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Preface

This book deals with several aspects of what is now called “explicit number
theory,” not including the essential algorithmic aspects, which are for the
most part covered by two other books of the author [Coh0] and [Cohl]. The
central (although not unique) theme is the solution of Diophantine equa-
tions, i.e., equations or systems of polynomial equations that must be solved
in integers, rational numbers, or more generally in algebraic numbers. This
theme is in particular the central motivation for the modern theory of arith-
metic algebraic geometry. We will consider it through three of its most basic
aspects.

The first is the local aspect: the invention of p-adic numbers and their
generalizations by K. Hensel was a major breakthrough, enabling in particular
the simultaneous treatment of congruences modulo prime powers. But more
importantly, one can do analysis in p-adic fields, and this goes much further
than the simple definition of p-adic numbers. The local study of equations
is usually not very difficult. We start by looking at solutions in finite fields,
where important theorems such as the Weil bounds and Deligne’s theorem
on the Weil conjectures come into play. We then lift these solutions to local
solutions using Hensel lifting.

The second aspect is the global aspect: the use of number fields, and
in particular of class groups and unit groups. Although local considerations
can give a considerable amount of information on Diophantine problems,
the “local-to-global” principles are unfortunately rather rare, and we will
see many examples of failure. Concerning the global aspect, we will first
require as a prerequisite of the reader that he or she be familiar with the
standard basic theory of number fields, up to and including the finiteness of
the class group and Dirichlet’s structure theorem for the unit group. This can
be found in many textbooks such as [Sam] and [Marc]. Second, and this is
less standard, we will always assume that we have at our disposal a computer
algebra system (CAS) that is able to compute rings of integers, class and unit
groups, generators of principal ideals, and related objects. Such CAS are now
very common, for instance Kash, magma, and Pari/GP, to cite the most useful
in algebraic number theory.
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The third aspect is the theory of zeta and L-functions. This can be consid-
ered a unifying theme® for the whole subject, and it embodies in a beautiful
way the local and global aspects of Diophantine problems. Indeed, these func-
tions are defined through the local aspects of the problems, but their analytic
behavior is intimately linked to the global aspects. A first example is given by
the Dedekind zeta function of a number field, which is defined only through
the splitting behavior of the primes, but whose leading term at s = 0 contains
at the same time explicit information on the unit rank, the class number, the
regulator, and the number of roots of unity of the number field. A second
very important example, which is one of the most beautiful and important
conjectures in the whole of number theory (and perhaps of the whole of math-
ematics), the Birch and Swinnerton-Dyer conjecture, says that the behavior
at s = 1 of the L-function of an elliptic curve defined over QQ contains at the
same time explicit information on the rank of the group of rational points
on the curve, on the regulator, and on the order of the torsion group of the
group of rational points, in complete analogy with the case of the Dedekind
zeta function. In addition to the purely analytical problems, the theory of
L-functions contains beautiful results (and conjectures) on special values, of
which Euler’s formula 3, -, 1/n? = 72 /6 is a special case.

This book can be considered as having four main parts. The first part gives
the tools necessary for Diophantine problems: equations over finite fields,
number fields, and finally local fields such as p-adic fields (Chapters 1, 2, 3,
4, and part of Chapter 5). The emphasis will be mainly on the theory of
p-adic fields (Chapter 4), since the reader probably has less familiarity with
these. Note that we will consider function fields only in Chapter 7, as a tool
for proving Hasse’s theorem on elliptic curves. An important tool that we will
introduce at the end of Chapter 3 is the theory of the Stickelberger ideal over
cyclotomic fields, together with the important applications to the Eisenstein
reciprocity law, and the Davenport—Hasse relations. Through Eisenstein reci-
procity this theory will enable us to prove Wieferich’s criterion for the first
case of Fermat’s last theorem (FLT), and it will also be an essential tool in
the proof of Catalan’s conjecture given in Chapter 16.

The second part is a study of certain basic Diophantine equations or
systems of equations (Chapters 5, 6, 7, and 8). It should be stressed that
even though a number of general techniques are available, each Diophantine
equation poses a new problem, and it is difficult to know in advance whether
it will be easy to solve. Even without mentioning families of Diophantine
equations such as FLT, the congruent number problem, or Catalan’s equation,
all of which will be stated below, proving for instance that a specific equation
such as 23 +y° = 27 with 2, y coprime integers has no solution with zyz # 0
seems presently out of reach, although it has been proved (based on a deep
theorem of Faltings) that there are only finitely many solutions; see [Dar-Gra)

3 Expression due to Don Zagier.
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and Chapter 14. Note also that it has been shown by Yu. Matiyasevich (after
a considerable amount of work by other authors) in answer to Hilbert’s tenth
problem that there cannot exist a general algorithm for solving Diophantine
equations.

The third part (Chapters 9, 10, and 11) deals with the detailed study
of analytic objects linked to algebraic number theory: Bernoulli polynomi-
als and numbers, the gamma function, and zeta and L-functions of Dirichlet
characters, which are the simplest types of L-functions. In Chapter 11 we
also study p-adic analogues of the gamma, zeta, and L-functions, which have
come to play an important role in number theory, and in particular the Gross—
Koblitz formula for Morita’s p-adic gamma function. In particular, we will
see that this formula leads to remarkably simple proofs of Stickelberger’s con-
gruence and the Hasse-Davenport product relation. More general L-functions
such as Hecke L-functions for Grossencharacters, Artin L-functions for Galois
representations, or L-functions attached to modular forms, elliptic curves, or
higher-dimensional objects are mentioned in several places, but a systematic
exposition of their properties would be beyond the scope of this book.

Much more sophisticated techniques have been brought to bear on the
subject of Diophantine equations, and it is impossible to be exhaustive. Be-
cause the author is not an expert in most of these techniques, they are not
studied in the first three parts of the book. However, considering their impor-
tance, I have asked a number of much more knowledgeable people to write
a few chapters on these techniques, and I have written two myself, and this
forms the fourth and last part of the book (Chapters 12 to 16). These chap-
ters have a different flavor from the rest of the book: they are in general not
self-contained, are of a higher mathematical sophistication than the rest, and
usually have no exercises. Chapter 12, written by Yann Bugeaud, Guillaume
Hanrot, and Maurice Mignotte, deals with the applications of Baker’s explicit
results on linear forms in logarithms of algebraic numbers, which permit the
solution of a large class of Diophantine equations such as Thue equations
and norm form equations, and includes some recent spectacular successes.
Paradoxically, the similar problems on elliptic curves are considerably less
technical, and are studied in detail in Section 8.7. Chapter 13, written by
Sylvain Duquesne, deals with the search for rational points on curves of genus
greater than or equal to 2, restricting for simplicity to the case of hyperelliptic
curves of genus 2 (the case of genus 0—in other words, of quadratic forms—is
treated in Chapters 5 and 6, and the case of genus 1, essentially of elliptic
curves, is treated in Chapters 7 and 8). Chapter 14, written by the author,
deals with the so-called super-Fermat equation 2P +y? = 2", on which several
methods have been used, including ordinary algebraic number theory, classi-
cal invariant theory, rational points on higher genus curves, and Ribet—Wiles
type methods. The only proofs that are included are those coming from alge-
braic number theory. Chapter 15, written by Samir Siksek, deals with the use
of Galois representations, and in particular of Ribet’s level-lowering theorem
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and Wiles’s and Taylor—Wiles’s theorem proving the modularity conjecture.
The main application is to equations of “abc” type, in other words, equations
of the form a + b + ¢ = 0 with a, b, and ¢ highly composite, the “easiest”
application of this method being the proof of FLT. The author of this chapter
has tried to hide all the sophisticated mathematics and to present the method
as a black box that can be used without completely understanding the un-
derlying theory. Finally, Chapter 16, also written by the author, gives the
complete proof of Catalan’s conjecture by P. Mihailescu. It is entirely based
on notes of Yu. Bilu, R. Schoof, and especially of J. Boéchat and M. Mischler,
and the only reason that it is not self-contained is that it will be necessary to
assume the validity of an important theorem of F. Thaine on the annihilator
of the plus part of the class group of cyclotomic fields.

Warnings

Since mathematical conventions and notation are not the same from one
mathematical culture to the next, I have decided to use systematically un-
ambiguous terminology, and when the notations clash, the French notation.
Here are the most important:

— We will systematically say that a is strictly greater than b, or greater than
or equal to b (or b is strictly less than a, or less than or equal to a), although
the English terminology a is greater than b means in fact one of the two
(I don’t remember which one, and that is one of the main reasons I refuse
to use it) and the French terminology means the other. Similarly, positive
and negative are ambiguous (does it include the number 0)? Even though
the expression “r is nonnegative” is slightly ambiguous, it is useful, and I
will allow myself to use it, with the meaning x > 0.

— Although we will almost never deal with noncommutative fields (which is
a contradiction in terms since in principle the word field implies commu-
tativity), we will usually not use the word field alone. Either we will write
explicitly commutative (or noncommutative) field, or we will deal with spe-
cific classes of fields, such as finite fields, p-adic fields, local fields, number
fields, etc., for which commutativity is clear. Note that the “proper” way
in English-language texts to talk about noncommutative fields is to call
them either skew fields or division algebras. In any case this will not be an
issue since the only appearances of skew fields will be in Chapter 2, where
we will prove that finite division algebras are commutative, and in Chapter
7 about endomorphism rings of elliptic curves over finite fields.

— The GCD (respectively the LCM) of two integers can be denoted by (a, b)
(respectively by [a,b]), but to avoid ambiguities, I will systematically use
the explicit notation ged(a, b) (respectively lem(a, b)), and similarly when
more than two integers are involved.
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— An open interval with endpoints a and b is denoted by (a,b) in the En-
glish literature, and by ]a,b[ in the French literature. I will use the French
notation, and similarly for half-open intervals (a,b] and [a,b), which T will
denote by ]a,b] and [a, b[. Although it is impossible to change such a well-
entrenched notation, I urge my English-speaking readers to realize the
dreadful ambiguity of the notation (a,b), which can mean either the or-
dered pair (a,b), the GCD of a and b, the inner product of a and b, or the
open interval.

— The trigonometric functions sec(z) and csc(z) do not exist in France, so
I will not use them. The functions tan(z), cot(x), cosh(x), sinh(x), and
tanh(x) are denoted respectively by tg(x), cotg(z), ch(x), sh(z), and th(x)
in France, but for once to bow to the majority I will use the English names.

— R(s) and I(s) denote the real and imaginary parts of the complex number
s, the typography coming from the standard TEX macros.

Notation

In addition to the standard notation of number theory we will use the fol-
lowing notation.

— We will often use the practical self-explanatory notation Z~o, Z>o, Z<o,
Z<o, and generalizations thereof, which avoid using excessive verbiage. On
the other hand, I prefer not to use the notation N (for Zxg, or is it Z~¢?).

— If a and b are nonzero integers, we write ged(a,b>) for the limit of the
ultimately constant sequence ged(a,b™) as n — oo. We have of course
ged(a, b)) = I, scd(an) p* (@) and a/ ged(a, b>) is the largest divisor of a
coprime to b.

— If n is a nonzero integer and d | n, we write d||n if gecd(d,n/d) = 1. Note
that this is not the same thing as the condition d? { n, except if d is prime.

— If z € R, we denote by |x| the largest integer less than or equal to = (the
floor of x), by [x] the smallest integer greater than or equal to x (the ceiling
of x, which is equal to |z] 41 if and only if z ¢ Z), and by |z] the nearest
integer to x (or one of the two if @ € 1/2 + Z), so that |z] = [z + 1/2].
We also set {z} =« — | ], the fractional part of x. Note that for instance
|—1.4] = —2, and not —1 as almost all computer languages would lead us
to believe.

— For any o belonging to a field K of characteristic zero and any k € Z>¢

we set
a\ ala—1)---(a—k+1)
(k) k! '
In particular, if a« € Z>( we have (2‘) = 0if £ > «, and in this case we will
set (‘z) = 0 also when k£ < 0. On the other hand, (‘z) is undetermined for
k<0if a ¢ Z;().
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— Capital italic letters such as K and L will usually denote number fields.

— Capital calligraphic letters such as K and £ will denote general p-adic fields
(for specific ones, we write for instance K,).

— Letters such as E and F will always denote finite fields.

— The letter Z indexed by a capital italic or calligraphic letter such as Zg,
Zy, Zi, etc., will always denote the ring of integers of the corresponding
field.

— Capital italic letters such as A, B, C, G, H, S, T, U, V, W, or lowercase
italic letters such as f, g, h, will usually denote polynomials or formal power
series with coefficients in some base ring or field. The coefficient of degree m
of these polynomials or power series will be denoted by the corresponding
letter indexed by m, such as A,,, By, etc. Thus we will always write (for
instance) A(X) = Ag X%+ Az 1 X9 1. ..+ Ay, so that the ith elementary
symmetric function of the roots is equal to (—1)"A4_;/Aq4.
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9. Bernoulli Polynomials and the Gamma
Function

We now begin our study of analytic methods in number theory. This is of
course a vast subject, but we will not deal with what is usually called “an-
alytic number theory,” but with the methods that are related to the study
of L-functions, which we will study in the next chapter. This essentially in-
volves Bernoulli numbers and polynomials, the Euler—-MacLaurin summation
formula, and the gamma function and related functions.

9.1 Bernoulli Numbers and Polynomials

9.1.1 Generating Functions for Bernoulli Polynomials

We start by recalling some properties of Bernoulli numbers and polynomials.

Definition 9.1.1. We define the Bernoulli polynomials By (x) and their ex-
ponential generating function E(t,x) by

tel® Bi(z)

et —1 W
k>0

E(t,z) =

and the Bernoulli numbers By by By = By(0).

The first few polynomials are By(z) = 1, Bi(z) = z — 1/2, By(z) =
22 — 2 +1/6, and Bs(x) = 2° — 32%/2 + x/2. Note that most of the results
that we give in this section for Bernoulli polynomials also apply to Bernoulli
numbers by specializing to 0 the variable x.

The reader will notice as we go along that more natural numbers would
be By /k instead of By. However, it is impossible to change a definition that
is centuries old.

Proposition 9.1.2. We have the following properties:

(1) By(x) = kBi1(2).

(2) Bi(x) is a monic polynomial of degree k.

(3) For k # 1 we have Bi(1) = By(0) = By, while for k = 1 we have
B1(1) =1/2 = B1(0) + 1. In other words, if we set 61 =1 if k=1 and
Ok,1 = 0 otherwise, we have By(1) = By + k1.
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(4) By =0 if k is odd and k > 3.

(5) We have
By(z) = zk: (j) Bjzh I

=0

Proof. All these results are immediate consequences of the definition: (1)
is equivalent to % =tE(t,z), (2) follows by induction, (3) is equivalent
to E(t,1) — E(t,0) =t, (4) to the fact that E(¢t,0) +t/2 = (¢/2) cotanh(t/2)
is an even function, and (5) by formal multiplication of the power series for
e'* by E(t,0). O

It is immediate to check that (1) and (3) together with By(z) =1 in fact
characterize Bernoulli polynomials (Exercise 1).

In addition to the initial values By = 1 and By = —1/2, the first few
nonzero values are By = 1/6, By = —1/30, Bg = 1/42, Bs = —1/30, Byp =
5/66, Bia = —691/2730, B14 = 7/6, B1g = —3617/510. For instance, every
time that you meet the (prime) number 691, you must immediately think of
the Bernoulli number Bis.

Further immediate properties of Bernoulli polynomials are the following.

Proposition 9.1.3. We have

Bi(z +1) = By(z) + ka*~1 |

By(~x) = (=1)*(Bk(z) + kz" 1),
Bi(1— ) = (=1)"By() ,
"k
Z ( ,>yijj (x) = Bi(z +y), and in particular
Jj=0 /
=1
( ,)Bj (z) = k"1 | hence
=0
el
(.)szOfork;zél,
=0 M
' Bi(Nzx
S B x+]‘<[) :% for N € Zs, .
0<j<N

Proof. Tt is immediate that these formulas are equivalent respectively to
the trivial identities E(t,x + 1) = E(t,z) + te!®, E(—t,—x) = ¢'E(t,z) =
E(t,x)+te!®, E(~t,1—x) = E(t,x), E(t,z+y) = e E(t, 1), (¢! 1)E(t,z) =
te', and Y oy E(Nt,z + j/N) = NE(t, Nz). o
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Note that the formula for By(—z) generalizes the fact that By = 0 for
k > 3 odd. Like all formulas involving j/N for 0 < j < N, the last formula
is called the distribution formula for Bernoulli polynomials.

Bernoulli numbers and polynomials are by definition Taylor coefficients
of certain power series. Thus they occur in the Taylor expansion of a number
of classical functions, as follows.

Proposition 9.1.4. We have the following Taylor series expansions with
radii of convergence R indicated in parentheses:

B
cotanh(t) = — —|— Z 22]C Qk t2k=1 (R=m),
k=1
cotan(t) = L Z(—nk*lg% Bor o1 (R=r)
t = (2k)!
tanh(t Z 22k ( sz 2kl (R=1/2)
= 2k) '
B
tan(t) = Y (—1)F122R (2 — 1) 2Ll (R=7/2),
= (2k)!
1 sz
4 2(22k~1 _ 12k—1 _
s1nh ot Z: 2k)! (B=m),
1 k 1o (92k—1 Bok ok
- 2(2 —1)—=t R =
sin(t) ¢ g >(Qk)! ( ™
Z 22k B2k $2k—1 (R=r)
et 1 = 2k)!

Proof. By definition

cosh(t) et+et e*+1 1 2t
cotanh(t) = sinh(t) el —e ! e2—1 T

and since cotan(t) = i cotanh(it) the first two formulas follow. Next, we note
the trigonometric identity tan(t) = cotan(t) — 2cotan(2t), which immedi-
ately leads to the expansion for tan(t), and the one for tanh(t) follows from
tanh(t) = tan(it)/i. Next, we note that 1/(e! —e~%) = 1/(e! —=1) —1/(e** - 1),
giving the formula for 1/sinh(¢), hence for 1/sin(¢), and we also note that
1/(et +1) = 1/(e! — 1) — 2/(e? — 1), giving the last formula. The state-
ments about the radii of convergence can be proved either directly from the
asymptotic estimate for Bernoulli numbers that we will give below (Corollary
9.1.22), or from the fact that it is equal to the distance from the origin of the
nearest singularity. O

Corollary 9.1.5. We have
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1 1
M- s
and in particular the polynomial By (x) is divisible by x(x —1/2)(x — 1) when

k is odd and k > 3.

Proof. For the first formula we note that te/?/(e! — 1) = (t/2)/ sinh(t/2),
and the second statement follows from the vanishing of By, for & > 3 odd and
the fact that By (1) = By(0) for k # 1. O

Definition 9.1.6. We define the tangent numbers T for k > 0 by

By
T :2k+1 2k+1_1ﬁ.
g ( Vi1

Thus tanh(t) = Zk>1 Tor_1t2¢71/(2k — 1)! and similarly for tan(t). We
have Ty = —1, 15, = 0 for k£ > 1, and the first few values of T}, for k odd are
T =1,T3=-2,T5 =16, Ty = =272, Ty = 7936.

Corollary 9.1.7. The tangent numbers satisfy the recurrence

k

2k — 1
Z( )ng_llfork>0,
= 27 —1

and in particular Tog_1 € Z for all k > 1.
Proof. This immediately follows from the identity cosh(¢)tanh(t) =
sinh(¢), and the details are left to the reader. O
The fact that Ts,_1 € Z also follows from the Clausen—von Staudt theo-

rem that we will prove below (Exercise 59).

Definition 9.1.8. We define the Fuler numbers Ey for k > 0 by setting
FEok41 =0 for k>0 and

Bog41(1/4)
E — _42k+1 2k+1
2k 2k + 1

The first few values are Eg = 1, Es = —1, B4 =5, Eg = —61, Eg = 1385,
so once again if you meet the prime 61 in a computation, you may suspect
that it comes from Ej.

Proposition 9.1.9. We have

Bop(1/4) = Bak(3/4) = w = —2% (1 - 22,1_1> Bay

and the Taylor series expansions
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1 Eop o B
cosh(t) ;) et (B=T/2),

! —Z(l)kgz’;!t% (R=7/2).

cos(t) =
Proof. Multiplying the identity 1/(ef +1) = 1/(e’ — 1) —2/(e?* — 1) given
above by e'/2 and replacing t by 2¢t, we obtain
cosh(t) e*?+1 k!

k>1

Since cosh(t) is an even function, we first deduce that 22¥Bg;(1/4) =
Boi(1/2), and since B (1 — x) = Bag(x), we obtain the first formula. Fur-
thermore, since Bog11(1/2) = 0 for k > 0 by the above corollary, we have

. Bak+1 1/4)15

cosh (2k + 1)! ’

k>0

giving the formula for 1/ cosh(t), the last formula following by changing ¢
into t. a

Corollary 9.1.10. The Euler numbers satisfy the recurrence

2k
Z< J)EQJOfOTk>O

=0
and in particular Foy, € 7. for all k.

Proof. This immediately follows from the identity cosh(t)(1/ cosh(t)) =1
It also follows from the second formula of PI‘OpOSlthn 9.1.14 below applied to
x =y = 1/4. We thus have Ey = ZO<]<k ( )EQJ, from which we deduce
by induction that Ey is an integer for all k. a

Remark. Although Bernoulli numbers satisfy the recurrence Zj (k) B; =
0, which is very similar to the one for Ej, if we replace k by 2k and B by 0
when j > 1 is odd, the main difference is that this recurrence leads to

k—2
1 k

Bp_1=—+ E ()B
kao Jj

for k > 2, and the denominator 1/k implies that the By are not necessarily
integers (we will study some of their arithmetic properties in Section 9.5, and
in particular we will see that the only integral By is By = 1).
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Interestingly enough, although the natural generating function for Bernoulli
polynomials is the ezponential generating function E(t,x) =3, By (2)t* /K,
it is also possible to consider the ordinary generating function

S(t.a) = Y S

k>0

and I thank D. Zagier for pointing this out to me. We could of course consider
the generating function >, By (z)t* = S(1/t,x)/t, but the corresponding
formulas would be slightly more complicated.

It is easy to check that the series S(t, z) does not converge for any value
of t, but as a formal power series it makes sense, and we will also see that
even though the series is divergent we can assign to it a specific value. Note,
however, that in Chapter 11 we will see that it converges for all p-adic values
of ¢ such that [t| > 1, and that S(t,z) = v,'(t — 2 + 1) (which follows
immediately from Proposition 11.5.2 (2)), to be compared with Corollary
9.1.13, which is formally identical.

Proposition 9.1.11. We have
S(—t,—x)=-S(,2) — ——
St,x+1)=8St,z)+ ———

S(t—y,$) :S(t7$+y),

and in particular

St —1,z) =—-S(—t,—x) = S(t,z) +

(t —=)?
S(t,z) =S8t —=,0).

Proof. Using the formula for B,,(—x) mentioned above we have

By (—x) By () + kak—1

k+1 22k k

Sct-n) = Yy B 5 Bula) et
k>0 k>0

1 1 1
=-Str) - 5——==-St2)— —
proving the first formula, and the second follows similarly from the formula

for Bi(z + 1) (or from the first and the formula for By (1 — x)).
For the third, we use the formula for By (x + y), which gives
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St = S0 S (om0

k>0 j=0

=SB 00 S (D)t
j=0 k>j

= ZB YD (1 — /)=
7=0

proving the third formula. The final two follow from this and the first two.
O

Proposition 9.1.12. As a formal power series in t, S(t,x) is the Laplace
transform of E(t,x); in other words, we have formally

S(t, x) :/ e "EB(u, ) du .
0

Furthermore, fort > x — 1 the above integral converges absolutely.

Proof. The first statement is clear by expanding E(u, z) as a power series

in u since
/OO —tu kd k!
e "Mudu = ——,
o tk+1

and the second follows since the integrand is continuous everywhere and is
asymptotic to ue*@=171 as u — oo. O
Corollary 9.1.13. Fort > x — 1 we have

1

S(t,:c):1//(t—x+1):¢’(t—m)—m,

where ¢ = T'/T is the logarithmic derivative of the gamma function (see
Definition 9.6.13).
Proof. From Corollary 9.6.43 below we have

w’<s+1)=/ooovf_

SV

d
eflv

so the result follows from the proposition. ad

See also Theorems 9.6.48 and 9.6.49 for continued fraction expansions of

S(t,x).
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9.1.2 Further Recurrences for Bernoulli Polynomials

There are a great many useful recurrences for Bernoulli numbers and poly-
nomials. We begin with the following.

Proposition 9.1.14. For k > 0 we have

k X
3 (kﬁ) i Bjyi(x)  Bru(z+y) —y*!

2\ j+1 k1
Lk/2] k
3 k\ 1 Baji(x)  Brpa(r+y)+ (=1)"Bea(z —y)
S\ Y 2+ (2k + 2)y* ’
[k/2] k-1 k+1
3 kN 1 Byj(z) Brna(z+y)+ (D" Bz —y) —2
2 \2j-1) 97 2 (2k + 2)yF+1 '

Proof. We could give a proof of the first formula directly from the generat-
ing function, as we did for Proposition 9.1.3. It is however instructive to give
an alternative proof. After all, if we integrate with respect to = the formula
for Bi(z + y) given in Proposition 9.1.3 and use B} (z) = (j + 1)B;(x), we
obtain the result up to addition of a function of y, which is not easy to de-
termine. This approach almost never works. What does almost always work
is to use trivial transformations of binomial coefficients. Here we note that
for j > 1 we have (J) (k/])( 1), so that

"k (k-1
k (r) = b(x
+24j<j_1>BA) Br(z+y) ,

from which the first formula follows by dividing by k& and changing j into
j+1and k into £+ 1. The other two formulas follow by computing the sum
and difference of the first formula applied to y and to —y. a

Corollary 9.1.15. For k > 0 We have

T (M) Bl _ e 1
i) J+1 k+1°

i=o M

i(Zk)Bzﬁl z) a2 —(z—1)%

—~\2j) 2j+1 2 ’
53(2 )&J)_x%+m—n%_ 1
—\2j —1 27 2 2k+1"

k 2k
Z 2k 22] BQJ( ) 22k T — 1 _ 1
, 2j—1 2j 2 2k+1"
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Zk: 2% + 1\ Byj1(z) g2k H1 4 (g — 1)2k+1
j 25 +1 2 ’

Jj=

=0
i <2k + )ng(m) Pl (g )2 1

2i—1) 25 2 2k + 27

Z 2k + 1 22jB2j+1(£E):22k x_} 2k+1
: 2j 2j + 1 2 :

Jj=0

Proof. These formulas are obtained by suitable specializations to y = 1
or y = 1/2 of the formulas of the proposition. ad

Remarks. (1) If we want formulas involving B;(x) itself instead of B;(z)/j,
we simply differentiate with respect to z the formulas of the proposition
and of the corollary. We can of course differentiate several times. In-
versely, if we want formulas involving B;(z)/(j(j + 1)) for instance, we
must in principle integrate the given formulas, but as explained above this
will not glve the constant term, so we simply use as above the relation
( ) = (k/j)( ) for j > 1; see Exercise 23.

(2) Smce Bk(:rJr 1) and By (1 — ) have simple expressions in terms of By (z),
if we want to specialize again the above formulas (or their derivatives),
we may as well restrict to 0 < « < 1/2. Using the formulas By (0) = By,
Br(1/2) = —(1—-1/2¥"1)By, Bor(1/4) = —(1/22%)(1 —1/22%=1) By, and
the analogous formulas for Bay(1/3) and Bak(1/6) given by Exercise 10,
we obtain in this way a very large number of recurrence relations for
Bernoulli numbers. We can obtain even more such relations by replacing
directly « and y in the formulas of Proposition 9.1.14, for instance x =
y = 1/4 in the third formula. We also obtain the standard relation for
Euler numbers given in Corollary 9.1.10 by choosing @ = y = 1/4 in the
second formula. It is to be noted, however, that all these formulas have
approximately k terms; in other words, they express Bsj in terms of all
the By; for 1 < j < k. We are going to see that we can reduce this by a
factor of 2.

The second type of recurrence that we are going to study is not well
known, although it is essentially due to Seidel in 1877, and Lucas soon af-
terward. It has the advantage of having half as many terms in the sum,
and smaller binomial coefficients. I thank my colleague C. Batut for having
pointed it out to me.

Proposition 9.1.16. For any k and m in Zxo we have
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max(k,m)
() o)
— \\ i))k+m+i—j

(o

—xka:— m
=e(@=1) (k+m+1)("1m)

)

= Yo — )™ Y ((k 4+ m)z — k),

[(k—1)/2] ( k >BQk—2j(x) 7 :Ck(l'f 1)k (71)k+1

. . - 2k )
= \2j+1) 2k-2j 2 (4k +2)(3)

Lk/2]
k k+1Y\ Baky1-2i(z) k
— = -1 —1/2

]ZZ:O (<2j+1> +(2j+1>) hyi-g; o@Dl
(in all the above we recall that when k € Z=o we have (];) =017 <0 orif
Jj>k).

Proof. Consider z as a fixed parameter and set

E(t et B

Py = 200 _ Ly Binlo)

0
k>0 k+1 k

let D = d/dt be the differentiation operator with respect to ¢, and let I be
the identity operator. We begin with the following lemma.

Lemma 9.1.17. With the above notation we have
(e!D™(D + I)* — D*(D — I)™)F,(t) = 2" (x — 1)™e*" .

Proof. For simplicity write F, instead of F,(t). Leibniz’s rule can be writ-
ten in operator notation

N
N . .
DN(eFy) = [ ( ,)aN_Je’”DJ F, =e(D+al)VF, .
: J
j=0

If we apply D* to the defining identity e'F, — F, = e** we thus obtain
e'(D+ I)FF, — DFF, = 2%e**, so multiplying by e~! we have

(D+ D*F, — e 'D*F, = gFet®=1) |
and finally applying D™ we obtain
D™D+ 1)*F, —e (D — I)"DFE, = 2F(x — 1)me!®=1) |
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proving the lemma after multiplication by et. O

Proof of the proposition. Denote by G[0] (not G(0)) the constant term in
a Laurent series G(t). Taking constant terms in the lemma we obtain

k

> (?)( EDFTTTI R ( +Z J“( ) (DM B (4))[0] = 2 (z—1)™

=0

By definition we have (DN F,)[0] = By+1(z)/(N + 1), and

-1V NI Biinii(z)t?
DNFI t :( J+N+ v
®) tN+1 Zoj+N+1j!’

—I)NN! BN 1($) (—I)N BN 1(1‘)
tDNFa; t 0] = ( + — +

(e (1)10] (N+1)!+ N+1 N+1jL N+1 7
so replacing in the formula we obtain

k m— i max(k,m)
O 8 () o (et
iJktm—j+1 J J))k+m+1—j

J=0

= xk(x -nm

where the second sum starts at j = 1, since for j = 0 the binomial coefficients
cancel. Furthermore, we have

k 1 1
_— = tmt—lkdt
S ()= = [ e

_(_1\k ! m _n\k _ (_1)k
= [t = e

since it is easily shown by induction on k that

1
k!m! 1
t"™(1 -tk dt = =
/0 O = G L om0

(see Proposition 9.6.39 below for a more general formula). Replacing gives
the first formula of the proposition. The second immediately follows by dif-
ferentiating with respect to z, the third follows by choosing m = k in the
first formula, and the fourth by choosing m = k + 1 in the first formula and
subtracting the third. a

Corollary 9.1.18. For any k and m in Z>o we have

max(k,m) m
o (G () it -
: J i)) k+m+1—j (k+m+1)("t™)

j=0
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T ()

j=0
fork>1
[(k—1)/2] ( L ) Bok_sj (_1>k+1
o 2+ 2%-2  (@h+2())
fork>2
e k E+1 B R
j;) (<2j+ 1) " <2j+1>> B
and

Lk/2]
k k+1 2 o &
2 (<2j+1)+(2j+1>)4 Faroag = (97

Jj=0

Proof. The first four formulas follow by taking £ = 0 in the proposition
and using the formulas for the odd Bernoulli numbers. The replacement of
(—=1)7 by £(—1)*+™ and the fact that we begin at j = 0 removes the special
cases. The details are left to the reader. The last formula is obtained by
taking x = 1/4 in the last formula of the proposition. a

A restatement of the fourth formula is the following:

Corollary 9.1.19. For k > 2 we have

1k/2)
1 k+1
Bop= - > (2k—2j+1 Bop_oi .
T T Rk T 1) j:l( I+ )<2j+1) 2k=2j

We could of course restate in the same way the last formula to obtain a
shorter recurrence for Euler numbers, but it is not certain that this would be
any better than the standard one since the recurrence would involve nonin-
tegral rational numbers.

Thus, as mentioned above, we obtain a recurrence giving By as a linear
combination of the preceding Baj_2;, but only those with 2k — 25 > 2[k/2],
hence half as many as the formulas obtained using the more standard recur-
rences. Furthermore, the coefficients of the linear combinations are smaller
binomial coefficients since (forgetting the simple factor (2k — 25 + 1)) they
have the form (k;fl) instead of (ij).

9.1.3 Computing a Single Bernoulli Number

If we want to compute a table of Bernoulli numbers up to a desired limit, the
above recurrence or others are suitable. But if we want to compute a single
value of a Bernoulli number Bj, for k even, computing all the preceding B;
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up to By using recurrences is a waste of time and space since there exist
more efficient direct methods. We assume of course that k is even. The first
method is based on a direct formula for By, given in Exercise 26. The second
method is based on two results that we shall prove below (Corollary 9.1.21
and Theorem 9.5.14). One is the well-known formula

k21 2 k! 1
(2m)k

By = (-1 —
k= (=1) 5
m>1

which gives a very precise asymptotic estimate on the size of By. The other is
the Clausen—von Staudt congruence, which gives the exact denominator Dy
of the rational number By:

Dk: Hp7

(p—1)|k

where the product is over prime numbers p such that (p — 1) | k. It is thus
sufficient to compute an approximation Ay to Dy By, such that |Ay — Dy By| <
1/2, and the numerator of By, will then be equal to the nearest integer to Ag.
This indeed gives a very efficient method to compute an individual value of
By.

Note that the implementation of this method should be done with care.
We first compute the denominator Dy and k! in a naive way. We must then
estimate the number of decimal digits d with which to perform the computa-
tion, and the number N of terms to take in the zeta series. A cursory analysis
shows that one can take

d =3+ [di/log(10)] N =1+ [exp((dy —log(k—1))/(k—1))],
where
dy =log(Dg) + (k + 1/2)log(k) — k(log(27) + 1) + log(27) /2 + log(2) + 0.1 .

Thanks to Stirling’s formula the reader will recognize that d; is close to
log(Dy|Bk|), and the 3+ and 1+ are safety precautions. Note that the above
computations should be done to the lowest possible accuracy, since at this
point we only want integers d and N.

The computation of m can be done using many different methods, but
since anyway you will have to use a CAS for the multiprecision operations,
this is always built in. Of course 7% is computed using a binary powering
method.

When £ is large all this takes only a small fraction of the time, almost all
the time being spent in the computation of ((k) = Zm>1 m ™" to the desired
number of decimal digits d. Note that since k is large, ((k) is very close to
1. Once again there are several methods to do this computation, but in the
author’s opinion the best method is as follows. First, instead of computing
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the series ((k), we compute the Buler product 1/((k) = [],(1 — 1/p*), the
product being over all prime numbers up to the precomputed limit N. Second,
the multiplication of the current product P by 1 — 1/p* is not done naively
as P(1 — 1/p*) but as P — t(P,d — klog(p))/p", where t(P,d') is equal to
P truncated to the accuracy d’. Indeed, contrary to most computations in
numerical analysis, here we need absolute and not relative accuracy. Although
this is a technical remark it can in itself gain a factor of 3 or 4.

Note that when suitably implemented the above method is so efficient
that it can even be faster than the method using recurrences for computing
a table.

To give an idea of the speed, on a Pentium 4 at 3 Ghz the computation of
Bioooo requires 33 seconds using the formula of Exercise 26, but only 0.3 sec-
onds using the above method. The computation of all Bernoulli numbers up
to Bsooo requires 205 seconds using the standard recurrences given above and
26 seconds using the above method that computes each number individually,
which is indeed considerably faster.

9.1.4 Bernoulli Polynomials and Fourier Series

In this section we give a direct link between Bernoulli polynomials and cer-
tain Fourier series. This will later be useful for computing special values of
Dirichlet L-functions (see Section 10.3).

It is important to compute the Fourier series corresponding to the func-
tions By () for k > 1 (for k = 0 it is trivial), more precisely to the functions
obtained by extending by periodicity of period 1 the kth Bernoulli polyno-
mial on the interval [0,1[. We will denote by {x} the fractional part of x,
in other words the unique real number in [0,1[ such that z — {z} € Z, i.e.,
{z} =« — |«]. The function By({z}) is evidently periodic of period 1. The
result is as follows.

Theorem 9.1.20. (1) Forn > 2 even we have

cos(2rkzx —1)/2+ (o B, ({z
3 ( ) (=1 (2m)" By ({z})

kn 2 n!

k>1

(2) Forn > 1 odd we have

3 sin(2rkz)  (—1)"*Y/2 27" B, ({z})

kn N 2 n! ’
k=1
except forn =1 and x € Z, in which case the left-hand side is evidently
equal to 0.
(3) For x ¢ Z we have

cos(2mkx
3 (2ka)

= —log(2| sin(r)]) .

E>1



9.1 Bernoulli Numbers and Polynomials 17

Proof. (1) and (2). Since B, (1) = B,(0) for n # 1, the function B, ({z})
is piecewise C*° and continuous for n > 2, with simple discontinuities at the
integers if n = 1. If n > 2 we thus have

Bn({x}) _ Z Cn7k-62iﬂ-kx 7
k€Z
with L
Cnk = / Bn(t)e_%”kt dt .
0
For n = 1, the same formula is valid for z ¢ Z, and for 2 € Z we must replace
Bi({z}) by (B1(17) + B1(07))/2 = 0.

Using the definitions and the formulas B (z) = nB,_1(z) and B,(1) =
B, (0) for n # 1, by integration by parts we obtain for k # 0

n and 1
= — _ 11 = ——
k= Qi Lk k= ik
hence by induction
n!
k= T Qirk)n
On the other hand, we clearly have
By+1(1) — Bp4a(0
- +1(1) +1(0) _,

n+1
as soon as n > 1. Thus, with the above interpretation for x € Z when n = 1,
we obtain that for n > 1 we have

217rkr

Bleh =i

k+#£0

Separating the cases n even and n odd, and grouping the terms k and —k
proves (1) and (2).
For (3) we proceed differently. We have

cos(2mkx) eZimhe P
ZT:% Z ’ = —R (log(1 — €*™))

E>1 k>1
—log (’1 —e¥™|) = —log(2|sin(rz)])

proving the theorem. m]
Corollary 9.1.21. Forn > 1 we have

Z - n 1 (271')2nt
k:2” B 2 (2n)! '
E>1




18 9. Bernoulli Polynomials and the Gamma Function

and for n > 0 we have

(CDF (DM 0P B (1/4) _ (S (/27 By,
2T

2k + 1)2ntl 2 (2n +1)! 2 (2n)!

k>0

In particular, the sign of Ba, is equal to (—1)"~! for n > 1 and the sign of
Es,, is equal to (—1)™ for n > 0, so both have alternating signs.

Proof. This is a direct consequence of the theorem by choosing = = 0 for
n even and x = 1/4 for n odd. Note that Zk>0(*1)k/(2k+ 1)1 > 0 since
it is an alternating series with decreasing terms. a

Note that these are special cases of Theorem 10.3.1, which we will prove in
the next chapter. Conversely, we can give an alternative proof of this theorem
using Theorem 9.1.20; see Exercise 35 of Chapter 10.

Corollary 9.1.22. Asn tends to infinity, we have

_12(2n)!
B ~ (=17 1
2n ~ (—1) (2m)2n
2(2n)!
Eop ~ (1) —— -
2 (=1) (mr/2)2n+1
Proof. Clear since Y, -, 1/k** and Y7, 5 o(— 1)*/(2k+1)?"*! tend to 1 as
n — oo. a

This corollary shows that, as already mentioned, most asymptotic expan-
sions involving Bernoulli numbers or Euler numbers will diverge, since (2n)!
grows much faster than any power of n. Only rare expansions which have an
expression such as (2n)! in the denominator may converge.

Examples.
1 72 1 7 1 76

D ETE W0 0B Zk8*945o

k>1 k>1 k>1
Z (—1)k - T (—1)k o 7'('3 Z (—1)k - 571'5

— 791, L 1\3 ~ 29’ 5 )
= 2k + 1 4 = (2k + 1) 32 = (2k+1) 1536
7

3 (-1)F  6lx 3 (-DF 2770
2k +1)7 184320’ 2k +1)° 8257536
k>0

Note also the following corollary, which is very useful for giving upper
bounds on the remainder terms in the Euler-MacLaurin summation formula.

Corollary 9.1.23. If n is even we have
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sup | By, ({})] = |Bn|
zeR
and if n is odd we have

7|Bn+1|
B < —F.
igﬁ‘ n({z})] 1

Proof. The first statement immediately follows from Theorem 9.1.20 and
the fact that | cos(2mkx)| < 1, with equality for all k if & = 0. This proof is not
valid for n odd. For n = 1 we have By (z) = x—1/2, hence sup, |B1({z})| =
1/2 < 7|B2/2|, since By = 1/6. For n > 3 odd, we have

T

SN €' G < ()
2((n+N¢(n+1) n+1l(n+1)°

It is easily checked that for s > 3 the function ((s)/{(s + 1) is decreasing,
S0 it attains its maximum value for s = 3, and the second result follows
since 2w((3)/¢(4) < 7. Note that one can prove the same result with 27
instead of 7, and that 27 is the optimal constant, but we do not need this
for applications since we only want to give a reasonable upper bound for the
error terms. O

9.2 Analytic Applications of Bernoulli Polynomials

Even though for us the main use of Bernoulli numbers is of number-theoretic
nature, as we shall see for special values of L-functions (we have already
seen some examples above) and, as we shall see in Chapter 11, in congru-
ence properties leading to the definition of p-adic zeta and L-functions, it
is important to note that they are also essential for purely analytic reasons,
mainly because of the Euler-MacLaurin summation formula.

In addition to the above section on generating functions and recurrences,
we will thus devote four sections to Bernoulli polynomials. The present sec-
tion and the next deal with the analytic properties, i.e., essentially those
linked to the Euler-MacLaurin formula, Section 9.4 deals with x-Bernoulli
polynomials; and Section 9.5 deals with the arithmetic properties of Bernoulli
numbers.

9.2.1 Asymptotic Expansions

We begin by recalling the definition of an asymptotic expansion. Even though
we can define this in a more general setting, we will assume that we deal with
asymptotic expansions at infinity.
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Definition 9.2.1. Let uy be a sequence of complex numbers. We will say
that a sequence (a,,) is the sequence of coefficients of an asymptotic expansion
(at infinity) of un if for every k >0, as N — oo we have

un =ap+ 2 4 92 4 9k L h1/NFY

N N2 Nk
where we recall that f(N) = o(1/N¥) means that N*¥f(N) tends to 0 as
N — oo.

It is easy to see by induction on k that an asymptotic expansion, if it
exists, is unique. However, I emphasize the fact that in practice it is quite
rare that the corresponding power series Zj>0 a; /N7 converges; in other
words, the power series > >0 ajz? usually has a radius of convergence equal
to 0. Nevertheless, by abuse of notation we will write

UN = Gg + 3 N ~ + ﬁ +-
when it is understood that it is an asymptotic expansion in the above sense,
and not a convergent power series.

Even though the series converges nowhere in general, we can usually use
an asymptotic expansion to compute uy numerically to quite high accuracy,
by bounding the error term o(1/N*). We will see below as applications of the
Euler-MacLaurin summation formula many examples of asymptotic expan-
sions, of bounds on the error terms, and of numerical computations. For the
moment consider the following example.

Example. Let uy be defined by

ooeft
uNzeN/ —dt
N t

(this is equal to eV By (N), see Section 8.5.3). Successive integration by parts
shows by induction that

0! 1! 2! w1 (k—1)! e N [ et
It is easy to show that this defines an asymptotic expansion in the above
sense, so we will write

N k—1
7dt _— . —1 - 7 S
¢ /N ¢ A ERE (=1) NF

knowing that this expansion converges for no value of N. From the explicit
expression of the remainder term it is however clear that uy is always be-
tween two consecutive terms (this is very frequently the case in asymptotic
expansions), and in particular the error is less than the absolute value of the
first neglected term. If for instance we choose N = 40, taking k = 40 we see
that the error is less than 40!/40*" < 2-10718 so that we can compute very
accurately the value of uyg (we obtain uysg = 0.024404115079628577. . .).
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In practice we generalize the notion of asymptotic expansion in two ways:
first by allowing a finite number of auxiliary functions of N such as positive
powers of N, powers of logarithms or exponentials, etc., either additively or
multiplicatively; second by allowing the expansion to be in powers of some
other function of N than 1/N, most frequently 1/N'/? or more generally
1/N® for some « > 0.

9.2.2 The Euler—-MacLaurin Summation Formula

The Euler-MacLaurin summation formula is a simple but powerful tool that
enables us to solve (for instance) the following problems:

— Find the asymptotic expansion of the Nth partial sum of a divergent series.
— Find the asymptotic expansion of the Nth remainder of a convergent series,
and consequently considerably accelerate the convergence of the series.

— Find the asymptotic expansion of the difference between a definite integral
and corresponding Riemann sums, which allows us to compute much more
accurately and much faster the numerical value of the integral.

— Determine whether a given series converges by comparison with the corre-
sponding integral.

We will see several examples of all of this. The general Euler-MacLaurin
formula is not complicated, and is easy to prove, but this does not prevent
it from being very useful. Taylor’s formula is of a similar kind, and in fact
Bourbaki calls formulas analogous to Euler-MacLaurin generalized Taylor
expansions.

Although we could directly state and prove the formula, we prefer to begin
with some preliminary remarks. We have seen above that B, (z+1)— B, (z) =
nz"~ 1. This should be compared with the identity (z")" = naz""!. Here the
operation is derivation, and the antiderivative of nz”~1 is ™. In our case, the
operation is close to the derivation, it is the difference operator f(z+1)—f(x),
and the “antidifference” of na™ ! is B,, (). This is why Bernoulli polynomials
(and numbers) are so important in everything having to do with sums, as we
will see in the Euler—-MacLaurin summation formula.

The aim of this summation formula is to give an asymptotic expansion
for a general sum of the type >,y f(m), where f is a regular function
(for instance real analytic) on R. Before giving a formal and rigorous proof,
we will use a heuristic argument that is useful in other contexts. Denote by
D the derivation operator d/dt. If f is an entire function, we have by Taylor’s
expansion

(k) mk Dk
fomy =Y w0 (Z ,f)(f)(O) = (@ )0).

k>0 k>0

in a reasonable operator sense. Thus
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IS eND -1
m
Z f(m) = Z e f (O)Z(ele>(O)
0<m<N—1 o<m<N -1

- (6;1:1f> )~ (=1f) .

since all power series operators in D commute and once again by Taylor we
have eMP f(0) = f(N). By definition 1/(e” —1) =1/D+3,-,(B;/5)D'~".
The operator 1/D is of course the antiderivative operator, i.é., the integral,
hence the above formal reasoning leads to the formula

= [ s Y B - 1500

0<m<N 1 j=1

This heuristic reasoning is essentially correct, but we have not taken into
account the convergence conditions since in general the series that we have
obtained is not convergent. In fact, the goal of the Euler-MacLaurin sum-
mation formula is to give an asymptotic expansion of the left-hand side, not
an exact formula. The precise theorem is as follows, which we give in a more
general form.

Theorem 9.2.2 (Euler—-MacLaurin). Let a and b be two real numbers
such that a < b, and assume that f € C*([a,b]) for some k > 1. Then

/f ar+ 32 C L (BT 0) - By({ahy ()

a<m<b Jj=1

meZ
—1 b
+ CO [ ws a

Proof. We give a clean proof, using (very little) the language of distribu-
tions, and explain very briefly afterward how to avoid it.

By the basic properties of Bernoulli polynomials, we know that B, ({t}) =
kBy_1({t}) for k > 2, except for k = 2 on a set of measure zero (the integers).
Furthermore, Bf ({t}) = Bo({t}) — 0z (t), where z(t) is the Dirac distribution
concentrated on Z. Thus, if we set

s N LIOENIT

integration by parts gives for k > 2

k-1
Ry = U (BN 0) — By{a)f (@) + Rucr

For k = 1 we first assume that a ¢ Z and b ¢ Z. Integration by parts gives
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B2 = Bi@HIO) ~ Billahs@) - [ 10 @+ Y s

a<m<b

Furthermore, we note that Ry = Ry (a,b) is a continuous function of ¢ and b,
and it is easily checked by letting a or b tend to integers that the right-hand
side of this formula is also continuous, so it is valid for all a and b, integral
or not. Using the recurrence on Ry we thus obtain

k

Rk=2<_?_j_l( (NI 90) - Bi({a}) 9V (@)

/f ydt+ > f(m)

a<m<b

proving the theorem.

To avoid the (very elementary) use of the Dirac distribution, we proceed
as follows. Setting ap = |a] and by = |b], we split the integral into the sum
of an integral from a to ag + 1, of integrals from a9 + i to ag + 7 + 1 for
1 <i<by—ap—1, and of an integral from by to b. We then perform the
same integrations by parts as above on each individual integral, and putting
everything together we of course obtain the same result. ad

The following corollary gives three alternative forms of the Euler—-MacLaurin
formula, which for simplicity we give only for b = a + N with N € Z3, so

that {b} = {a}.
Corollary 9.2.3. Leta € R, N € Zxg, and k € Z>;.
(1) If f € C*(la, N + a]) we have

N-1 N+a
> fmta) = [ f dt—i—z - (FUDN +a) — FO(@))+Ri(f N)
m=0 a .

_ o—1 N+a
win R, = COL [ 0B apy

(2) If f € C?*([a, N + a]) we have
Z f(m+a) /N+af(t)dt+f(N+a2)+f(a)

m=0

o

J=1

(f(ZJ D(N +a)— f(zj_l)(a)) + Roi(f,N) ,

1

N+a
with Boy(f.N) =~ / OO (1) Bo ([t — a}) dit
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(3) If f € C%:([1, N]) we have

N N
JIN) + (1)
> fm) / ()dt+f

m=1
k

( FED(N) — f(Qj—l)(l)) + Raw(f, N) ,

1 N
with Ra(f:) =~ 51 / OB (1) By ({1)) dt

Note that the main term of the last formula is equivalent to the one
that we have obtained by our heuristic reasoning. Note also that we use the
notation Ry(f, N) with slightly different meanings.

Proof. For (1) we apply the theorem to a = 0 and b = N, replace the
function f(¢) by f(t+ a), and subtract f(N + a) — f(a). Formula (2) follows
by changing k into 2k and using the values of the odd Bernoulli numbers.
Formula (3) follows from (2) by choosing a = 1 and changing N into N — 1.

O

Corollary 9.2.4. Let f € C*([a,c[) for some a € R. Assume that both
the series » f(m) and the integral foof t)dt com;erge and that the

m2=a
derivatives fI=V(N) tend to 0 as N — oo for 1 < j < k. Then
"B
/ f t_i_z 2Jf2j 2 )+R2k(faN)a
m= N+1 ]:1
with
Row(f,N) = — )(t) Bax ({t}) dt
(fN) =~ (1) Bax({2})
Proof. Immediate and left to the reader (Exercise 52). O

Remark. If it is inconvenient to compute the successive derivatives of the
function f, we could hope to replace them for instance by the iterated forward
differences obtained by iterating (6f)(t) = f(t+1) — f(¢) (or by the centered
differences f(t+1/2) — f(t —1/2) if preferred). In this case, we would need a
formula involving this operator instead of the derivative operator D = d/dt.
This is where the heuristic reasoning made at the beginning comes in handy:
by Taylor we have § = e” — 1, hence D = log(1 + 6). Thus the operator
1/(e? —1) that is involved in the Euler-MacLaurin formula can be rewritten
formally as

LS S G S N S SR B
el -1 D eP-1 D) D § log(l1+4d)/) "
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Thus if we define the §-Bernoulli numbers by by

t B br ik
log(1+1t) = k! ’
we have
1 _ i bﬁék—l
eP—1" D k!
k>1

From the formal Euler—-MacLaurin formula we can thus deduce an asymptotic
expansion for } 3, -y, f(m+a) involving the antiderivative operator 1/D
and the iterates of the forward difference operator instead of the iterates of the
derivative operator. An analogous argument also holds for similar operators
(everywhere-convergent power series in D with zero constant term).

9.2.3 The Remainder Term and the Constant Term

To use the Euler-MacLaurin formula (usually in the form of Corollary 9.2.3)
we must give an estimate for the remainder term. We give it for the second
formula of the corollary, the third being obtained by replacing [a, N +a] with
1, N].

Proposition 9.2.5. Assume that f € C?**2(Ja, N + a]) and denote by
Topt2(f, N) the first “neglected term” in Corollary 9.2.3 (2), in other words
Torso(f, N) = (Bagya/(2k + 2))(fEHD(N 4 a) — fP++1)(a)). Assume that
f@R+2(t) has constant sign on [a,a + N|. Then

(1) The remainder term Rap(f, N) has the same sign as Topro(f, N) and
satisfies | Rop (f, N)| < 2(1 — 2725 72)[Top o (f, N)|.

(2) If, in addition, f € C***4([a,a+ N]) and f**+1(t) are also of constant
sign on [a,a + N] then |Rak(f, N)| < |Tar+2(f, N)|; in other words, the
remainder term is in absolute value smaller than the first neglected term.

The term Togyo(f, N) is of course not to be confused with the tangent
numbers Toj_1.

Proof. (1). For notational simplicity set K = 2k + 2, and let ¢ = £1 be
such that e f(5)(t) > 0 for t € [a, N + a]. Since |Bk(t)| < |Bg| for t € [0,1]
(Corollary 9.1.23) we have

% N+a (K) ‘ ‘ N+a )
Rt M) < B oo an < Bl [T go0 6y
< Bl (e 4 a) = 0 ) < e, V)1

On the other hand, applying Corollary 9.2.3 to k and to k + 1 it is clear
that Ror(f,N) = Tk (f,N) + Rk (f,N). Since we have just proved that
|Ri(f,N)| < |Tk(f,N)| it follows that Rox(f,N) has the same sign as
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Tk (f,N) and also that |Ror(f,N) < 2Tk (f,N). To obtain the slightly
stronger inequality given in the proposition we write

BK N+a
Te(fN) =2 [ W,
so that

1

Rok(f,N) =Tk (f, N)+Rk(f,N) = i

N+a
/ U (6)(B—Br ({t—a})) dt |

By Exercise 15 we have |Bx — Br ({t — a})| < 2(1 — 27%)|Bg|, proving (1).
(2). Applying (1) to 2k + 2 instead of 2k, for ¢t € [a, N + a] we have

sign(Rogt2(f, N)) = sign(Topra(f, N)) = sign(Boy4) sign(f2*T4(2))

= —sign(Boy2) sign(f 2 (1)) = — sign(Tars2(f, N)) |
where sign(0) agrees with any value of +1. Since Ro(f, N) = Tor12(f, N) +
Rop+o(f, N) it follows that |Rak(f, N)| < |Tak+2(f, N)| as claimed. O

The following is another useful form of the Euler-MacLaurin formula,
where we introduce the notion of “constant term,” used by Ramanujan with-
out any justification.

Corollary 9.2.6. Let k > 1, and let f € C*([a, o).

(1) Assume that the sign of f%*)(t) is constant on [a,o0[ and that f*=1(t)
tends to 0 as t — oo. There exists a constant z(f,a) such that

N-1 N+a k—1 B] G-1)
fmta) =afa)+ [ f@)d+Y LI (N0 +RASN)
m=0 a j=1
where

(-DF [

Rk(f’N): k! Nt

FP () (Br({t — a}) — By) dt

tends to 0 as N — oo.

(2) Let ko > 1 be an integer. If the sign of f*)(t) is constant and f*=1(t)
tends to 0 ast — oo for all k = ko, then for k > kg the constant zi(f, a)
is independent of k. It will be simply denoted by z(f,a) and called the
constant term of the formula, and we have the following identity, valid
for any fixed k > ky:

k

. . _1\k—1 00
A0 = -3 2@ + S [T Owm - apar.

=
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Proof. By the Euler-MacLaurin formula, we have for all £ > 1

N-1 N+a
> fm+a) =a(faN)t [ dt+z BN +a),
m=0 a

where

k o _1\k—=1 pN+a
alaN) = =3 2@+ S0 [ 0B - ) a

Jj=1

Since the sign of f*)(t) is constant it follows that the above integral is
bounded in absolute value by sup,cp 1 |Be(t)|| fE=D(N + a) — fED(a)).
Since by assumption f(k_l)(t) tends to 0 as t — o0, it is in particular
bounded, and it follows that the integral [ F®) () By ({t—a}) dt is absolutely
convergent. Thus 2z (f,a, N) = zx(f, a) + Ix(f, N) with

k

2(f,a) = — Z Bi -1 (q) + 71,3;671 /Oof(k)(t)Bk({t—a})dt

jl

and

—1)k foe

() = S8 [ 008G - ) a
k! N+a

Since the integral of f(*)(t)By({t — a}) converges (absolutely) at infinity,

It (f,N) tends to 0 as N — oo. Finally, by assumption f*~1(N + a) also

tends to 0 and we have

B B e
ZEp-D(N 4 a) = — =2 F® (@) dt

! K xia

proving (1).

If in addition we assume that f(*)(¢) has constant sign and that f*=1(¢)
tends to 0 as t — oo for all k& > kg, then subtracting (1) for k& from (1) for
k + 1 we obtain

0= 2ti1(f,) = 24(f>0) + 25 FED(N +a) + (1)

so letting N — oo and using the fact that f*~1(¢) tends to 0, we deduce
that zx41(f,a) = zk(f,a), hence that z;(f,a) is indeed independent of k,
proving (2). O

9.2.4 Euler—-MacLaurin and the Laplace Transform

See Section 9.7.4 for more details on the Laplace transform. Recall the fol-
lowing definition:
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Definition 9.2.7. Let g be a piecewise continuous function on [0,00[ such
that for all a > 0, the function g(t)e™* tends to 0 as t — oco. We define the
Laplace transform L(g) of g by the formula

L(g)(x) = / Tty dr

Thanks to the assumptions on g it is clear that £(g) is well defined and
defines a holomorphic function on R(x) > 0, and that

L(g)® (@) = (-1)* /OOO e~ thg(t) dt = (~1)"L(t"g)(x) .

In addition, note that by Fubini’s formula we have

oo —at _ ,—bt
/[, dm—/ %g(t)dt.

Applying this with ¢g(¢) = 1, hence L£(z) = 1/z, and a = 1 gives the well-
known and important formula

oo -t _ ,—xt
log(x) = / % dt .
0

The relation between the Laplace transform and the Euler—-MacLaurin
formula is clear: if f(x) = L(g)(z), then for instance

o) —Nt

> fm / e swar.
1<mEN et -1
From this we obtain both a formula for the sum of the infinite series if it
converges (or more generally for the constant term z(f, 1) defined above) by
letting IV tend to infinity, and a formula for the remainder term in Euler—
MacLaurin by expanding 1/(e* — 1) in terms of Bernoulli numbers and using
the formula given above for f*)(N).

Since there are many forms of the Euler—-MacLaurin formula, there are as
many expressions for the remainder term and the constant term. We give the
following:

Proposition 9.2.8. Keep the above assumptions on g and set f(x) =
L(g)(x). For k > 1 we have

(1)

_1\k—1 pN+a
S [ o aa

:/Oo < - J - 1) ( —at _e—(N+a)t> dt |
0 _
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(2) If f satisfies the assumptions of Corollary 9.2.6 (1) then

_1\k [o©
Ri(f,N) = ( kl!) /N+ FE @ (Be({t — a}) — By) dt

k—1

> 1 7Bj i—1 | _—(N+a)t
:7/0 g(t)(et_lzﬂtﬂ >e< Mt .

Jj=0

Proof. Immediate from the above remarks and left to the reader (Exercise
31). Note that the result is false for k = 0. ad

Corollary 9.2.9. Keep the above assumptions on g and assume that f and

all its derivatives have constant sign and tend to 0 as t — oo. With the
notation of Corollary 9.2.6 we have

(=L [T (-a-5) @

[z 1 1\
7/0 g(t)<1—e—tt)6 dt .

Proof. Simply take k = 1 in the proposition. a

Examples. As examples of the proposition and its corollary, we give the
following formulas. The functions I'(x), ¢ (x), and (s, x) will be defined and
studied in more detail below.

Proposition 9.2.10. (1) For R(s) > 0 and z > 0 we have

xl—s {t — x} 1 o0 ps—le—at
1) = — dt = dt .
C(s,o+1) s—1 S/L s+l I'(s) /o et —1

(2) In particular, for R(s) > 0 we have

1 < {t} 1 et
¢(s) s—1 * 8/1 tstl F(s) /0 et —1

(3) For x>0 we have

{t

Yz +1) =log(x

1 oo eft efta:
=1 g = — dt .
0g()+/0 <t €_1>e /0 (t et—1>

(4) In particular,

o {t} o0 1 et
=1- —dt = — dt .
v /1 t2 /0 (et—l t )
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(5) For x> 0 we have

log(T(z + 1)) = (30 + ;) log(z) — 7 + %1og(277) @),

where

Ct—x}—1/2 >~ /1 1 1\ e %t
x 0 e = 3

so that - . ot
log(T'(z + 1)) = / (g;e - _e> dt .
0

(6) In particular,

1 > {t} —1/2 /1 et 1 dt
= =1 — L dt= - —— - —.
5 log(2m) +/1 ; dt /0 ; 5 o1 7

Proof. All the results except (5) and (6) are direct consequences of the
definitions and of the proposition and its corollary. For (5) and (6), the for-
mulas involving fractional parts come from Euler—-MacLaurin, the formula for
log(27)/2 coming from Stirling’s formula (see below). It is to be noted that
the integrals are only conditionally convergent. If you are uncomfortable with
this, do an integration by parts to obtain formulas involving Bs({t}), which
will be absolutely convergent.

For the Laplace-type formulas we integrate the formula for ¢)(z + 1), use
Stirling’s formula, do some rearrangements, and use the Laplace formula for
log(x) seen above. The details will be seen below when we study the gamma
function (Proposition 9.6.29 and Corollary 9.6.31). O

If we assume only that f is a holomorphic function of = for R(x) > 0, but
not necessarily given as a Laplace transform, we have the following.

Proposition 9.2.11 (Abel-Plana). Assume that f is a holomorphic func-
tion on R(z) > 0, that f(z) = o(exp(27|](2)])) as | (z)] — oo uniformly in
vertical strips of bounded width, and that f and all its derivatives have con-
stant sign and tend to 0 as x — oo in R.

(1) If a > 0 we have

> fla+it) — f(a—it)

S dt .

z(f,a) 7—1—1

(2) If a > 1/2 we have
1/2

2(f,a) = ; fla—1/24t)dt

* fla—1/241it) — f(a —1/2 — it)
627Tt+1

dt .
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Proof. See Exercise 33. ad

Remarks. (1) If f(z) = L(g)(z) this proposition implies Corollary 9.2.9;
see Exercise 29.

(2) The formula is usually given in the first form. However, the second one
is better suited for numerical computation since there is no problem in
computing the integrand close to ¢t = 0, while with the first form we must
use some sort of Taylor expansion to obtain the result accurately.

9.2.5 Basic Applications of the Euler—-MacLaurin Formula

As already mentioned, the Euler—-MacLaurin formula has many applications.
We begin with the easiest.

Proposition 9.2.12. For every k > 1 we have

k
1 k+1 k+1 )
k _ k+1 k k+1—
-— (N NS B Nk+1-i
mn k+1< T +j_2< j > i )

Bii1(N) = Bry1(0) _ Bry1i(N +1) — Biya(0)
k+1 k+1 ’

N

m=1

= Nk 4

and more generally

Z (m+ )k = By y1(N +x) — Bryi () _

o<m<N k+1

Proof. Immediate application of Euler-MacLaurin with f(t) = t*. The

proposition is also easily proved directly using Proposition 9.1.3. O
Examples.
N N
_ N(N+1) N(N+1)(2N +1)
mZ:1 m= 2 ’ Z m’ 6 ’
N N
Zm3: N2(N +1)? Zm N(N +1)(2N +1)(3N? + 3N — 1) .
m=1 4 7 =1 30

Proposition 9.2.13. Let a € C be different from —1.
(1) For every k > R(a) + 1 such that k > 1 we have

o k

a @ __ Na+1 N JNa J+1 R N
Zm —C(—Oé)-‘r ++Z<31) + Ry(a,N) ,

m=1 J=
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Ri(a, N) = (~1)* <g) /Noo 1=k B ({t)) dt

When k is even we have

R V)| < \(

)

o Bit2 —k—1
N&
k+ 1) k+2

in other words, |Ry(a, N)| is smaller than the modulus of the first omitted
term, and in particular Ri(«, N) tends to 0 as N — oo.
(2) With the same assumptions, we have the formula

(0) =~ —i (2) 2o (3) [ et e

Proof. The first statement follows directly from the Euler—-MacLaurin for-
mula and Proposition 9.2.5, apart from the determination of the constant.
Fix some integer ko > R(a) 4+ 1 such that kg > 1, and let f,(t) = ¢t*. For all
k > ko the sign of fék)( t) is constant and f(k 1)(t) tends to 0 as t — o0, 0
that we can apply Corollary 9.2.6. The first formula applied to f,(t), a =1,
and N replaced by N — 1 gives

N—-2 k

Netl— 1  Ne a \ B ,
1 = ) ZJ ya—itl 1) .
E (m+1) 2(fa, 1)+ ot 5 +j§:2 <j_1> 7 +o(1)

m=0
Adding N“ to both sides shows that the constant is equal to z(fs,1)—1/(a+
1).

Now using again Corollary 9.2.6 (2), we obtain that for any fixed k > kg
we have

2(far1) Z( _1) . (1)“(2) /100takBk({t})dt

From this formula it is immediately obvious that for all & € C the function
2(fa, 1) is a complex differentiable function of «, hence a holomorphic func-
tion. On the other hand, for @« < —1 in the formula that we have proved we
may choose kg = 1, hence

1 Notl e 1
1) — 4 0(1) = 2(fa, 1) - ——
Zm ol = =g+ oo+ 5 Tol) = 2(fa ) = g Fol1)

and since the left-hand side converges to ((—«), we deduce that z(f,,1) =
((—a) + 1/(a+1). Since this is true on an open subset of C and both sides
are meromorphic functions, it is true for all @ € C such that a@ # —1, proving
(1). Statement (2) follows by taking N = 1. O

On the other hand, for « = —1 we have the following.
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Proposition 9.2.14. (1) For k > 1 we have
N

Z; 1ogN+v+i—Z Jf\m (-1,N),

m=1

where v is Euler’s constant and

quﬁwzjffFHMﬁnﬁ

When k is even we have

| B2
Ri(—1,N)| < —=2k+2l
| k( ) )| (k+2)Nk+2
in other words, |Ri(—1, N)| is smaller than the modulus of the first omit-
ted term.
(2) Fork > 1 we have
1 . > 1-k
= d T Br({t}) dt
1=zt X2 (1)

Jj=2
(3) We have limg_1(¢(s) —1/(s — 1)) =

Proof. (1) is again a direct application of Euler-MacLaurin and the defi-
nition of v, and (2) follows by choosing N = 1. If we choose k = 1 in (2) of
the preceding proposition with o = —s we obtain

1

()= —+ 35— s/loot_s_lBl({t})dt

so by absolute convergence

tig (¢ 25 ) =5 - [ =

by (2). O
Examples.
N
> — =logN+7+O0(1/N),
m=1
N
> = =2VN +¢(1/2)+ O1/VE),

[

m=

> Vm = fN\/>+ \F+c( 1/2) + O(1/VN) .

m=1
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An important practical question is how to compute Euler’s constant
(or ¢(—a), or other constants of the type z(f,a) occurring in the Euler—
MacLaurin formula). It is out of the question to use the above definition
since the convergence is much too slow. The whole point is that one can use
the Euler-MacLaurin formula with suitably chosen parameters N and n.

As a toy example, assume for instance that we do not want to use Bernoulli
numbers B; for j > 12. We will thus use £ = 12 in the formula. Since all the
conditions of Proposition 9.2.5 are satisfied, we deduce that the modulus of
the remainder 715 is bounded by

|B14| 13! 1

141 N1 12N14
Thus if we only take N = 10, we obtain 15 decimal digits of the cor-
rect result, using only the partial sum of the first ten terms plus a few
corrective terms coming from the Euler-MacLaurin formula (we obtain
v = 0.577215664901533.. . .).

The same method can be used for many other sums or limits of the same
kind. For instance, we can easily compute to 15 decimal digits any reasonable
value of ((s); see Exercise 42.

If we choose f(N) = log N, the summation formula immediately gives
Stirling’s formula in the following weak form:

log(N!) = (N +1/2)log N — N + C + O(1/N)

for a certain constant C. As above, it is easy to compute C numerically. The
asymptotic expansion given by Euler—-MacLaurin is
By By

1-2N+3~4N3

log(N!)<N+;>logN—N+C+ +-
However, the constant C' can also be computed exactly. Classically this is
done using Wallis’s formulas (see Proposition 9.6.22). However, a more so-
phisticated, but more natural, way to compute it is to take the derivative
with respect to « of the formulas of Proposition 9.2.13. Let us explain how
this is done, since it can be used in other situations (see Exercise 44). Assume
that R(«) < 1, so that we can choose k = 1. We have

a+1 «@ [e%e}
N +N——a/ Lt} — 1/2)dt .
N

N
T;lma:C(_o‘)J’ a+l ' 2

Differentiating with respect to o and setting o = 0, we obtain
N
1 > {t} —1/2
S logm = —¢'(0) + Nlog N — N + 51ogN—/ W12y,
m=1 N

Since the last integral tends to 0 as N — oo, we deduce that our constant C'
is equal to —¢’(0) = log(27)/2, as we will see in Section 10.2.4.
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Remark. As already mentioned, if you are uncomfortable with the condi-
tionally convergent integrals that occur in the above reasoning, simply choose
k = 2 instead of k = 1. Everything will be absolutely convergent but the com-
putations will of course be slightly longer.

The reader is strongly advised to solve Exercise 44 for analogous results.

The Euler-MacLaurin summation formula also permits the determination
of the convergence behavior of certain series. We give the following example.
Let x be a nonzero real number and let a € R. We want to know the behavior
(convergent or divergent) of the series

g >, sin(zlogm)
- Z me .
m=1

Since | sin(zlogm)| < 1, if a > 1 the series trivially converges absolutely, and
if & < 0 the general term does not tend to 0, so the series diverges. We can
thus assume that 0 < o < 1.

We use Euler-MacLaurin with £ = 2, obtaining

ﬁ: sin(z logm) _ /N sin(z logt) g+ sin(z log N) v
1

me e 2N«

m=1

with N
x cos(xlogt) — asin(zlogt)
.- /1 Bi({t}) = dt .

Since By ({t}) is bounded and av+ 1 > 1, it is clear that the integral defining
rq is absolutely convergent as N — oo, and in particular has a limit. The
term sin(tlog N)/(2N®) tends to 0 as N — oo. It follows that our series has
the same convergence properties as the integral. In the integral we make the
change of variables t = ¢*, and we obtain

N . log N
logt &
/ sin(zlogt) ,, _ / sin(u)el= gy |
1 0

ta

It is now an easy exercise (for instance by explicit computation) to show that
for 0 < a < 1 the integral does not converge as N — oo, and so neither
does our series (there are, of course, other ways to prove this, for instance by
grouping terms such that exp(kn/|x|) < m < exp((k + 1)x/|z|)).

9.3 Applications to Numerical Integration

It is clear that in the opposite direction to the above examples, the Euler—
MacLaurin formula gives approximations of integrals by sums, which often
allows the numerical computation of these integrals. It is to be stressed from
the start that our goal is to give high-precision approximations to integrals,
not only 15 decimal digits, say.
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9.3.1 Standard Euler—-MacLaurin Numerical Integration

We begin with a direct application of Euler-MacLaurin. In the next subsec-
tions we will give little-known but very powerful methods for high-precision
numerical integration.

Let f € C"([a,b]), where [a,b] is a finite interval. When N is large the
integral from a to b of f can be reasonably well approximated by the Riemann
sum

=

b—a

N—
> fla+m(b—a)/N).

m=0
The Euler-MacLaurin formula allows us to state this much more precisely,
and as usual gives us both an asymptotic expansion of the difference and an

efficient method to compute the integral numerically.

Proposition 9.3.1. Let [a,b] be a finite closed interval, and assume that
f € C*([a,b)) for some k > 1. Then for any integer N > 1, if we set h =
(b —a)/N we have

/bf(t)dtzhz_:f(a+mh)+hf(b)gf(a)
@ m=0

- Bi i (-1 (p) — $G-D
X (£9790) - 97V (@)

1)k b
+ S | 1B —aym i

Proof. For t € [0, N], set g(t) = f(a + ht) and apply the formula to the
function g on the interval [0, N]. Since gU)(t) = h? fU)(a 4 ht), we obtain

N—

3 f(b) — f(a)

N
f(aJrhm):/O fla+ ht)dt — 5

m=0
k
n Z_; %hy‘—l (fu—l)(b) _ f(j—n(a))

-~ N
+ | 1@ By

hence by making the change of variables a + ht = ¢’ in both integrals we
obtain
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N-1

’ - a
> ot =5 [ sy LOZI

m=0

k
B; i i
+;7!Jhy 1 (f(J D) — fu U(a))

_1)k—1 b
+ S [ OB - ayhp e

hence, transferring to the left the integral that we want, we obtain the desired
formula. 0

Remarks. (1) To avoid the term h(f(b) — f(a))/2, it is neater to replace
the asymmetrical Riemann sum Zogmg N_1 by the symmetrical sum

Zggmng where the ’ indicates that the extremal terms m = 0 and
m = N must be counted with coefficient 1/2.

(2) In the sum from j = 2 to k we can of course restrict only to j even, and
we may also choose k even (or k odd) as desired.

Example. Let us use the above formula to compute log 2. We choose f(t) =
1/(1 + t), whose integral from 0 to 1 is equal to log2. We have fU)(t) =
(=1)751/(1+t)?*t and f(m/N) = N/(N +m). We deduce that for all ¥ and
N we have

k

N —j 1

log2= > NI o (Ul S L/ BNt oy
o N+m AN o= N NE Jo (14 t)ktt

To bound the remainder, we choose as usual k even, and we can then bound
|Br({Nt})| by |Bk|. We bound 1/(1 + )**! by 1, and we deduce that the
remainder is bounded by | Bg|/N*. Choosing k = 12, we see that with N = 10
the remainder is bounded by 3-107!3. Thus, as usual with Euler-MacLaurin,
by dividing the interval of integration into only 10 subintervals, and adding
a few corrective terms, we obtain 13 decimal digits of the result.

9.3.2 The Basic Tanh-Sinh Numerical Integration Method

We now consider a little-known but much more powerful method, due to
Takahashi and Mori, see [Tak-Mor] and [Mori], which the author learned
from [Bor-Bai-Gir]. Apart from the evident fact that this method is quite
recent, the main reason that this method is not widespread is that the usual
practitioners of numerical integration are engineers and numerical analysts,
who in general do not need more than 15 correct decimal places. In contrast,
in number theory we often want to identify certain integrals using linear
dependence techniques (see Section 2.3.5). For this we often need hundreds
if not thousands of decimal places, and the standard methods are totally
unsuitable for that purpose.
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Assume first that FF € C°°(R) is such that for all k¥ > 0 the derivatives
F®)(z) tend to 0 as |z| — oo at least as fast as 1/|z|® for some o > 1, and let
h be a small positive parameter. Applying Corollary 9.2.3 with N replaced
by 2N and f(t) replaced by F(h(t — N)), we obtain the following formula
valid for all k > 1:

N e F(N)+ F(=N)
h m;NF(mh) _ /_ R e

By h2I _ ,
- (22];;' (F (QJ‘WN)—F(?J‘”(—N)) + B2 Ry (F,N)
j=1 '
with N
1 )
Ran(FN) =~ [ PO @Bt
(2k)! J_y

From the assumptions on F' we can let N tend to infinity and we obtain the
simple estimate

|/°O P(t)di—h i F(mh)

m=—0o0

g CZk h2k+1 3

with B -

Cor = '@;’;!' e
In other words, for such functions F', as h tends to 0 the difference between
the sum and the integral tends to O faster than any power of h. In actual
practice the convergence is usually (although not always) at least as fast as
e~ ¢/l for some C' > 0; see Exercise 47.

Now let f € C°°(]—1,1]) be integrable on [—1, 1] (it may have singularities
at the endpoints). The fundamental trick is as follows. We introduce the magic
function ¢(t) = tanh(sinh(¢)). This function has the following evident proper-
ties: it is a one-to-one odd map from R to |—1, 1[, and as t — +oc it tends to
+1 doubly exponentially fast; more precisely, sign(t) — tanh(sinh(¢)) behaves
approximately like 2/ exp(exp(|t])). Thus the function F(t) = f(o(t))¢' (¢)
will certainly satisfy our assumptions above, and in fact its derivatives will
tend to zero extremely rapidly (and in particular F'(¢t) will be in the so-called
Schwartz class). Changing variables and applying the above remark based on
Euler-MacLaurin we obtain

[ @i [ T W)W dt=h S F(émh)d (mh) + R(h) |

m=—0o0

where the remainder term R(h) tends to 0 very fast.
If f is a meromorphic function in C, and not only a C*° function on R, it
can be shown that |R(h)| < e~ ¢/l for some C' > 0, and that with N function
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evaluations we can reach an accuracy on the order of exp(—CN/log(N)) for
some (other) C' > 0.

Remark. It can also be shown that double-exponential convergence at in-
finity is optimal: choosing for instance functions giving triple-exponential
convergence would give worse results. In particular, as we will see below, it
is necessary to adapt the magic function ¢(t) to the class of functions to be
integrated.

Assume for instance that we want to compute the integral with an accu-
racy of approximately 500 decimal digits (this would be completely impossible
with classical methods). We note that, due to the doubly exponential behav-
ior, we have ¢(t) < 10759 for ¢t > 7.05, so we sum only for |m| < 7.05/h.
Although it is not easy to estimate R(h) accurately we try successive values
h =1/2" for r = 2, 3, etc., until the value of the sum stabilizes. For instance,
for 500 decimals, h = 1/2% is almost always sufficient.

Since this method is so useful we give an explicit algorithm essentially
copied from [Bor-Bai-Gir] (the case in which we want to integrate on more
general intervals than [—1,1] is studied in the next section). The algorithm
needs to be given a small integral parameter r such that h = 1/2", which is
found empirically by trying two or three values (for instance, as mentioned
above we choose r = 8 for 500 decimal digits).

Algorithm 9.3.2 (Tanh-Sinh Numerical Integration) Given an integra-
ble C*° function f on |—1, 1[, an accuracy ¢, and a small integral parameter r > 2

as above, this algorithm computes an approximation to f_ll f(z) dx of order e.

1. [Initialize] Set h « 1/2", e; « e, es « 1, i « 0.

2. [Fill Arrays z[] and w[]] Set ¢ « ex + 1/e3, s < ez — ¢, e3 « 2/ (e** + 1),
z[i] =1 — e3, w[i] « ce3(1l + x[i]), ea < eres. If e3 > ¢, set i« i+ 1 and
go to Step 2. Otherwise set w([0] «— w[0]/2, n «— i, S < 0, and p — 2" (n
will be the largest index i for which we have computed x[i] and wli]; it will
never exceed 20 - 2").

3. [Outer Loop] Set p < p/2 and i < 0.

4. [Inner Loop] If (2p) tiorif p=2""1 thenset S « S+wli](f(—=z[i])+f(z[])).
Set i« i+ p, and if i <n go to Step 4.

5. [Terminate?] If p > 2 go to Step 3; otherwise, output pS/2" and terminate
the algorithm.

Steps 1 and 2 should of course be done once and for all, independently of
the function f.

9.3.3 General Doubly Exponential Numerical Integration

The above method computes f_ll f(x)dx in a quite general setting, but one
in which f must be a C'**° function and have at most reasonable type singular-
ities at the endpoints +1. We now consider more general cases. We start by
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splitting the integral into a sum of integrals where the possible singularities
are at the endpoints, so we assume that we are in this case. For integration
on a finite interval [a,b] we of course use the formula

b b