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Abstract

Computing the Jones polynomial of general link diagrams is known to be #P-hard, while
restricting the computation to braid closures on fixed number of strands allows for a polynomial
time algorithm. We investigate polynomial time algorithms for Khovanov homology of braids and
show that for 3-braids there is one. In contrast, we show that Bar-Natan’s scanning algorithm
runs in exponential time when restricted to simple classes of 3-braids. For more general braids, we
obtain that a variation of the scanning algorithm computes the Khovanov homology for a bounded
set of homological degrees in polynomial time. We also prove upper and lower bounds on the ranks
of Khovanov homology groups.

1 Introduction

The original construction of Khovanov presented a link invariant, Khovanov homology, which is the-
oretically computable for any link diagram [Kho00], but the number of steps required to do so grows
exponentially in the number of crossings. A few years later, Bar-Natan’s work on tangles made it
practically possible to compute Khovanov homology for links with 50 or more crossings [BNO7], which
would be impossible from the defintion. This advancement in algorithms has opened up new avenues in
4-dimensional topology: In [FGMW10] a possible (yet to be realized) attack for disproving the smooth
4-dimensional Poincaré conjecture was formulated and in [Pic20] a computer calculation helped to
prove that the Conway knot is not smoothly slice.

The Jones polynomial Jr,(¢q) of a link L can easily be recovered from its Khovanov homology Kh(L)
and hence Khovanov homology is at least as hard to compute as the Jones polynomial. By reducing
the computation of the Jones polynomial of a link diagram L to the evaluation of the Tutte polynomial
of a related planar graph, Jaeger, Vertigan and Welsh showed that Jy,(q) is #P-hard to compute with
respect the number of crossings on L [JVW9(0]. It follows that the existence of a polynomial time
algorithm which, given a link diagram L, computes the Khovanov homology Kh(L) is very unlikely.
On the other hand, Morton and Short showed that the Jones polynomial of a closed braid on a fixed
number of strands can be computed in polynomial time [MS90]. This led to the following conjecture
which provides the main motivation for this article.

Conjecture 1.1 (Przytycki, Silvero [PS24]). Computing Khovanov homology of a closed braid with
fizxed number of strands has polynomial time complexity with respect to the number of crossings.

The state-of-the-art for computing Khovanov homology is given by Bar-Natan’s scanning algorithm
[BNO7]. However, there exist relatively simple links which make this algorithm very slow.

Theorem 1.2. The scanning algorithm and the divide-and-conquer algorithm of [BNO7] run in expo-
nential time with respect to the number of crossings in a link diagram, even when restricted to positive
3-braids, or to alternating 3-braids.

The reason for the slow runtime of these algorithms is that there are such 3-braids whose total
Betti numbers grow exponentially with respect to the number of crossings. Any algorithm, which
works with a basis on the chain complex, will therefore necessarily have an exponential runtime. As
with classical algorithms, the large Betti numbers also played a significant role in the recent study
of quantum algorithms for Khovanov homology [SRZ™25|. The exponential Betti numbers make it
impossible for the main algorithm of [SRZ™25] to accurately estimate the Khovanov homology of 3-
braids in polynomial time. For other standard quantum homology algorithms [SRZ™25, §3] large Betti



numbers seem to be an asset although it remains unclear how apply them to Khovanov homology.
Despite the exponential Betti numbers, we give an affirmative answer to Conjecture in the case of
braids on 3 strands.

Theorem 1.3. Conjecture[1.1 is true for 3-braids.

The algorithm given in Section [3| to prove Theorem is based on the earlier work of the second
author [Sch25b], which showed that the integer Khovanov homology of a closed 3-braid either is
described by a formula in [CLSS22], or decomposes roughly as a direct sum of Khovanov homologies
of a torus link 7'(3,3k) and an alternating link. The homology groups Kh(T'(3,3k)) have also been
computed in [CLSS22] while the Khovanov homology of the alternating links can be obtained from
their Jones polynomials and the signatures. These alternating links are themselves braid closures, so
the polynomial time algorithm of Morton and Short can be used.

The Khovanov complex CKh(L) of a link diagram L is a bigraded complex of finitely many finite
rank Z-modules. Denote the minimal square of Z? gradings, which supports CKh(L) by [imin, imax] X
[¢min, Gmax). As evidence for Conjecture Przytycki and Silvero gave a polynomial time algorithm,
which computed Kh* % (L) (and by symmetry Kh*%m2x (L)) for 4-braids. The construction of CKh(L)
gives imin = —n—(L) and imax = ny (L) where ny (L) and n_(L) denote the number of positive and
negative crossings of L. We show that the Khovanov homology at any number of homological gradings
near iy and iy, for braids on any number of strands can be obtained in polynomial time.

Theorem 1.4. For every k,t > 0 there is an algorithm By which takes in a braid b on t strands
and outputs the integral Khovanov homology Kh"*(Ly) of the braid closure Ly, in homological degrees
i < —n_(Ly) +k and i > ny(Ly) — k. The algorithms By ¢ run in polynomial time with respect to the
length of b.

The algorithms By, ; are only a minor variation of Bar-Natan’s scanning algorithm. While scanning,
the intermediate complexes of tangles can be truncated without loosing information relevant to the
extremal homological degrees. A similar trick was used in a fast algorithm for computing s-invariants
[Sch21]. Even in the non-truncated degrees, the Khovanov hypercube complex may have exponential
rank so we have to ensure that the Gaussian elimination of the scanning algorithm cancels out ‘most’
of the summands. Since the intermediate complexes contain integer coefficients ¢, which need to be
stored in the memory, we also need some polynomial p for which log,(c) < p(n(L;)) for all ¢ we process.
As a by-product of our proof we obtain the following upper bound where n(L) = n4 (L) + n_(L):

Proposition 1.5. For a connected link diagram L and a field F

dimg(Kh"* (L; F)) < 2 (l +"7§L)(L)) :

The bounds of Proposition [I.5] are asymptotically strict in the following sense:
Proposition 1.6. Let L; be the braid closure of (010303)t0103. For every k > 0 there exists € > 0

for which
<rank(Kh"(Lt)_k7*(Lt))> >e

(n?ésflk)

lim inf
t—o0

Proposition [1.6] is a non-vanishing result so proving it requires us to generate a lot of distinct
homology cycles. To do so, we take the Khovanov complex of L; and employ a Morse matching on
it from the earlier work of the first author [Kel25]. This creates a chain homotopy equivalent Morse
complex, where sufficiently many copies of Z split off. The same asymptotic lower bound is also proven
for odd Khovanov homology.

Is Conjecture true? As stated in [PS24], establishing Conjecture would be a game
changer in stating and testing conjectures about Khovanov homology. While Theorem gives hope
for this conjecture to be true, its proof very much uses the particular structure of 3-braids and does
not seem to generalize easily to more strands. Furthermore, it reveals that the Khovanov homology
of any closed 3-braid roughly decomposes into a part coming from an alternating braid word and a
part coming from a torus link word. Already in the case of 4-braids the general structure seems much
more complicated. For example, [MPS™ 18] produced positive 4-braids containing torsion of order 3



in their Khovanov homology, as well as others that contain torsion of order 2* for k up to 23. Also,
computations show that 4-strand torus links have a much more complicated Khovanov homology than
their 3-stranded counterparts.

Disproving Conjecture[I.I]would amount to constructing a reduction to a known NP-hard problem.
The authors are not aware of any promising candidates for such reduction.
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2 Preliminaries

In this section we fix the notation for the Khovanov complex and a few variations, as well as our
conventions for braids and algebraic discrete Morse theory.

By a Frobenius algebra A over a commutative ring R we mean a commutative ring A that contains
R as a subring that comes with an R-module map €: A — R and an A-bimodule map A: A - A®Qr A
that is co-associative and co-commutative, and such that (¢ ® id) o A =id.

In the case that A is free of rank 2 over R, Khovanov [KhoO6] showed that for a link diagram L one
can define a cochain complex C(L) over R whose homology is a link invariant. The Frobenius algebra
leading to Khovanov’s original link homology [Kho00] is given by A = Z[X]/(X?), with (1) = 0,
e(X)=1and A(1) =1® X + X ® 1. Here A can be given a g-grading by |1|, = 1 and | X|, = —1,
which turns the Khovanov complex CKh(L) into a bigraded cochain complex. We write CKh™/ (L)
to indicate the homological grading and the g-grading, and Kh*? (L) for the corresponding homology
groups. We may also omit the gradings, or write Kh*’ (L; R) if we want to indicate coefficients in a
ring R.

For tangles T' there is also a Khovanov complex, we follow mainly Bar-Natan’s dotted version
[BNO5). Let B C R? be a compact surface and B C B an oriented 0-dimensional compact manifold
bordant to the empty set. We denote by Cobe (B, B) the category whose objects are compact smooth
1-dimensional submanifolds S C B intersecting B transversely in S = B. Morphisms between
objects Sy and S; are isotopy classes of dotted cobordisms between Sy x {0} and S; x {1} embedded
in B x [0,1] and which are a product cobordism near B x [0,1]. Here dotted means that there are
finitely many specified points in the interior of the cobordism, which can move freely there.

If R is a commutative ring, we denote by Cob?/l(B7B) the additive category whose objects are

finitely generated free and based R-modules where basis elements are objects ¢/S with S an object of
Cobe (B, B) and j € Z. Here ¢’ stands for a shift in the ¢g-grading. Morphisms are given by matrices
(Mp) with each matrix entry M, an element of the free R-module generated by the morphism set
between S,, and S, in Cobs (B, B), modulo the relations in Figure|ll The category Cob?/l(B, B) admits
a delooping isomorphism, see Figure [2] which is at the heart of many of our computations.

) =o
) =

Figure 1: The dotted relations of Cob%/l(B, B) We refer to the two leftmost as sphere relations, the
middle one as double dot relation and the right one as neck cutting relation.

=
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Given an oriented crossing ¢ € {34, X} we denote by [¢] the tangle complex of ¢, or Bar-Natan
complex of ¢, defined as

A= - —0——ulq")( saddle, 12 50— -

[X[= - —0—ulg2Z saddle, 02y ( —5 0 — - -



Figure 2: The local delooping isomorphism Bl} its inverse [tl,tg].
2

over the additive category Cobf"/l(B , B), where B are four points with orientation induced by ¢. Here
u* denotes the homological degree and ¢7 the g-degree.

The categories Cob?/l(B,B) compose well, see [BNO5, §5], allowing us to form tensor products
between complexes [c1] and [cz]], which in turn leads to tangle complexes [T] over Cob?/l(B, B) for
any tangle diagram T embedded in B with endpoints given by B.

Given a word w in an alphabet {ai,afl |1 <i<n-—1} for some n > 2, we get a tangle T, by
using a standard tangle for each al-i as in Figure |3/ and stacking them on top of each other. This gives
rise to a braid on n strands which can be closed to a link.

i—1 4 i+1 n 1 i—1 7 i+1 n

Figure 3: The tangles for oy, o; *, and 0103051.

K3
We note that our conventions for braid diagrams lead to the mirror of the braid diagrams in
[Mur74]. The reason we use our convention is that we want positive braid words to give rise to links
whose Khovanov homology is concentrated in non-negative homological degrees.
Also, the tangle diagram T, fits in a rectangle with n points on the bottom and n points on the
top. We simply write Cob?/l(BZ) for the corresponding category over which the Khovanov complex is

defined. In later sections, the compact surface B C R? is simply a disc with B consisting of 2n points.

We will then write Cob?/l(Zn) for Cobf”/l(B, B).

2.1 Gaussian elimination and algebraic discrete Morse theory

The following standard lemma is a key tool for simplifying combinatorial chain complexes, both from
a theoretical and an algorithmic viewpoint.

Lemma 2.1 (Gaussian elimination). Let (C,d) be a chain complex over an additive category €. As-
sume that for n there are decomposition of the chain spaces C™ = C7 & Cy and C*' = CpH @ Cytt
and differentials d”~ ', d", and d"*' so that
@ 0
v €
—_—

If o: CT — C’I‘H is an isomorphism, then C is chain homotopy equivalent to the complex C' which in
homological degrees [n — 1,n + 2| is defined by

«
) :
C= s ot Clrecy ot e oyt Y] cnt? .

_ —yp~ 15
O/: %Cnli)C;LEL)OS+1L>O”+2_>

and outside these degrees C' agrees with C.

Applying Gaussian elimination once on a large chain complex C often does not cut it and one needs
to iterate Lemma [2.1|in order to obtain a reasonable description of C. Since the Gaussian elimination



introduces a new morphism between the remaining summands, it is not immediately obvious whether
an isomorphism of C' continues to be a cancellable isomorphism after some number of other Gaussian
eliminations have been performed. Algebraic discrete Morse theory [Sko606] is a framework which
provides a sufficient condition for iteratively applying Lemma and a description of the resulting
complex.

A based chain complex is a chain complex (C, d) over an additive category € and a fixed direct sum
decomposition C* = @, C} on every chain space C?. The decomposition of the chain spaces also gives
out a decomposition of the differentials: we call the maps

, v i+1 ‘ i
dclzc-%—l’c}. Cj — Ck- s dC,ZH,C';. =7d't

matriz elements of C', where ¢ and 7 are the canonical inclusions and projections associated to C'; and

C,i“. The based complex C induces a directed graph G(C) = (V, E), whose vertices V are the direct
summands C,i and whose directed edges F are the non-zero matrix elements of C. Reversing a subset
of edges M C E gives out another graph G(C, M) = (V', E’) with V' =V and

E' =(E\M)U{b—al(a—0b)e M}
We call M a Morse matching on C, if
1. M is finite.
2. M is a matching, i.e., its edges are pairwise non-adjacent.
3. For every edge f € M, the corresponding matrix element f is an isomorphism in €.
4. G(C, M) has no directed cycles.

The graph G(C, M) can be viewed as a category, whose objects and morphisms are the vertices
and directed paths of G(C, M). This allows us to define a functor R: G(C, M) — € on vertices by
R(C}) = Ci. On single edges, we set R(f) = f if f ¢ M and R(g) = —g~!, if g € M and on longer
paths we extend R functorially. If M is a Morse matching on C, we can define the based Morse
complex (M(C),0), whose direct summands are the summands of C' which are not matched by M.
The differentials 9% are described by their matrix elements with

afé,A = Z R(p)

pe{paths: A—B}

where A and B are unmatched cell of C? and C**! respectively.
Theorem 2.2 (Skoldberg [Sko06]). If M is a Morse matching on C, then C ~ M (C).

Sketch of proof. Inductively use Lemma [2.1] on the isomorphisms of M. Condition [4] ensures that the
k + 1:th isomorphism remains an isomorphisms after & cancellations. O

From the four conditions of Morse matching is often easy to prove and it greatly simplifies the
combinatorics of G(C, M). If holds, then no path can descend two homological degrees and to
prove it suffices show that there exist no loops which zig-zag between two adjacent homological
degrees. Similarly, all paths that contribute to the differentials 9 of the Morse complex M (C) have to
zig-zag between adjacent homological degrees.

3 Khovanov homology of 3-braids in polynomial time

The braid group on 3 strands is given by Bs = (01,09 | 010201 = 020102). We denote the element
A = 010907, so that A? generates the center of Bs.

The first step in our algorithm is to turn a word w € Bgs into its Murasugi normal form. Recall
that Murasugi normal forms for conjugacy classes are given by



Qo = {A% | k ez},

Q) = {A%0100 | k€ Z},

Oy = {A%(0102)* | k € Z},

Q3 = {APT | ke 7},

Q= {A%0 " | k,p € Z,p > 0},

Qs = {A%*6d | kg€ Z,q> 0},

Qs = {A% o P08 o P ol | kyrpi, qi € T,y piyqi > 0},

It is shown in [Mur74] Prop.2.1] that any word w € Bj is conjugate to an element of Qg U - - - U Q.
We first want to ensure that we can obtain this normal form in polynomial time with respect to the
length of w. We denote the length of a word w by |w|.

Proposition 3.1. There is an algorithm Aprny which turns a word w € Bg into its Murasugi normal
form N(w), and which runs in linear time with respect to the length of w. Furthermore, the length of
N(w) as a word in A, 01,09 is linearly bounded in |w|.

Proof. We closely follow the proof of [Mur74, Prop.2.1], turning it into an algorithm with the required
properties.

The braid group Bj is isomorphic to G = (a, b | a® = b%), using the isomorphism ¢: G — B3 given
by ¢(a) = o10901 and p(b) = o102. Then inverse satisfies ¢ ~1(01) = b~ta and ¢~ 1(0y) = a=1b%
Write ¢ = a? = b3 for the element that generates the center of G. Then

o) =c Pa, N or) =clab,  pTHoo) =c¢tab?, TN (0g!) = ¢ Mha,
and we get ¢~ (w) = ¢71®lvy -+ v, with each v; € {b?a, ab, ab? ba}. The length of ¢~ (w) in a,b,c
is at most 4|w|. Some of the v;v;11 can contain a® or b3 in which case we replace them with ¢ and
move it to the front. That is, we can write ¢~ !(w) as

&, ca, b, or atrbabl? - - - ablmat?, (1)

withn € Z, [l,...,ln € {1,2}, e1,e2 € {0,1}. Furthermore, the length of this word in a, b, ¢ is still
at most 4|w|, and this form can be obtained in linear time depending on |w].
We want to get ¢~ !(w) to be conjugate to one of

", c"a, ", or ctabtab? - ablm, (2)

that is, in the case of the last word in with £1 = 1 and €3 = 0. Let us check the other cases for this
word. If e1 =0 and €5 = 1, we have

Abab’2 - ablma ~ ablt - abtm,

where ~ stands for the conjugation relation. The latter is in the form of .
If e1 = 0 = &5, we have
c"bab? - ablm ~ cmab’ - abtmth

with I, +1; € {2,3,4}. If I, + I3 = 2, this is in the form of . If I, + 13 = 4 we get an extra ¢, but
it is also in the form of . If I, + 11 = 3, we get another ¢ and we have case ¢1 = 1 = &5, but with m
replaced by m — 2. Note that we can assume m > 2, since for m = 1 the original word is ¢"b'. Also, if
m = 2, we now have the word ¢"t'a? = ¢**2, which is also in the form of .

So, now if e = 1 = &9, we have

ab - abtma ~ b - ablm = P gl

which brings us back to the case e = 0 = 5. Nevertheless, after at most m steps, we get ¢ ~(w) to
be in the form of .

Note that ¢(c) = A%, p(ab) = A%0; ! and ¢(ab?) = A0y, so applying ¢ to a word in (2) lands in
one of Qo,...,Q, and this is the required normal form N (w). O



For words in Qg, 1, Qs and Q3 the integral Khovanov homology of the corresponding braid closure
is explicitly given in [CLSS22, Cor.5.7]. For Q4 and s, the integral Khovanov homology can be
obtained using [Kel24l Alg.1]. We will give a slightly different approach using [Sch25b], and express
the Khovanov homology of the braid closure of A%*w € Q4UQ5UQs in terms of the Khovanov homology
of the torus link and the braid closure of w.

Theorem 3.2. Let L be the braid closure corresponding to the word AQkol_l with k,1 > 1. Then
Kh4k),12k}*l:|:1(L) — Z

Kh4k§—1712k—l—1(L) —

Kh4k71’12k7l73(L) —

Kh4k72,12k7l73(L) _

Kh4k—3,12k—l—7(L) —

Kh4k‘—4,12k—l—7(L) —

Kh4k—4,12k—l—9(L) — ZQ =4

{
{
{ z 1l=1,
Khik—2:12k—1=5 (1 _ { 72 =2,
{
{ Z/27 1>5.
For any integer j we have
Kh**=27(L) = Kh**=>7+(T7(3, 3k)) @ Kh ™7/ =128+ (T(2, 1)),
and for any integers i < 4k — 6 and j we have
Kh™I (L) = KhI T (T(3,3k)) @ Kh'~**I =121 (2 —1)) @ Khi~**I =121 (2 1)),
If k =1 we also have

KhO12-1-5(L) = { 2 éi?l’

and if k > 2 we also have

Kh4k—3,12k—l—3(L) -7

4k—3,12k—1—5 Z 1<3,
Kh (L) { Z/27 1> 4.
In all other bigradings, the homology groups are 0.

We delay the proof of this theorem until the next section.

Theorem 3.3. Let L be the braid closure corresponding to the word A?*cl with k,1 > 1. Fori < 4k
we have N N
Kh'/ (L) = Kh/~H(T (3, 3k)).

For i > 4k + 1 we have

Kh'/ (L) = Kh'~ 9= 12k+1(p(2, 1)) @ Kh' =712k 1 (7 (2, 1)).



The other non-zero homology groups are given by

Kh4k,12k+l—3 L
Kh4k,12k+l—1 L

(L)
(L)
Kh4k+l,12k+l+1(L) _ Z/QZ
Kh4k+1,12k+l+3(L)

This theorem follows directly from [Sch25b, Thm.6.4].

Theorem 3.4. Let w = oy "ol - o7 P 0™ with positive integers r,p1,q1,...,Dr,qr, let Ly, be the
braid closure corresponding to w and L be the braid closure corresponding to A**w with k > 1. Then
for integers i # 4k, 4k + 1 and j we have

Kh"/ (L) = Kh"/ /(T (3,3k)) @ Kh' %7~ 12F(L, ), (3)

with
t=q+-+¢— (Pt +p).

The remaining non-zero homology groups are given by

Ktk 12k+t=1

Khtk+L12k+t+1 1

(L) = (Luw)

Kh4k,12k+t+l(L) KhO t+1 (Lw)/Z7

(L) = (Luw)
Kh4k+1,12k+t+3(L) ( )

Notice that Kh®'**(L,,) contains at least one direct summand of Z, and here Kh®**!(L,,) /Z refers
to the homology group with this summand of Z removed. The proof of this theorem is also delayed
until the next section.

In all three cases, the homology behaves as in with a few exceptional bidegrees. Perhaps
surprisingly, we have more exceptions in the case corresponding to €24 than to 2. This is because the
closure of the braid word o lis a split link whose Khovanov homology is not as thin as the Khovanov
homology corresponding to the alternating words used in .

Theorems [3.2] - [3-4] assume k& > 1. For negative k, observe that inverting braid words flip the sets
Q4 and Qs, while the inverse of A%*¢ 1ot ..o " UgT is conjugate to A= g " gbr ..o T obt. We
can therefore obtain the Khovanov homology by dualizing the Khovanov homology of the mirror.

The Khovanov homology of T'(3,3k) and T'(2,+l) is given explicitly in [CLSS22, Cor.5.7] and
[KhoOO, §6.2], so the only remaining ingredient is the Khovanov homology of the braid closure of
oy todt - o Pradr. There does not seem to be a simple formula for it, but since these links are
alternating and non-split, we can derive it from the Jones polynomial and the signature, see [Shu2i].
The signature for our braid closure is t = ¢ +--- 4+ ¢ — (p1 + - -+ + pr-), compare [Sch25bl Cor.8.3].
For the convenience of the reader, and also to see that deriving the Khovanov homology is done in
polynomial time, we now give an explicit formula for the Khovanov homology of a quasi-alternating
oriented link L, given the Jones polynomial and the signature s = s(L).

First note that the Jones polynomial is usually given as a Laurent polynomial in a variable tz.
In order to be closer to Khovanov homology we use the substitution ¢ = ¢2, and we write the Jones

polynomial of L as
q) = Z a;q’.

JEZ
It is worth noting that a; = 0 unless j € 1+ |L| + 2Z, and only finitely many a; are non-zero. The
reduced Khovanov homology groups are easily obtained from the coefficients a,;. Namely, by [MOOQS]
the homology groups are free abelian, with non-zero groups only occuring in bidegrees (j, s + 27), and
the Betti numbers given by _ ‘
s t2i |as0;]-

Expressing the unreduced Khovanov homology is slightly more difficult. We use the reduced Bar-
Natan—Lee-Turner spectral sequence over Z, which for quasi-alternating links collapses at the Es-page,
with these groups being free abelian and of total rank 2/%1=1 compare [Sch25a].



In particular, there exists a homomorphism d: K~hj’s+2j(L) — Khj+1’s+2j+2(L) with d? = 0 and

the corresponding homology groups E%’SHj free abelian. Let us denote the Betti numbers for these
groups by b5 (L). Then 0 < b5 (L) < b9572(L). The exact values can be determined using
linking numbers, but for now we simply note that bgf}zj (L) =0 for odd j, and bOB’ET(L) > 1. Define

7‘7 ~ . . . ~ -, 27
b =T (L) — bl (L).

Lemma 3.5. Let L be a quasi-alternating oriented link with signature s. The Betti numbers of unre-
duced Khovanov homology are given by

BN = 3T (1P 4 B (L),

2=Jmin

<
—

PNL) = 3T (P 4 B (L),

1=Jmin

Here jmin = min{j € Z | bis+2i # 0}. All other Betti numbers are 0. Any torsion elements have order
2, and the only possibly non-zero torsion coefficients are given by

Jj—1 )
BN = Y ()T
1=Jmin
Proof. We have the long exact sequence
0 — K* T2+ (L) —y Kido+2% (L) -2y KR +1s+20+0 (1) —y K thet20+0-1py g,

with § = 2d by [Sch25al Lm.5.6]. It follows that

phs 2=l it _ fi—Lst2(-1) 4 pi— L2 -1 (4)
and since the reduced Khovanov homology is torsion-free, we have
b2+ — rank ker(d: ﬁlj’s+2j(L) — ﬁlj+1’s+2(j+l)(L)).

Note that we here drop reference to L in the Betti numbers. Let us write d’ to indicate the homo-

logical degree of the domain of d. Since (Kh/$+2i (L), d’) form a cochain complex whose homology is
determined by the b} ., we have

pis 2+l _ E%LT + rank(dj—l) _ B{%LT + pi—1 _ pi—Lls+2(—1)+1 (5)

The statement about the Betti numbers follow via an induction over j, starting with juin, using
and . We leave the details to the reader.

For the statement about torsion coefficients, note that Kh’*$7% ‘H(L) is a subgroup of a torsion-
free abelian group, hence torsion-free. Since § = 2d and the second page of the reduced integral
BLT-spectral sequence is torsion-free, the torsion coefficient té’sw] -t agrees with rank(d’~1). The
statement therefore follows from . O

Proof of Theorem[I1.3 Let w be a braid word in {01,02,01_1,02_1}. By Proposition we get the
Murasugi normal form N(w) of w in linear time. If N(w) € Q¢ U Q; U Qs U Q3, we can read off the
Khovanov homology of L., = Ly from [CLSS22, Cor.5.7]. If N(w) € Q4 U Q5 with k£ # 0 we can
read off the Khovanov homology using Theorem and with [Kho00, §6.2]. If k =0, L, is a
split union of a 2-stranded torus link with an unknot, so we can read off its Khovanov homology using
[KhoO0, §6.2].

If N(w) € Qg, write N(w) = A?*v with k € Z and v = o "' - -- 0, P"0d". The Jones polynomial
of L, can be obtained in polynomial time, see [MS90], and therefore we can obtain the Khovanov
homology of L, in polynomial time from Lemma Note that to compute the bl (L), we need to
work out the number of components of L,, as well as the differences in linking numbers. Since there
can be at most three components, this can be done in linear time. If k # 0, we use Theorem 3.4 to
read off the Khovanov homology of L,,. O



Algorithm 1 Polynomial time algorithm for Khovanov homology of 3-braids

Input Braid word w on the alphabet {0y, 09,07 ", 051 }
Output Khovanov homology of the braid closure Kh(L,,)

1: A%Fy < Murasugi normal form of w

2. if AZky € Qo U Uy USQs then

3: Read off Kh(L,,) from [CLSS22, Cor.5.7].

4: end if

5: if A%Ry € Q4 U Q5 then

6: Enforce k > 0 by mirroring and rotating the braid.

7: If k =0, then L,, = T(2,1) U (unknot) and Kh(L,,) is obtained with [Kho00, §6.2].
8. Otherwise, get Kh(L,,) with [Kho00, §6.2], [CLSS22, Cor.5.7], Theorem [3.2} and Theorem [3.3]
9: end if

10: if A%*y € Qg then

11: Enforce k > 0 by mirroring and rotating the braid.

12: Compute Jp,(q) where L = L, with polynomial time algorithm of [MS90].

13: Compute the signature of L,,.

14: Compute the linking numbers and from them the BLT-generators of L,.

15: Use Lemma 3.5 to combine the above into Kh(L,)

16: If K =0 then Kh(L,,) = Kh(L,).

17: If k£ > 0 then use Kh(L,), [CLSS22, Cor.5.7], and Theorem [3.4] to obtain Kh(L,,).
18: end if

The algorithm for determining the Jones polynomial of a braid closure given by Morton and Short
[IMS90] runs in cubic time. Particularly for 3-braids this is very fast. Bar-Natan’s algorithm [BNO7]
on the other hand can be very slow for certain 3-braids. We do not need to look at the details of this
algorithm to see why. The main reason is that both Bar-Natan’s scanning algorithm and the divide-
and-conquer algorithm produce a specific basis for a cochain complex chain homotopy equivalent to
the Khovanov complex. Since there are links whose total Betti number grows exponentially, these
algorithms spend exponential time on them.

A very simple class of such links is given by 3-stranded weaving links. For a positive integer n, the
weaving link W (3,n) is the closure of the 3-braid word (o] 'a3)™. The determinant of W (3,n) is given

by
det(W(3,n)) = <3+2¢5> + (3 _2‘/5> -2, (6)

see [JNP23|, Thm.2.2]. Since these weaving links are alternating, the determinant agrees with the total
Betti number of reduced Khovanov homology.

For example, the determinant of W (3,20), a knot with 40 crossings, is 228,826,125. Attempting to
run the scanning algorithm on this knot almost certainly leads to a memory overflow, while computing
the Jones polynomial is done practically immediately.

Proof of Theorem[1.4 Applying Bar-Natan’s scanning algorithm or the divide-and-conquer algorithm
to W(3,n) leads to a basis with more than det(1W (3, n)) elements, from which the Khovanov homology
is determined via standard linear algebra methods. As this basis grows exponentially in n by @, the
number of steps to do this is exponential in the number of crossings of W(3,n).

Now consider the positive word v = o1020%03. Then

v = Ulagofag = alagalalagalaflog = Azaflag.

In particular, v = A?" (o] 102)” has 6n crossings, and its total Betti number grows exponentially in

n by Theorem O

Another family of links with exponentially large Betti number is constructed in Section
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4 Proofs of Theorem [3.2 and [3.4]

As with Theorem both theorems will follow from results in [Sch25b]. However, we need to fill in
more details in these cases. It will be useful to treat links as based links. This way we can view the
Khovanov complexes as complexes over A = Z[X]/(X?), even though we only view the homology as
abelian groups. The base point is placed on the middle strand of the diagram corresponding to the
braid word.

4.1 Proof of Theorem [3.2]

Let w = A*o" with k,1 > 1, and let T}, be the tangle obtained from the braid word w after
connecting the two endpoints of the leftmost strand.

Then ¢'~—6* [T%.] is chain homotopy equivalent to a sub-complex of By, depicted in Figure |4 More
precisely, the sub-complex is obtained by removing all objects from the top row of the form ¢%%—2r+1
) (for r > . This follows from [Sch25b, Prop.7.3].

CqTRE) (= 23 ( TN (L () (
g ( = : *=

qﬁkfll) ( q6k79) ( N q6k77) ( \ q61c75) ( ¢ q6k73) (

. \&0 \O D) S 28
qtF—10 d 3q6k—8: £y Ok—6 A ¢F—6= c P d 6k —2> £y gOh
N2
qﬁk—7)( € 6k—

g% ) (

Figure 4: The cochain complex By, over Cob” /l(B§ ). The object with grading shift ¢* is in homological
degree 4k, and the object with grading shift ¢! is in homological degree 0. The complex continues in
negative homological degrees via the two objects connected by the e-morphism. The letter S stands

for a surgery between the two smoothings, and D stands for back-and-forth surgeries.

Now consider the functor G : Cob’ /l(Bg ) — Mod? obtained by connecting the two endpoints on the
right and identifying Cob” /l(B%) with finitely generated, free g-graded modules over A = Z[X]/(X?).
Then G(c) = 0, so G(By) decomposes into a direct sum of relatively small cochain complexes. These
cochain complexes have been analysed in detail in the proof of [Sch25b, Thm.7.4]. In particular, G(By)
is chain homotopy equivalent to the complex Cj given in Figure |5l Moreover, G(¢'~*[T}.,]) is chain
homotopy equivalent to the sub-complex of Cj obtained by removing all gray objects of homological
degree less than 4k — .

To prove Theorem we only need to analyse the various sub-complexes of C; depending on I.
First observe that Cy contains identity morphisms between homological degrees 4k — 2 and 4k — 1,
between 4k — 3 and 4k — 2, and between 4k — 5 and 4k — 4 (coming from the (2X)"~! with i = 1).
To have these identities in the sub-complexes, we additionally need [ > 2 for the first, [ > 3 for the
second, and [ > 5 for the third identity. If we can cancel, the morphisms labelled X will disappear,
and if we cannot cancel, the morphisms labelled X are not present in the sub-complex.

Furthermore, the diagonal morphisms labelled (2X)? in the middle part of Figure |5 are only non-
zero if ¢ = 1, and even if ¢ = 1 we can remove them with a change of basis. This implies that
up to isomorphism the complex C; and its relevant sub-complexes are isomorphic to a direct sum of
complexes of the form u’q’ A 2X, w24 and ¢? A. We refer to the former complex as a knight,
and note its homology is given by u’¢’ 'Z ® u*t1¢? *1Z /27 ® ut1¢?t3Z. The latter complex is called
a pawn.

The gray knight complexes resemble the Khovanov complexes of the split union of T7'(2, —1) with an
unknot, while the black knight and pawn complexes give the Khovanov homology of T'(3, 3k), except

11



(/72/"7'144 2X (],2;",2!_,1 ([72/;‘,_1 2X (]72/-‘4’2‘4

26 2X by DY 22X 9
(llelth , (]72]\74‘4 (/7“)/'7“)‘4 ,5. (]72]\‘4
N‘J///
udq2A 0
S e/ ; 2X 9 Qs Qs 2X YR i
(]U/.flf&‘,_l s q(>l\727<5/‘4 q()/\fb/‘;l 5(,](>}'+_)781;-'1

<

k68 g 32X 6k—a-8iy NG e —— k8 A
A——— ) A—— .
o) I
'S %
e 7
, ; 2X ; ; 0 ;
u4(k>éq6k46114 ) q6k72762A q6k72761A S q6k+2761A

q6k72A 0 , u4kq6kA

Figure 5: The cochain complex Cj. Notice that (2X)% is 0 for 4 > 2, and 1 for i = 0. Homological
degrees are indicated by u’ for some modules.

in homological degrees near 4k. Therefore we get in homological degrees i < 4k — 6 the direct sums of
Khovanov homologies for T'(3,3k) and the split union of 7'(2,1) with an unknot up to grading shifts.

For the homological degrees between 4k — 5 and 4k we need to check various cases, since there
is some interaction between the gray and black parts. In particular, the value of | determines which
cancellations we can do. In addition to distinguishing between k = 1 and k > 2, we need to consider
1€{1,2,3,4} and | > 5. While there are several cases to check, they are straightforward and left to
the reader.

4.2 Proof of Theorem [3.4]

Let w = oy P ol .- 0 P"0d" with positive integers r, p1,q1,- .., pr, ¢ By [Sch25b] Thm.9.2] we have

that
CKh(LAmcw) ~ B @ D,,

where By, is a direct sum of knight and pawn complexes concentrated in homological degress less than
4k — 4, whose homology satisfies

H"~Y(By) = Kh (T(3,3k))

fori <4k—-5andt=q + - -+¢ — (p1 + -+ pr), and D, fits into a short exact sequence of
A-cochain complexes
0 — T — D, — u**¢*?*C,, — 0,

where C,, ® ¢*A ~ CKh(L,,) as A-cochain complexes, and

- Uk AR 4 gy =3 12K g gy AR=2012k A o g 4R I2kH R > 9
= @A @ w2gH K @ vttt 12K E—=1

Here K = (A 2%, ug®A) is a knight complex. From this it follows directly that
Kh' (Laze,) = KhIH(T(3,3k)) @ Khi~**7 =12k ([, ) (7)

for i < 4k — 5 and 7 > 4k + 2. It remains to check that this also holds for ¢ < 4k — 1, and for
i € {4k, 4k + 1} we get the formulas as in the statement of Theorem |3.4]

12



Let us write s = 12k + t, and consider the long exact sequence
N ﬁ4k+i—1,s+2i—2(Dw) i> ﬁ4k+z‘,s+2i(Dw) . H4k+i,s+2i—1(Dw) . ﬁ4k+i,s+2i—2(Dw) (8)
Here, H refers to the homology of the complex D,, ® 4 Z, where X acts as 0 on Z. For i > —5 we have

g4k+i,s+2i(Dw) ~ ﬁl4k+i,s+2i(LA2kw) ~ Hi,t+2i(cw) @ H4k+i,s+2i(T)

E[4k+i,s+2i—2(Dw) o~ I”{Vh4k+i,s+2i—2(LA2kw) =~ (),

with H9(C,,) = KhiJ(Ly,) for (i,5) # (0,t), and H%*(C,) & Z = Kh%(L,,) by [Sch25bl, Cor.9.3].
Furthermore, § is the connecting homomorphism of the reduced/unreduced long exact sequence in
Khovanov homology of Lazk,,, which by [Sch25a, Lm.5.6] is twice the differential of the first page of
the reduced integral BLT spectral sequence.

Notice that H**+:s+2((T) = 7, for 4 = —4,-2,-1,0,1. We also have H*~35=6(T) = 0, and if
k > 2 we have .

E[4k—3,s—4(T) ~ 7 Kh4k_37s_4(LA2kw).

In the reduced integral BLT spectral sequence the differential on the first page induces isomorphisms
HAk+is 420 (T o faktitlst2i42(T) for ¢ = —2,0, while Z = H*~%5=8(T) survives to the E,-page.
The long exact sequence with ¢ = —4 then turns into

Kh 5101} % Kh™**"8(L,,) & Z — Kh™* 5"9(Laze,,) — 0
and the summand of Z injects into Kh4k_4’s_9(LAzkw). In particular,
Kh**™579([ \or,) 2 Kh™*7%(L,,) ® Z = Kh™*"2(L,,) ® Kh**~*12*=9(7(3, 3)).

The exact same argument works for ¢ = —2, thus establishing @ for (4k — 2,5 —5), and for i = 0 we
get
Kh"**™Y(Lpzk,,) =2 H'7H(Cy) @ Z,

but as was noted above, H**~1(C,,) ® Z = Kh**~(L,).
For : = —3 the long exact sequence is

I’(‘B74,t78(Lw) Y/ L} I’(\B73,t76(Lw) N Kh4k_3’s_7(LA2kw) — 0,

with the Z-summand in the kernel of §. In particular, (7)) holds for (i,j) = (4k — 3, s — 7) as the torus
link does not contribute to this bigrading.
For i = —1 the sequence (8) is

ﬁl4k—2,s—4(LA2kw) 0 I’(\fl‘lk_l’S_Q(LA%w) KWL (L an,) ——— 0

Kh~2t4(L,)®Z —— Kh""2(L,) ®Z — Kh™* % (Laan,) —0

Recall that § is twice the differential of the first page of the reduced integral BLT-spectral sequence,
which cancels the two Z-summands. It follows that

Kh** 1573 (L nony,) 2 KhV73(L,) @ Z/2Z,

with Z/27 = Kh*~112F=3(7 (3, 3E)).
The case i = 1 is very similar. The main difference is that Kh**:*(Lzk,,) = ﬁo’t(Cw) @ Z. Recall
that H%*(C,,) ® Z = Kh*(L,,), with this summand of Z in the kernel of §. We thus also get

Kh* (L o) 2 KhYYY(L,) @ Z2/22,

which is one of the exceptional cases in Theorem [3.4] It remains to prove the theorem in bigradings
(dk +i,s+2i+1) for i = —4,...,1 and (4k — 3,5 — 3).

13



In bidegree (4k — 3,s — 3) only the torus link contributes, and it is Z if K > 2 and 0 if k = 1. But
this is exactly the contribution of 7" in this bidegree.
Now consider the long exact sequence

oy [y ppAks 2k (D Y kst 9, FAHiHLst2i42(D) Y (9)

The group H*+is+2i42(D ) = (0 unless i = —3 and k > 2, in which case it is Z that injects into
H*=35=5(D,,). Then

H4k—3,s—6(Dw) ) ﬁl4k—3,s—6(LA2kw) ) I’(\B—S,t—lﬁ(Lw).

The kernel of § is the kernel of the first differential in the reduced integral BLT-spectral sequence.
Hence
Kh**=3575(Lai,,) 2 Z @ Kh > 7%(L,,),

establishing for (4k — 3,s — 5). Notice that we always have the long exact sequence
0 — K2,y — I’{‘Bi,t+2i(Lw) LN @i+1,t+2i+2<Lw) e
For the other relevant values of ¢ we have
Kh4k+i,s+2i+1(LA2kw) = Ker(s: H4k+i,s+21’(Dw) . Ijl4k+i+1,s+2i+2(Dw)).

For i = —4 we have H4%~4s=8(D,,) = Kh~*+*=8(L,,) ® Z, with Z = Kh*~412k=8(7(3 3k)) in ker .
Hence

Kh** =T (Laar,) 2 Kh™ " 7(L,) & Z = Kh™""""(L,) & Kh**~“"28(7(3, 3k)).

The same argument applies to ¢ = —1, establishing for (4k —1,s —1).
For i = —2 we have .
]f]'4k:—2,5—4(Dw) ~ Kh_27t_4(Lw) a7,
This time Z 2 Kh#*~212k=4(T(3 3k)) is not in kerd. But since Kh**~2125=3(7(3 3k)) = 0 we still
get in bidegree (4k — 2,s — 3).
For ¢« = 0 we have N
H**(D,,) = H*(C,,) ® Z = Kh"*(L,,),

but 0 restricted to the summand Z is not 0 (recall that ﬁlo’t(Lw) contains a summand Z which survives
the reduced BLT-spectral sequence, but we have a different behaviour here). It follows that

Kh***™ (L z2e,,) 2 Kh"*(L,)/Z,

as stated in Theorem [3.41 )
For the remaining case i = 1 observe that H*+1:5+2(D, ) has an extra summand Z coming from
the homology of T', which produces an extra generator in ker §. Therefore

Kh** 53 (L por,,) 2 Kh' (L) & Z,

as claimed.

5 Extremal Khovanov homology of braids in polynomial time

In this section we prove Theorem [I.4] by constructing algorithms .A;, which work on link diagrams and
can be specialized into braid algorithms By, ;. We start in by giving an overview of algorithms
A}, constructing By, ; using them. In the algorithms Ay, are described in more detail and in
and their validity and polynomial runtime are proven.

14
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Type III Type IV

Figure 6: The four different families of simple planar arc diagrams which we will use. Type I, IT and III
simple planar arc diagrams are determined by n > 1 and Type IV is unique. The planar arc diagrams
are considered up to boundary preserving planar isotopy.

5.1 Overview of the algorithm A

Planar arc diagrams glue “smaller” tangles together to generate “larger” tangles and eventually links.
Bar-Natan’s theory allows one to formulate local Khovanov complexes of “smaller” tangles, which
themselves can be composed as well with planar arc diagrams and the two ways of making a “larger”
composite complex commute with each other [BNO5|. Instead of using the general theory, it suffices
for our purposes to introduce unoriented simple planar arc diagrams of Type I, II, III, and IV, see
Figure [0}

A nice scanning sequence S of a link diagram L with n crossings is a triple of sequences

S = ((Tl,...Tn),(Cl,...,Cn),(Pl,...,Pn_l))

where T; are unoriented subtangle diagrams of L, ¢; are unoriented crossings of L and P; are simple
planar arc diagrams of Type I, IT or III for ¢ < n — 2 and P,,_1 is of type IV. Additionally, we require
that T4 = ¢1, T, = L and T; ®p, ¢;y1 = T;41 as tangle/link diagrams. A scanning sequence is also
implicitly present in the scanning algorithm of [BNO7], but our technical condition of allowing only
one Type IV diagram is the extra ingredient which makes our sequences nice. In Lemma [6.2| we prove
that for reasonable link diagrams nice scanning sequences always exist. The girth of a nice scanning
sequence, denoted by girth(S), is the maximum number of boundary points on all subtangles T;.

Proposition 5.1. For every k > 0 there is an algorithm Ay which takes in a link diagram L and a
nice scanning sequence S for L and outputs Kh"* (L) for i < —n_(L) +k and i > ny (L) — k. The
algorithm Ay has running time O(f(girth(S)) - px(n(L))) for some function f and polynomial py,.

Theorem is obtained as a corollary Proposition

Proof of Theorem[I]} The algorithm By, ; takes in a word w applies the algorithm Ajy4;_1 to the pair
(Lp,S). The link diagram L; is the braid closure of b = o7 . ..Jt,lwa;ll . ..ofl and S scans the
crossings of Lj in the order that they occur in b. Conjugating w with o7 ...0s_1 before taking the
braid closure does not alter the isotopy type of the link but it will ensure that S is a nice scanning
sequence with girth(S) = 2¢. The conjugation also adds ¢ — 1 positive and negative crossings, which is
why we need to apply A1 to Ly in order to obtain Kh**(L,,) = Kh"*(L;) in homological degrees
i< -—n_(Ly)+k=-n_(Ly)+k+t—1andi>ny(Ly) —k=—-ny(Ly) —k—t+1. O
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To prove Proposition it suffices to describe an algorithm which obtains Khi’*(L) for i <
—n_(L) + k. The degrees i > n4 (L) — k can be obtained by applying the same algorithm to the
mirrored diagram D' and using the fact that Khovanov homology of the mirror link is obtained from
the dual complex. In order to minimize the trouble of grading shifts, we will make use of unshifted
complexes and delay the shifts to the very end. Thus, for a crossing ¢ € {34, X} we denote [c]us as
the unshifted Bar-Natan complex of ¢, so that

DAus = -+ — 0 — u0¢®) ( 24 ylgl 50— -
Xlos= - —0—u"¢"= Saddle, W) ( —0— -

and more generally for a tangle diagram T we write [T]uys = u"~ (X g~ +E)+2n— (L[],

The algorithms Ay, are roughly described by pseudocode in Algorithm [2| and in Subsection [5.2
we will express the precise meaning of Lines [d] and [5] whose point that we do not eliminate “too
many” isomorphisms. Limiting the number of cancellations allows us to keep the lengths of integers in
check, which ensures that we do not spend exponential time multiplying integers of superpolynomial
bit-length.

Algorithm 2 For any k, the following describes Ay for the lowest degrees and with Z-coefficients.

Input Link diagram L with a nice scanning sequence (71, ... Ty(r)), (c1,- -, cn(r)), (P1s- -+, Pury=1))-
Output Kh**(L) for i < k —n_(L)

1. Assign C < [e1]us

2: fort=1,...,n(L)—1do

3 Assign C' + C ®p, [ct41]us

4: Deloop the newly formed circles in C” and fix a block decomposition. Call the result C”.

5 Gaussian eliminate certain blocks of C” by using the saddle of [¢j+1]us. Call the result C".

6 Truncate C” at k + 1, that is, set (C"")*+2 = 0. Call the result C.

7: end for

8: On C replace every () with Z. (Or to put it fancily, apply the Khovanov TQFT functor F'.)

9: Put the differentials of F'(C) into Smith normal form.

10: Read of the homology from the Smith normal form and shift it with ") gn+(L)=2n-(L)

Over finite fields, one does not need to restrain the number of cancellations and pseudocode in
Algorithm [3] presents simpler algorithms F,.4; which compute the homology with F, coefficients.
Removing Line |§| from the Algorithms F,.Aj gives precisely Bar-Natan’s scanning algorithm [BN07]
which computes the whole Khovanov homology table Kh**(L;F)).

Algorithm 3 For any k the following describes Fj,.A;, for the lowest degrees and with I, coefficients.

Input Link diagram L with a nice scanning sequence (11, ... Ty(r)), (c1y- -, Cn(rny)s (Pry -+, Pony—1))-
Output Kh"*(L;F,) for i <k —n_(L)

1: Assign C + [e1]us

2: fort=1,...,n(L)—1do

3 Assign C' + C ®p, [ct41]us

4 Deloop the newly formed circles in C”. Call the result C”

5: Tteratively Gaussian eliminate isomorphisms of C”” until none are left. Call the result C"”.
6 Truncate C" at k + 1, that is, set (C”")*+2 = 0. Call the result C.

7: end for

8: Replace every () with Z. (Or to put it fancily, apply the Khovanov TQFT functor F.)

9: Read of the homology from C and shift it with u ="~ (&) gn+(L)—2n- (L)

5.2 Expanding and eliminating blocks in A,

Every object B in CobZ /l(2n) is isomorphic to a unique direct sum (up to a permutation)

B @ ¢ D; (10)
=1
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where D; are loopless diagrams, which are planar matchings on 2n points, and ¢; € Z. Using any
morphism f: A — B of Cob? /l(2n) can be described with a matrix, where each matrix element is a
morphism f; ; € Hom(A;, B;) between some loopless diagrams A; and B;.

A morphism g: D — E between loopless diagrams is a formal sum of oriented surfaces embedded
in [0, 1]® with boundary X = (D x {1})U(E x {0})U (0D x [0,1]). Topologically, X is a disjoint union
of St:s and we can glue disks to each loop and embed them inside the cube [0,1]3. Up to a boundary
preserving diffeomorphism, this generates a unique cobordism ¥p g < [0,1]%. We define dec(D, E) to
be the set of all possible ways of decorating each component of ¥p g with 0 or 1 dots. In other words,
dec(D, E) consists of 2¢ copies of Xp g with varying decorations where c is the number of S':s in X.

Lemma 5.2. For loopless planar matchings D, E € Cob?/l(Qn), the set dec(D, E) freely generates
Hom(D, E).

Proof. To see that dec(D, E) generates Hom(D, E), take any dotted surface S embedded [0, 1] with
the desired boundary. By using the neck-cutting relation, one can get rid of all of the genus and
disconnect every boundary component of S. Then S is expressed as a sum of unions of dotted spheres
and disks. Using the double dot and sphere relations to this sum, we get a description of S as a sum
over dec(D, E).

Next, let ESedec(D,E) csS = ESedec(D,E) dgS for some integers cg and dg. To see that cg = dg for
a fixed S, we describe a map fs: Hom(D, E) — Hom(, ). The map fs takes a dotted surface ¥ in
[0, 1]® whose boundary is a disjoint union of St:s in 9(]0, 1]*) and glues disks to each of those boundary
loops. The glued discs are embedded “outside of the box” and fs places a dot on each “outside
disk” if the corresponding “inside disk” has no dot in the surface S. Rescaling the generated surface
appropriately, we get a surface fs(3) € Hom(), #). Moreover, this procedure describes a well-defined
linear map fg: Hom(D, E) — Hom((, ). By plugging in the original sums and using the sphere and
double-dot relations, we obtain

CsE = fs Z CS/S/ = fS Z ds/S/ = dsE
S’edec(D,E) S’edec(D,FE)

where E is the empty cobordism E: () — ). Since Hom((), () is freely generated by E, this concludes
the proof. 0

In complexity theory, finite fields are often simple to work with since addition and multiplication of
two elements can be done in constant time in terms of bit-operations on a computer. Storing an integer
¢ takes log, || amount of memory and time which can be too much if ¢ is humongous. Asymptotically
optimal algorithms for multiplying integers have been extensively studied in computer science, but for
us it will suffice that both addition ¢ 4+ d and multiplication c¢d can be computed in polynomial time
with respect to logy(|cd|). Nevertheless, in order to prove Proposition we will need to make sure
that the log,(|c|) is bounded by a polynomial for all of the integers involved. To this end, we define
I|| to be the {; norm on Hom(D, E) with respect to the basis dec(D, E), that is,

Z csS :Z\cs|.
s

Sedec(D,E)

Lemma 5.3. There is an algorithm which takes in loopless planar matchings A, B,C € Cob?/l(Qn)
and morphisms f1: A — B, fo: B — C expressed in the basis as

fi= ) S = ) dgS

Sedec(A,B) S’edec(B,C)

and outputs

faf1= Z esnS”.

S edec(A,C)

For a fized n, the algorithm runs in polynomial time with respect to log(|| f2||- || f1|]) and the composition

satisfies || fafall < 2771 fall - | f1]-
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Proof. Our first goal is to isolate the decorations and coefficients of f; and write

f1 = Z Css = EAJ; o} Z tpP (11)

Sedec(A,B) Pedec(A,A)

where the underlying surface ¥4 4 of dec(A4, A) is the product cobordism A x [0,1]. On each dot
decoration S € dec(A, B) one has to choose to which components of A x [0, 1] the dots are moved, that
is, one has to pick an appropriate decoration P € dec(A, A). For these choices tp = cg and the rest of
the coefficients tp vanish. This quick procedure (non-uniquely) finds and similarly expanding fo
we can obtain

f2f1 = Z T’QQOEBvcozA’B o} Z tpP. (12)

Qedec(C,C) Pedec(A,A)

Next, we will analyze the non-decorated surface ¥5 cX4 . The connected components {X;}; of
YB,cXa,p can be obtained directly from the planar matchings A, B, and C. Each connected ; is
obtained by gluing k discs of ¥4 g and ! discs of ¥ ¢ along m lines yielding x(2;) = k+ 1 — m. By
the classification of oriented surfaces with boundary we also get x(X2;) = 2 — r — 2¢g where r is the
number of boundary loops of ¥; and g is its genus. Since k,l,m and r are obtainable from A, B and
C' we can compute g. By using the neck cutting relation, we can get rid of the genus on ¥; at the
cost of adding g dots and a coefficient 29. Further using the neck-cutting relation r — 1 times we can
replace all connections of ¥; with a sum of decorated discs which are glued on the r loops. Applying
this simplification to every connected component ¥; gives the expansion

SpeXas= .  bsS. (13)
S’ edec(A,C)

Finally, the expansion of f3f; can be computed from by adding and multiplying the integers ¢ p,
rQ, bs and using the double dot relation.

Since ¥4, p and X ¢ contain at least 1 disk each and ¥ g ¥ 4,5 is obtained by gluing them along n
lines, we get x(Xp,cX4,5) > 2—n. On the other hand ¥4 ¢ contains at most n disks, so x(X4,c) < n.
Thus x(Z4,c) — X(XB,cXa,B) < 2n — 2 which means that the neck cutting relation can be used at
most 7 — 1 times when arriving at . Hence |Xp.c%4 5] < 27! and we can compute

If2fill=1| Y. reQoeTpcoZape Y tpP
QEdec(C,O) Pedec(A,A)
< Z Q| - I¥5,cXa Bl - Z tpP
QEdec(C,O) Pedec(A,A)
<27 fell - A1
concluding the proof. O

Now we can elaborate on what we mean by delooping, block decompositions and cancellations at
Lines 4] and [5] in Algorithm At Line {4 the complex C” with a block decomposition and a Morse
matching M are formed. Then at Line [5| the Morse complex M (C”) is computed and renamed to be
C""[1] The concrete block decomposition of C” and the matching M depend on the type of the simple
planar arc diagram P;, denoted by P for simplicity. Type I is easy: no new loops are formed, we take
C" to have the trivial block decomposition and set M = §). Simply put, if P is a Type I planar arc
diagram Lines [d] and [5] do nothing.

Type II: By definition, the complex ¢’ = C ®p [c]us can be written as

C'@p)(——— C*@p)(— C""2@p)(

qCFl p < —qC'®p < — inH ®p = (14)

ISince the matching M will consist of only 0, 1, or 2 block isomorphisms per homological degree, one could avoid the
graph theoretic language and simply perform Gaussian elimination on the morphisms of M one-by-one. The result will
be identical, but our choice of notation will help us to analyze the result in Lemma
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where the maps S* are diagonal matrices of saddles. In (14| the ¢:s at the bottom row denote the extra
grading shifts associated to [c]us and whereas the homological gradings and the internal gradings of
C* are hidden. Let us write the i:th chain space of C* as D* @ E* where D? is the direct sum of those
diagrams which connect the two bottom strands and E? is the direct sum of the rest:

il Tl pieaints Il g
|
|
l
S D R |
D E?

The diagrams of D?® p < contain a circle, which can be delooped at the cost of duplicating them. More

formally, there is an isomorphism [21] :qD' ®@p < — ¢*Di"t®@p X D1 @p < where D' ®p <
2

denotes the direct sum of diagrams of D’ ® p ~X with the new circle removed on every diagram, see
Figure [2] for the local picture. Now decomposing C’ and pulling back the differential we find an
isomorphic complex C”

Di®@p)( Dt @p)( D2 ®p)(

Eiop)( EH @p) ( T B2 ap)(

Di-1@p < Digp X< Ditl @p <
@D @p < ¢*D' ®p =< @D @p <
gEi 1 ®@p < gE' ®p X qE @p X

where the chain space (C”)? is the direct sum of the 5 objects in the first column. The differentials of
C" are represented by 5 x 5 whose matrix element at (1,3) is m?. Expanding the pullback differential
gives m' = (—=1)02(7p ®p id)(id ®ps)(tp ®p id), where tp and 7p are the canonical inclusions and
projections related to C? = D* @ E' and s is a saddle. Hence m® are isomorphisms, M = {m’ | 0 <
i < n(L)} is a Morse matching and at Line [5| the Morse complex M(C") = C" with C"" ~ C" is
computed.

Type III: We decompose C* = D' @ E' @ F* where D’ contains the diagrams which connect the
two bottom left strands, E* those which connect the two bottom right strands and F* those which
connects none of them which each other:

As with Type II, the summands of D’ ®p =< and E? ®p ) ( contain circles which can be delooped so
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that C" = C ®p [c]us is isomorphic to the complex C":

Di®p)( Dt @p)( D*2@p)(

g 'E@p)( g EF ®p) g 'EH2 @p) (

4

qE" @p) ( m Bt @p)( mi' B2 @p)(

F'op)( FHl@p)( FH2@p)(

J

Di-Tep =< m} Diep= myt! Dl ep <

¢*Di-Tep < *Dip < @D+l @p <
Bt op < gE'®@p < Bt op X
gF'~t@p < qF'@p =< gF*t @p =

Again by expanding, one sees that the matrix elements m® and m} are isomorphisms. On the other
hand, the dashed gray arrows are zero morphisms since the first tensor component of their expansions
contains an inclusion D* < D? @ E' followed by a projection D' ® E* — E' (or alternatively E! —
D' ® E' — D'). Hence M = {m%,m% | 0 < i < n(L)} is a Morse matching, and at Line [5| we
can perform Gaussian elimination on all of the morphisms m} and mj} to obtain the Morse complex
M(C)=C".

Type IV: Let us decompose C* = D*@ E* where D? consists of those diagrams with < connectivity
and E? of those with ) ( connectivity. The compositions contain many new circles, but for the moment
we only deloop the ones at the bottom of D* ®p < and the inner circle of E* @p ) (. This yields the
complex C":

D' ®p)( Dt @p)( D2 ®p ) (
¢ 'Eiep)( ¢ EF T ep)( ¢ TEH?2p)(
mi mitl
1 1
qEi®p)( gE+l@p)( qE+2@p)(
mi m'i+1
2 2
Qﬁ Qﬁ Qﬁ
¢D1ep < \D ®p X \(]D ®p X
¢Etep < qE'@p < ¢Et @p <

from we set M = {m}{,mb | 0 < i < n(L)}. The set M is a Morse matching since the gray dashed
matrix elements on C” are zero morphisms. To finish off with a simple complex, we deloop the rest
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of the circles of M(C) before calling the result C”’. (To more accurately follow the pseudocode of
Algorithm [2] we could have delooped everything first before cancellation, but our equivalent two-step
delooping process kept the notation lighter.)

5.3 Validity

The truncation of a chain complex (C,d) at k € Z, denoted by 7<;(C), is the chain complex with
differential 0 defined as

T<k(0)i =

0, otherwise 0, otherwise.

{Ci, ifi <k 8i_{di, ifi <k

With this notation, Line |§| can be written as C < 7<,11(C""). We say that chain complexes (C, d)
and (D, 0) over an additive category are chain homotopic up to k € Z, denoted C' ~<;, D, if for all
1 < k there are morphisms

ft: 0" — DY, g': D' = C", st 0= 0L t': D' —» D!
so that f* and ¢* commute with the differentials and s* and ¢ give the homotopy to the identities:
fi-‘rldi _ azfz’ ngcz o ldcw — di—lsi + si-i-ldi
g1 = dig’ Figh —idps = @M 4 190,

The usual definition of a chain homotopy is retrieved with £k = oo and the following lemma is a
collection of some useful basic properties.

Lemma 5.4. 1. C ~ D implies C ~<i, D for all k.
2. 17<p+1(C) = C, for all k.
3. If F is an additive functor, then C ~<y, D implies F(C) ~<;, F(D).

4. If C and D are chain complezes over an abelian category and C ~<j, D, then H'(C) = H*(D)
for alli < k.

5. Let P be a simple planar arc diagram, ¢ a crossing, C and D complexes over Cob?/l(Qn) which
are supported on the nonnegative homological degrees and C' ~<j D. Then C Qp [c]us ~<k

D ®p [c]us-
Proof. Claims and [3] follow directly from the definitions, [4]is a slight modification of the standard
result and [5| uses the fact that [c]us is supported in nonnegative homological degrees. O

For analyzing correctness and estimating the time complexity of the algorithms .4, we need to
define the following intermediate complezes. We denote by Cf; the complex stored at variable C'
before running the for loop of Ay (Lines in Algorithm [2)) for ¢:th time where ¢ < n(L) — 1 and by
Cln(ry) the complex which is stored at variable C'" after the for loop.

Proof that Ay, computes Kh'*(L) fori <k —n_(L) correctly. At every line of Algorithm [2| one can
use a corresponding claim of Lemma to see that chain homotopy up to k + 1 is preserved: At line
we initialize the complexes to be the same: C}y; = [c1]us so in particular Cpyj ~<g41 [T1]us. Then
to proceed with induction, we use Claim [5]at Line 3} Claim [I] at Lines 4] and [5] Claim [2]at Line [6] and
Claim [3] at Line[§] This guarantees that

F(C)) ~<py1 F[LJys = u™~F g+ (B+2n-(1) CKh(L)

and hence by Claim 4 the algorithm Aj computes Kh"*(L) for i <k —n_ (L) correctly. O
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5.4 Proof of polynomial time complexity for A

In order to measure the sizes of objects and limit the number of operations, we establish two definitions.
Firstly, for an object B in Cob’ Il (2n), we set rankeo,(B) = n where n is the number of loopless diagrams

in the decomposition . Secondly, for a complex (C, d) over Cob%/l(2n), we define |C||; = max{]| f]| :
f matrix element of d'} for every integer 4.

Lemma 5.5. The following bounds hold for intermediate complexes Cy of the algorithm Ay

rankCOb(C[iﬂ) < <t> fort < n(L) (15)

7

rankeos(Cl, 1)) < 2 <”(ZL )) (16)

ICylli < expy ((g + 1) ((: 1 1) — 1)) for all t (17)

where g is the girth of the nice scanning sequence and expy(a) denotes 2°.

Proof. All three claims are proven with an induction on ¢. For and the base case t = 1 is
trivial and the induction step splits into 4 simple cases depending on the type of the planar arc diagram
P. For example, with Type II diagram and using the notation of Section [5.2] we can directly compute

_ . E——— - t t t+1
rankCOb(O[Zt_A,_l]) = I'ankCob(EIZ Xp ) (EB qDl_l Qp ZGF ! Rp ,\) < <Z) + (Z _ 1> = < i >
The additional factor 2 in is associated to the extra deloopings involved with the Type IV diagram.
For the base case t = 1 is routinely verified and we assume that holds for some t. It is

straightforward to see that
ICylli =0 wheni<0QOori>p (18)

since the complex [T} ] is also 0 in homological degrees i < 0 and i > p. The morphisms of Cp are also
the morphisms of untruncated Morse complex M (C”) = C" which are sums of zig-zag paths. In the
Morse complexes one can see that there are at most 3 paths on every sum and in Type III and IV they
will use either (m%)~!, or (m3)~! or neither but not both. The norm of each of the three summands
will be bounded by 29/2~1 max(||Cly ||;, 1) max(||Cpy [li—1, 1) where the 29/2~! term comes from Lemma
In particular we get

ICeslls < 325 max([|Cryls, 1) max([|Cry[li-1, 1)- (19)

If 1 <i<t—1, we can use the induction assumption and ((19) to compute:

1Cpraylls < 3297  expy ((g +1) ((: j: i) - 1)) exp, ((9 +1) ((t t 1) = 1)>
< expy ((g-i—l) ((Zi) —1>>.

For i = 0 and ¢ = ¢, the claim is obtained by using , , and the induction assumption. O

Proof of the running time estimate for Ai. As an input to Ay, let us limit to link diagrams L with nice
scanning sequences S with a global upper bound girth(S) < g on them. By analyzing the pseudocode
of Algorithm [2]line by line, we aim to show that on this fixed set of inputs A runs in polynomial time

with respect to n(L).
By Lemma the intermediate complex Cf;) has at most 22?:3 (;) = O(t**1) objects. Since
each matrix element of C; connects a pair of objects, there are at most O(t?*+2) matrix elements f

and by Lemma [5.5 their norms are bounded by

t4+1 X
1 < . —1)(g+1)=0@").
omlfl < _mwx ((11)-1) g+ 0 =00
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To generate C" = Cpy ®p, [ct41]us from Cpyy we perform at most O(t*+1) vertical compositions of ob-
jects, O(t?k*2) vertical compositions of morphisms and create at most O(t**1) new saddle morphisms.
When creating C” from C’ we deloop O(t**1) objects and compose O(t2*+2) morphisms with the
delooping 91, 02 and relooping t;, t2 morphisms. In constructing C” from C" we perform O(#2++2)
horizontal compositions and summations of morphisms. By Lemma [5.3] each horizontal composition
takes polynomial time with respect to O(t*+1) since girth(7}) < girth(S) < g. The time taken for the
truncation at Line [f] is negligible. We have now shown that there exists some constant a € Z, which
is independent of ¢, and which ensures that only O(¢*) operations are performed at the ¢:th iteration
of the for loop.

To execute the whole for loop, n(L) — 1 iterations are made with different ¢ < n(L) — 1 values, so

in particular at most
n(L)—1 n(L)—1

Y 0w < Y Om(L))=0mL))

operations are performed before the Smith normal form at Line [J} Smith normal form of an integer
matrix A" can be computed in polynomial time with respect to n, m and max; ;{log,(|A4; ;|)},
[Sto96]. By Lemma the matrices of F'(Cl, (1)) admit polynomial upper bounds with respect to
n(L) for these quantities. Hence Ay runs in polynomial time for the inputs (L, S) with girth(S) < g.
Thus the running time of algorithm Ay for all inputs (L,S) is O(f(girth(S)) - pr(n(L))) for some
function f and polynomial py. O

6 Binomial rank bounds via nice scanning sequences

A graph G is connected if there is a path between every two vertices is G. In addition, a graph G is
called 2-connected if for every vertex v € G the induced graph of G \ {v} is connected.

Lemma 6.1. Let G = (V, E) be a 2-connected graph and A C'V a subset of vertices so that #A > 1
and #(V'\ A) > 2. If the induced graphs of A and V' \ A are connected there exists x € V' \ A so that
the induced subgraphs of AU{z} and V' \ (AU {z}) are also connected.

Proof. Assume that x is a vertex of V' \ A for which the following maximum is obtained:
M =max {#C |z € (V\ A), AU{z} connected, C is a component of V' \ (AU {z})}.

If M =#V —#A—1, then V' \ (AU {z}) is connected so we can assume towards contradiction that
M < #V —#A-1.

Let C and D be two components of V' \ (AU {z}) with M = #C and pick any vertices ¢ € C' and
d € D. Since G is 2-connected, there is a path P from d to ¢ which does not cross x. Denote d' € D
as the last vertex of P in D, so that V U {d’} is connected and write C’ for the component of ¢ in
V\ (AU{d'}). It follows that #C < #C’ since the component C’ additionally contains the vertex .
On the other hand, #C’ < M = #C by maximality of M which gives us the desired contradiction. [

A link diagram is called reduced if it does not contain any nugatory crossings, see Figure 7] It is
straightforward to see that a connected link diagram L can be transformed into an isotopic, reduced,
and connected link diagram L' with ny (L) > ny (L) and n_(L) > n_(L).

Ty Y Ty T AR
L/

Figure 7: A nugatory crossing (left) and removing it (right). Removing the nugatory crossing flips the
right hand side tangle T5 by 180° around the x-axis which is indicated by the flipping the symbol T3
to 13.

Lemma 6.2. Every connected reduced link diagram admits a nice scanning sequence on it.
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Proof. Let L be a connected reduced link diagram and G = (V, E) the 4-valent non-simple planar
graph of L, whose vertices are the crossings of L and whose edges correspond to the strands between
crossings. From the fact that G, is connected and reduced, one can see that G, is 2-connected. (Any
vertex separator of G, has to correspond to a nugatory crossing in L, but L does not have nugatory
crossings since it is reduced.)

The sequence of crossings c1, ..., ¢, for § are retrieved from the graph G by a greedy algorithm.
Start by picking any vertex ¢; € V and observe that the induced graphs {c¢;} and V \ {¢1} are
connected. Suppose next that ¢y, ..., c; have been picked, so that ¢ < n— 2 and the induced subgraphs
of {¢1,...,¢;} and V' \ {e1,...,¢;} are connected. By Lemma [6.1] there is a vertex ¢;41 for which that
the induced subgraphs of {ci,...,¢;x1} and V' \ {c1,...,¢i+1} also remain connected. Finally, once
c1,...,Cch_1 have been chosen, add the last vertex in to complete the sequence of crossings cy, ..., cy,.

The sequence of subtangle diagrams 77,...,T, and simple planar diagrams P;,..., P,_; can be
retrieved by setting 77 = c¢; and analyzing how c;;; inductively glues into 7;. The induced graph
of ¢1,...,¢; remains connected after gluing in ¢;41 which is why P; has to connect ¢;41 to T; with
1,2,3, or 4 strands. Moreover the vertex c¢;41 cannot be connected to 7; with 4 strands except
when i + 1 = n, since the induced graph of {¢;+1,...,¢,} is connected. Finally, no strand can go
from a crossing to itself since L was reduced. Thus c¢;11 is glued to T; with a Type I, II, or III
simple planar arc diagram, when ¢ < n — 2 and with a Type IV diagram when ¢ = n — 1 and so
S=((T1,...Ty),(c1,-..,¢n),(Py,...,P,_1)) forms a nice scanning sequence for L. O

Proof of Proposition[I.5 Let L' denote the link diagram which is obtained from L by removing the
nugatory crossings. By Lemma there exists a nice scanning sequence S on L’. When running the
algorithm Ay on (L', S) with k = n(L’) no nonzero chain spaces get truncated so there is an honest
chain homotopy u‘"—(L)q"+(L)_2”—(L)C[n(L)] ~ [L']. Hence for any field F we can compute

dimp(Kh** (L; F)) = dimp(Kh**(L'; F)) < rank (F(u_”*(L)q”“L)_Q"*(L)C[n(L)})i)

< e (A135) <2(, 0 ) <20 )

by bounding the homology with the size of the chain complex and using Lemma [5.5) O

7 Asymptotical strictness of rank bounds

Proposition [1.6] is a non-vanishing result which claims an asymptotic lower bound on the the rank of
certain Khovanov homology groups. To prove it we consider the chain complexes CKh(L;), where L,
is the braid closure of the braid diagram (oj0303)'0103, see Figure On CKh(L;) we employ an
algorithmic Morse matching Moy from the previous work of the first author [Kel25]. This produces a
Morse complex Miex(CKh(L;)) where we find 2¢ explicit, distinct, non-vanishing homology cycles.

Since we are using Mex on link diagrams L; which only contain crossings of the form }{ the
construction of Mjex can be simplified quite a bit. In [Kel25] the matching Mo, was defined on Bar-
Natan’s tangle complexes but since we only work with specific links, we can define it directly for
CKh(L;) which are chain complexes of free Z-modules. The direct sum decomposition which we fix
on CKh(L;) consists of single copies of Z: one for each 2-coloring of each smoothing of L;. The two
grayscale colors we use are dashed gray > for the unit 1 and thick black Q for the counit x. This
allows us to write merge m and split A maps of the Khovanov complex as

m(o®0) = A()=204+0®
mOe ) =m(C0)=0 AQ) =020
m(Q® Q) = 0.

In particular, splitting out O will always be an isomorphism and our Morse matching M., will consist
of such splits.

We order the crossings of L; from bottom to top or equivalently the characters of (01030‘21)%103
from left to right. For a matrix element f of CKh(L;) which changes a 0 smoothing to a 1 smoothing
at the k:th crossing, we denote i(f) = k. Diagrammatically, we define

M- {f € {matrix elements of CKh(L;)} f splits out a © loop which completely located }

at or below the i(f):th crossing in the diagram L,
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)
o™

L, Uy

Figure 8: The link diagram L; and local pictures «, 8. The special vertices wu,, of G(CKh(L;), Miex)
are constructed by taking a tuple w € {a, 3}t and gluing the local pictures of w on top of each other,
1 smoothing the two last vertices and using the dashed gray color on all loops.

For every vertex x we define N(z) to be the set of neighboring morphisms from M:
N@)={fra—=z|feM}U{g:x—b|ge M}
This allows us to finally set
Mex ={f:z =y | feM, i(f) <i(g) for all g € N(z) UN(y)}.

Proposition 3.5 of [Kel25] shows that Miey is a Morse matching for every tangle/link diagram and in
particular:

Lemma 7.1. The matching Miex is a Morse matching on CKh(Ly).

In Figure [§] we construct special vertices u,, of G(CKh(L;), Miex) for every w € {a,3}. These
pictures u,, end up representing distinct homology cycles in the Morse complex Mjex(CKh(L;)). The
proof of Proposition [I.6] comes as a consequence of the following three claims on the diagrams wu,,:

1. The vertex u,, is unmatched in M., and thus it represents a copy of Z in homological degree
6t +2 — #{j | w; = a} of the Morse complex Mex(CKh(Ly)).

2. Suppose the homological degree of u,, is h and denote the projection of (Miey(L¢))" to wu,, by 7.
Then 79"~ = 0.

3. Suppose the homological degree of u,, is h and denote the inclusion of wu,, into (Mex(L¢))" by ¢.
Then 9" = 0.

Proof of Proposition[1.6, By Claim [I| every u,, represents a copy of Z in the complex Miex(CKh(L:))
and by Claims [2] and [3 that Z fully contributes to the homology H(Mie,(CKh(L;))) = Kh(L;). This
yields

Khn(Lt)—k,*(Lt) ~ Z(;) ® Ak,t

for some Z-modules Ay, ;. Thus

. rank(Kn"E0k# (L)) . (1) 1
htfgz,&f( Oy ) F it | ey | =

n(Li)—k 6t+2—k

concluding the proof. O
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Proof of Claim [l Changing any 0O-smoothing of u, to a l-smoothing generates a split morphism
f:uy — y. No matter what crossing we chose to act on by f, neither of the loops in y which
are split by f will be completely contained below i(f) in y. Hence f ¢ M. On the other hand, chang-
ing any 1-smoothing of u,, to a 0-smoothing is geometrically a split in the reverse direction. However
Uy does not contain any O loops and every split morphisms generates at least one Q loop, so there
cannot exist an edge ¢g: © — u,, in the graph G(CKh(L;)). We conclude that N(u,) = and so u,, is
unmatched. O

Proof of Claim[3 Let x be an unmatched vertex of G(CKh(L;), Miex) with homological degree h — 1.
In the previous claim we argued that there are no edges in  — u,, in the graph G(CKh(L;)). It follows
that cannot exist any zig-zag paths from z to u,. Thus 0, , = 0 and so 70" =0 as well. O

7.1 Proof of Claim [3]

Let y be an unmatched vertex of G(CKh(L¢), Miex) with homological degree h + 1 and set P =
{paths: u,, — y}. In Claim [2| we deduced 79" ~! = 0 from the fact that there were no paths nontrivial
paths from any vertex to u,, in G(CKh(L;), Mjex). Since P can be non-empty the same tactic cannot
be used to prove 9"t = 0. Instead, we will show that P can be arranged into distinct pairs (p, A(p))
for which R(A(p)) = —R(p). From this pairing, one can easily compute:

Oyuun = Y R(@ = > R(p)+RA@p))=0.

qepr (p:A(p))

We say that [y — --- — Ig is an [-subpath if when cutting the diagrams of [y,...,ls above the
6n+ 8:th crossing for some 0 < n < t—1 generates the pictures in Figure[0d Similarly, we call s; — s2
a s-subpath if a similar cut generates diagrams of Figure OB} In order to prove that every p € P
contains either an s- or an [-subpath we will need the following result.

Lemma 7.2 (Lemma 3.4 from [Kel25]). Let (b — a) € Miex and a — b — ¢ be a subpath of a zig-zag
path between unmatched cells in the graph G(CKh(L¢), Miex). Then i(b — a) < i(b — ¢).

Let p = (v1 = -+ = va,) € P be azig-zag path which does not contain an s-subpath. By observing
the diagram of u,, one can see that the v; — vs has to be of the form s; — so from Figure[9b|or i1 — Io
from Figure Since p does not have an s-subpath the latter must hold. Next, let vop 11 — vor42 be
an edge in p which is of the form I; — I and for which i(vor11 — vary2) < i(vaj41 — v2j42) for every
other edge v2j4+1 — V2542 in p of the form l; — l5. By verifying that vertices of type I are matched
to vertices of type l3 we obtain that vogy3 is of type l3. From Lemma we get i(vogpts — Vokra) <
i(vak+3 — Vak+2). The only edges from wvar43 with @ value strictly below i(vegt+3 — var12) are either
of the type s1 — s or l; — Iy but neither of these are possible due to p not containing an s-subpath
and the minimality of i(vog+1 — vogt2). It follows that i(vogts — vopta) = i(Vak43 — Vagt2) and so
vog+4 must be of type Iy (as the arrow to type ls vertex is reversed). By alternatingly repeating the
two aforementioned arguments one can deduce that vag41 — -+ — vopyg is an [-subpath. Hence every
p € P contains an s- or an [-subpath.

The pairing we foreshadowed takes the form of a bijection A\: P — P. The function A takes in a
path p, cuts out the first occurrence of an s- or [-subpath and glues back in an [- or an s-subpath. If
s-subpath was cut out, then [-subpath is glued in and vice versa. Since s- and [-subpaths begin and
end at similar vertices, the map A is a well defined and since A(A(p)) = p, it is a bijection.

To confirm that R(A\(p)) = —R(p) we take a path p € P where an s-path occurs first. Denote
s1 — sg and 1 — --- — g as the cut out s-path of p and the I-path which is glued back in by A.
Perhaps surprisingly, we do not need to fix a sign convention on the complex CKh(L;) to see that the
signs of R(s; — s2) and R(l; — l2) agree with each other. On the other hand, the signs of R(ls — I3)
and R(l3 — l4) disagree with each other as do those of R(l4 — I5) and R(l5 — lg) and further those
of R(lg — I7) and R(l; — lg). Putting all of this together gives R(s1 — s2) = —R(l; — -+ — lg) and
since the paths agree elsewhere we also get R(A(p)) = —R(p) which concludes the proof. O
Remark 7.3. In proving Proposition the signs were only needed at the last step. There, it sufficed
that every edge e: a — b of the hypercube CKh(L;) between two smoothings a and b has a consistent
sign no matter what colors are chosen on the loops of a and b. This fact also holds for all sign patterns
of odd Khovanov homology [ORSI3]. Hence the proof can be carried out in the odd setting and
Proposition holds for odd Khovanov homology as well.
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P b2 b3 2

~J

J

Ps Ps b7 ps

(a) The local pictures p1,...,ps which are used to make the s- and [-subpaths.

n ps
W, AT Wy,
w1 w1
51 52
(b) An s-subpath. The lower boxes (wi,...,w,) € {a,8}" contain n-copies of the a and S pictures from
Figure [8| stacked on top of each other.
D1 P2 b8
W, P Wn ~ el W,
w1 w1 w1
I Iy ls
(c¢) An l-subpath. The lower boxes (w1, ..., w,) € {o, B}" contain n-copies of the o and 3 pictures from Figure

stacked on top of each other.

Figure 9: The s-subpaths, Figure and [-subpaths, Figure are paths in G(CKh(L;), Miex). The
vertices of s- and l-subpaths are global diagrams whose bottom halves match the pictures of [08] and
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Remark 7.4. While much of the construction of the non-vanishing homology cycles C,, was local, the
global requirement that all neighboring morphisms of C, were splits was also essential. This leaves
some room for tweaking the construction of L;. By considering braid closures L} of (010303)* 010303
one can build similar homology cycles C}, by 1-smoothing the uppermost 5 crossings. It follows that
the asymptotic lower bounds of Proposition [I.6] can be realized with knots and therefore it is not a

special feature of 2 or 4 component links.

Typically, the Jones polynomial is much easier to obtain than Khovanov homology both theoret-
ically and computationally. In the proof of Theorem, we already used this fact to our advantage
when obtaining the Khovanov homology of quasi-alternating links from the Jones polynomial and sig-
nature. In Proposition the situation is remarkably opposite: we obtain lower bounds on the ranks
of Khovanov homology groups, which lie on a single diagonal, without being able to say anything about
the Jones polynomials Jg,(g). Since the links L; are not homologically thin for ¢ large enouglﬂ we
cannot ensure that in decategorifying Kh(L;) to Jr,(g) the monomials corresponding to the high rank
homology groups will not get canceled in the alternating sum.

8 Open questions

In [PS24], Przytycki and Silvero show that the extremal Khovanov homology of a closed 4-braid L can
be computed in polynomial time. Furthermore, there are at most two non-trivial groups Kh®%min (L)
and Kh"dmin (L) with k > ¢, both free abelian and total rank at most 4 [PS24] Cor.1.6]. A priori, the
gap k — i could be arbitrarily large, so our methods do not give a direct proof of their result. Still, one
can ask whether a variation of our Algorithm [2] which only keeps track of minimal quantum degrees
can be used to recover their result.

Question 8.1. Is there a modification of Algorithm [2]which calculates the extremal Khovanov homology
of a closed k-braid in polynomial time?

The scanning algorithm of Bar-Natan glues complexes of single crossings with simple planar arc
diagrams of Type I-IV before simplifying the total complex with iterated Gaussian elimination. If
implemented naively, this procedure requires one to build a larger complex before starting the simpli-

fication process:
iterate Gaussian

lue deloo imi i
C g C®P [[C]] p D elimination E.

The Morse complexes we build for Type II, ITI, and IV diagrams and crossings ¢ € {34, X} in Section
could be written explicitly and implemented matrix element by matrix element without first delooping,
which accounts to

build the Morse complex iterate Gaussian
C associated to ¢ and P M(O) elimination E.

It is straight-forward to see that this alternative, more laborious, workflow will still take exponential
time on knots with exponentially large Betti numbers. Nevertheless, there ought to be room for
optimization and the following question could be investigated empirically.

Question 8.2. Would implementing a Morse theoretic simplification as part of the scanning algorithm
significantly speed up the computation for average-case knots?

In addition to average-case knots, one could hope that computing Khovanov homology would be
fast for links of special interest. In the study of Khovanov homology, torus links have inarguably
received particular attention and it is natural to ask:

Question 8.3. Let n > 4. Does Bar-Natan’s scanning algorithm compute the Khovanov homology of
an n-strand torus link in polynomial time, either with integral or field coefficients?

Bar-Natan’s scanning algorithm computes the Khovanov homology of 2- and 3-strand torus links
in polynomial time. This can be seen from the techniques in [Sch25b, §3,4]. For n = 4, the Bar-Natan
complexes [(010203)"] of open braids (o10203)™ can be simplified to complexes with quadratically
many generators [Kel25l Corollary 4.2] which supports a positive answer to Question at least

2By a result of Islambouli and Willis [TW18], the complexes of positive braids (01030§)ta103 converge to the cate-
gorified Jones-Wenzel projector. Hence the Khovanov homology of links L, suitably normalized, converges to the stable
Khovanov homology of T'(4, 00). Since the Kh(T'(4, o)) is not homologically thin in the small (< 4) homological degrees
([Sto07] Theorem 3.4) neither can L; be for large enough ¢.
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when using coefficients from a finite field. An affirmative answer is also suggested by the following
proposition, the proof of which was kindly provided to the authors by Qiuyu Ren.

Proposition 8.4. There exist {cy }n>2, such that dimg(Kh(T(n,m);F)) < ¢, mL31 for all fields F.

Proof. Let L, denote the braid closure of (0y...0,-1)"01...0, where k = (n —1)m +r and 0 <
r < n — 1. Since T'(n,m) = Ly, (n—1)m, it suffices to show that there exists coefficients c,, such that
dimp(Kh(L,, m; F)) < c,ml%]. We proceed with an induction on n; sufficient coefficients c; and c3 can
be obtained from [Kho00, §6.2], [CLSS22, Cor.5.7] and Theorem Assume next that there exists
oy ooy Cnoy with dimp(Kh(L; ,; F)) < eymlad,

The last crossing of L, , can be resolved in two ways, which generates two links L, ,,[) (] and
L, m[<]. The link L, ,,[) (] is isotopic to L, ,,—1 whereas L, ,,[<] is isotopic to some L or L, U
(unknot) for some s < n—2 and ¢t < m. The isotopy argument for L., ,,,[<] is explained well in [Tagl7]
Figures 15-20] although our conventions are mirrored.

Associated to the last crossing of the braid word L, ,,, there is an exact triangle

Kh(L, wm[X);F) Kh(L,, 1 F)

—

Kh(Ln,m[) (; F).

When plugging in the aforementioned isotopies, this yields an inequality on the dimensions:

dimg (Kh(Lp m: F)) < dimg(Kh(Lp m_1:F)) 4+ 2dimg(Kh(L, ¢; F)).

Hence choosing ¢, = 2max;, ¢; gives the desired bound for n. O
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