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Abstract. We show that the X-torsion order of a knot, which is defined in

terms of a generalised Lee complex, can be calculated using the reduced Bar-
Natan–Lee–Turner spectral sequence. We use this for extensive calculations,

including an example of X-torsion order 4.

1. Introduction

In recent years torsion invariants for knots arising from Khovanov homology ap-
peared in many contexts. For example, they give rise to lower bounds for unknotting
numbers and Gordian distance [Ali19, AD19, LMZ24], rational unknotting num-
bers [ILM21], band unknotting numbers [Zhu22], ribbon distance [Sar20, Guj20],
and Turaev genus [CGL+21].

They are defined from deformations of Khovanov homology over a polynomial ring
with coefficients in a field F, using the maximal torsion order of the homology viewed
as a module over the polynomial ring. These deformations come with spectral
sequences that start with the Khovanov homology of the knot and converge to the
(shifted) Khovanov homology of the unknot. There is a close relation between the
torsion order and the number of pages of the spectral sequence. The odd one out
here is the X-torsion order xoF(K), which only satisfies xoF(K) ∈ {2k − 3, 2k − 2}
with k the number of pages in the Lee spectral sequence (we assume that the E1-
page is the Khovanov homology, and Ek the first page equal to E∞). By using the
X-action on the Lee complex, one can get a spectral sequence where this is more
precise, but our main theorem states that we can also use the reduced Bar-Natan–
Lee–Turner spectral sequence.

Theorem 1.1. Let K be a knot and F a field of characteristic different from 2.
Then

xoF(K) = p̃gF(K)− 1,

where p̃gF(K) is the number of pages in the reduced Bar-Natan–Lee–Turner spectral
sequence of K with coefficients in F.

Acknowledgements: The author would like to thank Nathan Dunfield for valu-
able discussions on the X-torsion order.

2. Lee and Bar-Natan homology

A (commutative) Frobenius system is a tuple F = (R,A, ε,∆) with A a commuta-
tive ring and a subring R, ε : A → R an R-module map, ∆: A → A ⊗R A an A-
bimodule map that is co-associative and co-commutative, such that (ε⊗id)◦∆ = id.
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Given a Frobenius system F = (R,A, ε,∆) such that A is free of rank 2 over R,
Khovanov [Kho06] showed that for a link diagram D one can define a cochain
complex C(D;F) over R whose homology is a link invariant.

The classical example of Khovanov homology is obtained by choosing R = Z, A =
Z[X]/(X2), ε(1) = 0 and ε(X) = 1, and ∆ is given by ∆(1) = 1⊗X+X⊗1. With
∆(X) = X ⊗X one has indeed that ∆ is an A-bimodule map.

We will be mainly interested in two deformations of this system, which we name
after Lee and Bar-Natan.

2.1. Lee homology. The Lee deformation of Khovanov homology can be described
as follows. For the ground ring we use R[T ], and A = R[X,T ]/(X2 − T ). Both
rings are graded by declaring deg(1) = 0, deg(T ) = −4 and deg(X) = −2. The
Frobenius system is given by

∆A(1) = 1⊗X +X ⊗ 1 ∆A(X) = X ⊗X + T ⊗ 1

and co-unit ε : A → R[T ] given by ε(1) = 0, ε(X) = 1. Note that since tensor
products are over R[T ], T ⊗ 1 = 1⊗ T .

We denote this Frobenius system by FLee and the resulting link homology chain
complex for a link diagram D by CLee(D;R[T ]). Using creative grading shifts, one
can ensure that this complex is bigraded, that is, it has a grading different from
the homological grading, called the q-grading, which is preserved by the boundary.

As an R[T ]-module, A is free of rank 2, with a basis given by {1, X}. Since T = X2

in A, we have A ∼= R[X]. By choosing a base point on D, we can turn CLee(D;R[T ])
into an R[X]-chain complex.

If R = F is a field, then F[X] is a Euclidean domain, and therefore

CLee(D;F[T ]) ∼=
⊕
i∈I

Di, (1)

where I is a finite set, Di is either a single copy of F[X], or Di is concentrated in
two adjacent homological degrees, and is of the form

F[X]
Xki

−→ F[X],

where ki is a non-negative integer. This follows from the usual Smith-Normalization
process, noting that we can keep this grading-preserving at every step. Also, we
allow ki = 0, so that we get an isomorphism of F[X] complexes in (1). As T = X2,
we can also view this as an isomorphism of F[T ] complexes.

Note that the free part for a knot is just one copy, see Turner [Tur20]. More
generally, if L is a c-component link and F a field of characteristic different from 2,

the homology of CLee(D;F[T ]) decomposes into F[X]2
c−1 ⊕ T (L), where

T (L) = {a ∈ HLee(L;F[T ]) | Xna = 0 for some n}.

Definition 2.1. Let L be a link with basepoint and F a field of characteristic
different from 2. The X-torsion order of L, denoted xoF(L), is defined as the
minimal n such that XnT (L) = 0.

Notice that xoF(L) is the largest ki that appears in the decomposition (1).
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Remark 2.2. For a knot the basepoint does not affect xoF(L), but for a link it
can make a difference. The easiest way to see this is to consider a split link with
an unknot component.

Lee [Lee05] originally worked over Q. To get the cochain complex from [Lee05], we
only need to use the change of base ring homomorphism η : Q[T ] → Q sending T
to 1.

2.2. Bar-Natan homology. To get the Bar-Natan deformation of Khovanov ho-
mology we write the ground ring as R[H] and use B = R[X,H]/(X2 −XH), with
co-multiplication given by

∆B(1) = 1⊗X +X ⊗ 1−H ⊗ 1 ∆B(X) = X ⊗X,

and co-unit ε : B → R[H] given by ε(1) = 0, ε(X) = 1.

We write FBN for this Frobenius system. Again we get gradings on the ground ring
and B by setting deg(1) = 0, deg(H) = −2 = deg(X).

For a link diagram D we denote the resulting chain complex by CBN(D;R[H]) and
the homology by HBN(D;R[H]). Again this is bigraded.

As in the case of the Lee complex, when viewed as an R[H]-module, B is free of
rank 2 with basis given by {1, X}. However, as X(X −H) = 0 in B, we do not get
an isomorphism with R[X].

The advantage of the Bar-Natan complex is that it behaves better over Z, and in
particular, over F2, the field with two elements. If F is a field of characteristic
different from 2, it is also closely related to the Lee complex, as we will see in
Section 3.

To explain what we mean by ‘behaving better’ than the Lee complex, consider the
following two observations.

• If η : Z[H] → S is a ring homomorphism such that η(H) is a unit, then
HBN(K;S) = H(CBN⊗Z[H]S) ∼= S⊕S, concentrated in homological degree
0. This follows from [LS22, Prop.2.1].
• There is a well defined reduced complex

C̃BN(D;Z[H]) = X · CBN(D;Z[H])

after choosing a basepoint on the link diagram D. With η as above we get

H̃BN(L;S) = H(C̃BN ⊗Z[H] S) ∼= S2c−1

for a c-component link L.

3. Proof of the Main Theorem

In this section, F is a field of characteristic different from 2.

Let us introduce a formal variable T
1
2 with (T

1
2 )2 = T and consider the inclusion

F[T ]→ F[T
1
2 ]. We get a new Frobenius system FLee = FLee⊗F[T ]F[T

1
2 ], that is, the

ground ring is F[T
1
2 ], A is given by F[X,T

1
2 ]/(X2−T ), and ε and ∆ are as in FLee.

The resulting link complex is denoted by CLee(D;F[T
1
2 ]) = CLee(D;F[T ]) ⊗F[T ]

F[T
1
2 ].

We can define a ring isomorphism

Φ: F[X,H]/(X2 −XH)→ F[X,T
1
2 ]/(X2 − T )
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by sending H to T
1
2 and X to 1

2 (X+T
1
2 ). Note that this sends X−H to 1

2 (X−T 1
2 )

(making it a well defined ring homomorphism) and 2X −H to X.

This does not quite induce an isomorphism of Frobenius systems FBN to FLee, but
it does if we twist the latter by 1

2 , compare [Kho06]. In particular, it induces a
grading preserving isomorphism of F[H]-cochain complexes

Φ: CBN(D;F[H])→ CLee(D;F[T
1
2 ]).

Here we treat the latter as an F[H]-complex using the identification of F[H] and

F[T
1
2 ] by restricting Φ to F[H].

Recall the isomorphism (1) and treat it as an isomorphism over F[T ]. It induces an

isomorphism of F[T
1
2 ]-cochain complexes

CLee(D;F[T
1
2 ]) ∼=

⊕
i∈I

Di ⊗F[T ] F[T
1
2 ].

Combining with Φ and using that Φ(2X−H) = X this shows that CBN(D;F[H]) to
a direct summand of complexesDi, each either being a single free copy F[X,H]/(X2−
XH), or a complex of the form

F[X,H]/(X2 −XH) F[X,H]/(X2 −XH)
(2X −H)ki

with ki ≥ 0. Passing to the reduced complex shows that C̃BN(D;F[H]) is isomorphic
to a direct sum of free copies of F[H] and complexes of the form

F[H] F[H].
Hki

From this isomorphism it follows that the spectral sequence starting with the re-
duced Khovanov homology with coefficients in F collapses after k steps, where k is
the maximum of the ki. Since this maximum is also xoF(K), as follows from (1),
this proves Theorem 1.1.

Remark 3.1. Viewing the Lee complex CLee(D;F[T ]) of a link with base point
as an F[X]-complex and using η : F[X] → F with η(X) = 1, gives rise to a filtered
complex CLee(D;F[T ])⊗F[X]F. Our argument shows that the corresponding spectral
sequence agrees with the reduced Bar-Natan–Lee–Turner spectral sequence.

4. Computations

In view of Theorem 1.1 we extend the definition of X-torsion for F2 as follows.

Definition 4.1. Let L be a link with a basepoint. We then define

xoF2
(L) = p̃gF2

(L)− 1,

where p̃gF2
(L) is the number of pages in the reduced Bar-Natan–Lee–Turner spec-

tral sequence of K with coefficients in F2.

This agrees with the H-torsion order of [Ali19].

Computations of p̃gF(K) are readily available, for example, using knotjob, which
can be found at the author’s website.

For knots with up to 14 crossings, xoF(K) does not depend on F. But there are five
knots with 15 crossings where xoQ(K) > xoF2

(K) and one 15-crossing knot with
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xoQ(K) < xoF2
(K). There are also 111 knots with 16 crossings such that xoQ(K)=

xoF2(K). For all knots with up to 16 crossings we have xoQ(K) = xoF3(K), and no
X-torsion order is bigger than 2.

The Manolescu–Marengon knot K, which is a counterexample to the Knight-
move conjecture [MM20], satisfies xoQ(K) = 3. Interestingly, we get xoF2

(K) =
xoF3

(K) = 2 for this knot. In particular, this knot satisfies the Knight-move con-
jecture in characteristics 2 and 3. There is a slight variation of this knot, K ′,
which uses a full twist on 8 strands as opposed to 6 strands. Calculations show this
knot satisfies xoQ(K ′) = 4. The next variation, which would use a full twist on 10
strands, is unfortunately outside of the range for calculations.

For torus knots examples with X-torsion order bigger than 2 for finite fields are
known in the cases T (5, 6) and T (7, 8), compare [BN07, CGL+21]. More can be
said about torus knots, but we only want to highlight the case T (8, 9), where
xoQ(T (8, 9)) = 2 < 3 = xoF7

(T (8, 9)), despite the Betti numbers of Khovanov
homology being the same with Q and F7 coefficients.
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