that you should graduate from Harvard as a product of primes.
E.g., frosh answer 2005 = 5 x 401.

7. Write a PARI program to print “Hello Kitty” five times.
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8. Let f(z) € Z[z] be a polynomial with integer coefficients. Formulate a con-
jecture about when the set {f(a) : @ € Z and f(a) is prime } is infinite. Give
computational evidence for your conjecture.

9. Is it easy or hard for PARI to compute the gcd of two random 2000-digit
numbers?

10. Prove that there are infinitely many primes of the form 6z — 1.
11. (a) Use PARI to compute
7(2001) = #{ primes p < 2001}.

(b) The prime number theorem predicts that m(z) is asymptotic to z/ log(z).
How close is m(2001) to 2001/ log(2001)?

35.2 Congruences

1. Find complete sets of residues modulo 7, all of whose elements are (a) non-
negative, (b) odd, (c) even, (d) prime.

Find an integer = such that 37z =1 (mod 101).
What is the order of 5 modulo 377

Let n = ¢(7!). Compute the prime factorization of n.

A el R

Find z,y € Z such that
6613z 4 8947y = 389.

6. Find an z € Z such that £ = —4 (mod 17) and z = 3 (mod 23).

7. Compute 7'% (mod 389).

8. Find a number a such that 0 < a < 111 and

(102° +1)® =4  (mod 111).
(See Problem 2.05 on page 217 of Davenport.)
9. Prove that if n > 4 is composite then
(n—1)!=0 (mod n).

10. For what values of n is ¢(n) odd?
11. Find your own 100-digit number n such that ¢! =1 (mod n) for a = 2,3, 5.

12. Seven thieves try to share a hoard of gold bars equally between themselves.
Unfortunately, six bars are left over, and in the fight over them, one thief is
killed. The remaining six thieves, still unable to share the bars equally since
two are left over, again fight, and another is killed. When the remaining five
share the bars, one bar is left over, and it is only after yet another thief is
killed that an equal sharing is possible. What is the minimum number of bars
which allows this to happen?
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13. An elderly woman goes to a market where a horse tramples her basket crushing
her eggs. The horse’s honest rider offers to pay for the damages and asks her
how many eggs she had brought. She doesn’t remember the exact number,
but recalls that when she had taken them out two at a time, there was one egg
left. The same happened when she picked them out three, four, five, and six
at a time, but when she took them out seven at a time two were left. What
is the smallest number of eggs she could have had?

35.3 Public-Key Cryptography

1. (3 points) You and Nikita wish to agree on a secret key using the Diffie-
Hellman protocol. Nikita announces that p = 3793 and g = 7. Nikita secretely
chooses a number n < p and tells you that ¢g" = 454 (mod p). You choose the
random number m = 1208. Tell me what the secret key is!

2. (4 points) This problem concerns encoding phrases using numbers.

(a) Find the number that corresponds to VE_RI_TAS, where we view this
string as a number in base 27 using the encoding of Section 2 of Lecture 9.
(Note that the left-most “digit”, V, is the least significant digit, and
denotes a blank space.)

(b) What is the longest sequence of letters (and space) that can be stored
using a number that is less than 10297

3. (4 points) You see Michael and Nikita agree on a secret key using the Diffie-
Hellman key exchange protocol. Michael and Nikita choose p = 97 and
g = 5. Nikita chooses a random number n and tells Michael that ¢" = 3
(mod 97), and Michael chooses a random number m and tells Nikita that
g™ =7 (mod 97). Crack their code: What is the secret key that Nikita and
Michael agree upon? What is n? What is m?

4. (2 points) Using the RSA public key is (n, e) = (441484567519, 238402465195),
encrypt the year that you will graduate from Harvard.

5. (6 points) In this problem, you will “crack” an RSA cryptosystem.

(a) What is the secret decoding number d for the RSA cryptosystem with
public key (n,e) = (5352381469067, 4240501142039)?

(b) The number 3539014000459 encrypts an important question using the
RSA cryptosystem from part (a). What is the question? (After decoding,
you'll get a number. To find the corresponding word, see Section 2 of
Lecture 9.)
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6.

(4 points) Suppose Michael creates an RSA cryptosystem with a very large
modulus N for which the factorization of N cannot be found in a reasonable
amount of time. Suppose that Nikita sends messages to Michael by represent-
ing each alphabetic character as an integer between 0 and 26 (A corresponds to
1, B to 2, etc., and a space , to 0), then encrypts each number separately using
Michael’s RSA cryptosystem. Is this method secure? Explain your answer.

(6 points) Nikita creates an RSA cryptosystem with public key
(n,e) = (1433811615146881, 329222149569169).

In the following two problems, show the steps you take. Don’t simply factor n
directly using the factor function in PARI.

(a) Somehow you discover that d = 116439879930113. Show how to use the
probabilistic algorithm of Lecture 10 to use d to factor n.

(b) In part (a) you found that the factors p and ¢ of n are very close. Show
how to use the “Fermat Factorization” method of Lecture 10 to factor n.

35.4 Primitive Roots and Quadratic Reciprocity

1.

(2 points) Calculate the following symbols by hand: (93—7), (3%9), (%), and

(2).
(3 points) Prove that (§) = {

p

1 ifp=1,11 (mod 12),
-1 ifp=5,7 (mod 12).

3 points) Prove that there is no primitive root modulo 2" for any n > 3.
p p y

. (6 points) Prove that if p is a prime, then there is a primitive root modulo p2.

(5 points) Use the fact that (Z/pZ)* is cyclic to give a direct proof that
(*73) = 1 when p = 1 (mod 3). [Hint: There is an ¢ € (Z/pZ)* of order 3.
Show that (2¢ + 1)2 = —3.]

(6 points) If p = 1 (mod 5), show directly that (%) = 1 by the method of

Exercise 5. [Hint: Let ¢ € (Z/pZ)* be an element of order 5. Show that
(c+ )2+ (c+ct)—1=0,etc)]

p—1
(4 points) For which primes p is Z (ﬁ) =07
p

a=1

(4 points) Artin conjectured that the number of primes p < z such that 2 is
a primitive root modulo p is asymptotic to Cr(z) where m(z) is the number
of primes < z and C is a fixed constant called Artin’s constant. Using a
computer, make an educated guess as to what C should be, to a few decimal
places of accuracy. Explain your reasoning. (Note: Don’t try to prove that
your guess is correct.)
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35.5 Continued Fractions

1. (3 points) Draw some sort of diagram that illustrates the partial convergents
of the following continued fractions:

(i) [13,1,8,3]
(i) [1,1,1,1,1,1,1,1]
(iii) [1,2,3,4,5,6,7, 8]

2. (5 points) If ¢, = pn/gn is the nth convergent of the continued fraction

[@g,a1,...,a,] and ag > 0, show that
[@n, an—1,-..,a1,a0] =
Pn-1
and
dn
[an,an_l,...,ag,al] = .
dn—1
(Hint: In the first case, notice that P2 = a, + 22=2 = q, + Pt -)

Pp—2

3. (4 points) There is a function j(7), denoted by el1j in PARI, which takes as
input a complex number 7 with positive imaginary part, and returns a complex
number called the “j-invariant of the associated elliptic curve”. Suppose that 7
is approzimately —0.5 4+ 0.3281996289: and that you know that j = j(7) is a
rational number. Use continued fractions and PARI to compute a reasonable
guess for the rational number j = e11j(7). (Hint: In PARI y/—1 is represented
by I.)

4. (3 points) Evaluate each of the following infinite continued fractions:
(i) [2,3]
(i) [2,T,%1]
(iii) [0,1,2,3

5. (3 points) Determine the infinite continued fraction of each of the following
numbers:

i) v

. 1++/13
(i) —5—

(iii) 2 V37 +4‘/?7

162



S

(i) (4 points) For any positive integer n, prove that v/n? + 1 = [n, 2n].
(ii) (2 points) Find a convergent to v/5 that approximates v/5 to within four
decimal places.

7. (4 points) A famous theorem of Hurwitz (1891) says that for any irrational
number z, there exists infinitely many rational numbers a/b such that
a 1
o- 2| < T
Taking z = m, obtain three rational numbers that satisfy this inequality.
8. (3 points) The continued fraction expansion of e is

[2,1,2,1,1,4,1,1,6,1,1,8,1,1,...].

It is a theorem that the obvious pattern continues indefinitely. Do you think
that the continued fraction expansion of e? also exhibits a nice pattern? If so,
what do you think it is?

9. (i) (4 points) Show that there are infinitely many even integers n with the
property that both n + 1 and § + 1 are perfect squares.
(ii) (3 points) Exhibit two such integers that are greater than 389.
10. (7 points) A primitive Pythagorean triple is a triple z, y, z of integers such that

z? + y? = 22. Prove that there exists infinitely many primitive Pythagorean
triples z,y, z in which z and y are consecutive integers.

35.6 Binary Quadratic Forms

1. (3 points) Which of the following numbers is a sum of two squares? Express
those that are as a sum of two squares.

—389, 12345, 91210, 729, 1729, 68252

2. (i) (4 points) Write a PARI program that takes a positive integer n as input
and outputs a sequence [x,y,z,w] of integers such that x2+y2+z2+w2 =
n. (Hint: Your program does not have to be efficient.)

(ii) (2 point) Write 2001 as a sum of three squares.

3. (3 points) Find a positive integer that has a least three different represen-
tations as the sum of two squares, disregarding signs and the order of the
summands.

4. (5 points) Show that a natural number n is the sum of two integer squares if
and only if it is the sum of two rational squares.

5. (6 points) Mimic the proof of the main theorem of Lecture 21 to show that an
odd prime p is of the form 8m + 1 or 8m + 3 if and only if it can be written
as p = x2 + 2y? for some choice of integers = and y. (Hint: Use the formula

for the quadratic residue symbol (_72) from Lecture 13.)
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6. (4 points) A triangular number is a number that is the sum of the first m
integers for some positive integer m. If n is a triangular number, show that
all three of the integers 8n?, 8n? + 1, and 8n? + 2 can be written as a sum of
two squares.

7. (3 points) Prove that of any four consecutive integers, at least one is not
representable as a sum of two squares.

8. (4 points) Show that 13z2 + 36xy + 25y and 5822 + 82xy + 29y? are each
equivalent to the form z? + 42, then find integers z and y such that 13z2 +
36zy + 25y = 389.

9. (4 points) What are the discriminants of the forms 19922 — 162y + 33y? and
3522 — 96xy + 66y>? Are these forms equivalent?

35.7 Class Groups and Elliptic Curves

1. (10 points) For any negative discriminant D, let Cp denote the finite abelian
group of equivalence classes of primitive positive definite quadratic forms of
discriminant D. Use the PARI program forms.gp from lecture 24 (download
it from my web page) to compute representatives for Cp and determine the
structure of Cp as a produce of cyclic groups for each of the following five
values of D:

D = —155,-231, —660, —12104, —10015.

2. (6 points) Draw a beautiful graph of the set F(R) of real points on each of
the following elliptic curves:

(i) y% = 2% — 1296z + 11664,
(i) y> +y =2° —a,
(iii) y?2 +y =2® — 22 — 10z — 20.

3. (4 points) A rational solution to the equation 32 — 2> = —2 is (3,5). Find
a rational solution with z # 3 by drawing the tangent line to (3,5) and
computing the third point of intersection.

35.8 Elliptic Curves 1

1. (3 points) Consider the elliptic curve 32 + zy + y = z3 over Q. Find a
linear change of variables that transforms this curve into a curve of the form
Y? = X3 + aX + b for rational numbers a and b.

2. (6 points) Let E be the elliptic curve over the finite field K = Z/5Z defined
by the equation
Y=o} +z+1.

(i) List all 9 elements of F(K).
(ii) What is the structure of the group F(K), as a product of cyclic groups?
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3. (8 points) Let E be an elliptic curve over Q. Define a binary operation H
on E as follows:
PEQ=-(P+0Q).

Thus the B of P and @ is the third point of intersection of the line through P
and () with E.

(i) Lists the axiom(s) of a group that fail for F(R) equipped with this binary
operation. (The group axioms are “identity”, “inverses”, and “associa-
tivity”.)

(ii) Under what conditions on E(Q) does this binary operation define a group
structure on E(Q)? (E.g., when E(Q) = {O} this binary operation does
define a group.)

4. (6 points) Let g(t) be a quartic polynomial with distinct (complex) roots, and
let @ be a root of g(t). Let 8 # 0 be any number.

(i) Prove that the equations

B 2 ﬁQU
(t—a)?

give an “algebraic transformation” between the curve u? = g(¢) and the
curve 2 = f(z), where f(z) is the cubic polynomial

7(@) = ¢ (0)Ba + 50" (@2 + 59"(0)B% + 510" ()",

(ii) Prove that if ¢ has distinct (complex) roots, then f also has distinct
roots, and so u? = g(t) is an elliptic curve.

5. (8 points) In this problem you will finally find out exactly why elliptic curves
are called “elliptic curves”! Let 0 < 8 < a, and let C be the ellipse

(i) Prove that the arc length of C' is given by the integral

w/2
4a/ V1 — k2 sin? 6d6
0

for an appropriate choice of constant k£ depending on « and f.

(ii) Check your value for & in (i) by verifying that when o = 3, the integral
yields the correct value for the arc length of a circle.

(iii) Prove that the integral in (i) is also equal to

1 _ 1242 1 _1.242
4a/ ,/%dt:zxa/ LM dt
0 1-1 0 V(1 —12)(1 - k2#2)
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(iv) Prove that if the ellipse F is not a circle, then the equation
uw? = (1—1%)(1 - k*?)

defines an elliptic curve (cf. the previous exercise). Hence the problem
of determining the arc length of an ellipse comes down to evaluating the

integral
1 242
1— k%t
| =
0 U
on the “elliptic” curve u? = (1 — t2)(1 — k%t?).
6. (8 points) Suppose that P = (z,y) is a point on the cubic curve
y? = 2® + azx +b.
(i) Verify that the = coordinate of the point 2P is given by the duplication

formula
z* — 2ax% — 8bx + a2

49y2

z(2P) =

(ii) Derive a similar formula for the y coordinate of 2P in terms of z and y.

(iii) Find a polynomial in z whose roots are the z-coordinates of the points
P = (z,y) satisfying 3P = O. [Hint: The relation 3P = O can also be
written 2P = —P.]

(iv) For the particular curve y? = x3+ 1, solve the equation in (iii) to find all
of the points satisfying 3P = . Note that you will have to use complex
numbers.

35.9 Elliptic Curves 11

1. (10 points) Let @ be the set of the 15 possible groups of the form E(Q)or
for E an elliptic curve over Q (see Lecture 27). For each group G € @, if
possible, find a finite field £k = Z/pZ and an elliptic curve E over k such that
E(k) = G. (Hint: It is a fact that |p + 1 — #E(Z/pZ))| < 2,/p, so you only
have to try finitely many p to show that a group G does not occur as the
group of points on an elliptic curve over a finite field.)

2. (6 points) Many number theorists, such as myself one week ago, incorrectly
think that Lutz-Nagell works well in practice. Describe the steps you would
take if you were to use the Lutz-Nagell theorem (Lecture 27) to compute the
torsion subgroup of the elliptic curve E defined by the equation

y? + oy = 2% — 8369487776175z + 9319575518172005625,

then tell me why it would be very time consuming to actually carry these steps
out. Find the torsion subgroup of E using the elltors command in PARI.
Does elltors use the Lutz-Nagell algorithm by default?

3. (6 points) Let E be the elliptic curve defined by the equation y? = z3 + 1.
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(i) For each prime p with 5 < p < 30, describe the group of points on this
curve having coordinates in the finite field Z/pZ. (You can just give the
order of each group.)

(ii) For each prime in (i), let N, be the number of points in the group. (Don’t
forget the point infinity.) For the set of primes satisfying p = 2 (mod 3),
can you see a pattern for the values of N,? Make a general conjecture
for the value of N, when p =2 (mod 3).

(iii) Prove your conjecture.

4. (6 points) Let p be a prime and let E be the elliptic curve defined by the
equation y?> = 23 + pz. Use Lutz-Nagel to find all points of finite order in

E(Q).
5. (4 points)

(i) Let E be an elliptic curve over the real numbers R. Prove that E(R) is
not a finitely generated abelian group.

(ii) Let E be an elliptic curve over a finite field k = Z/pZ. Prove that E(k)
is a finitely generated abelian group.

35.10 Elliptic Curves III

1. (5 points) Make up a simple example that illustrates how to use the ElGamal
elliptic curve cryptosystem (see Lecture 29). You may mention Nikita and
Michael if you wish. Be very clear about what you are illustrating so that the
grader can effortlessly understand your example.

2. (5 points) Make up an example that illustrates an interesting aspect of the
Pollard (p — 1) factorization method.

3. (b points) Make up an example that illustrates something that you consider
an interesting aspect of Lenstra’s elliptic curves factorization method.

4. (10 points) Let R be a ring. We say that Fermat’s last theorem is false in R
if there exists z,y,z € R and n € Z with n > 3 such that =" + y™ = 2" and
zyz # 0. For which prime numbers p is Fermat’s last theorem false in the ring
Z/pZ?"

!This problem was on the dreaded Harvard graduate school qualifying examination this year.
Every one of the students who took that exam got this problem right.
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