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Abstract. We study the topology of moduli spaces of closed linkages in Rd

depending on a length vector ` ∈ Rn. In particular, we use equivariant Morse
theory to obtain information on the homology groups of these spaces, which

works best for odd d. In the case d = 5 we calculate the Poincaré polynomial

in terms of combinatorial information encoded in the length vector.

1. Introduction

In this paper, we consider polygons, or linkages, with fixed side lengths in Euclidean
space Rd. The topology of the corresponding moduli spaces Md(`), see Section 2
for precise definitions, has been studied extensively in the cases d = 2 and 3. In
particular, a lot of information on the homology and cohomology of these spaces
have been obtained, see for example [6, 9, 15, 18, 23]. Furthermore, cohomology can
be used to show that the topological type of Md(`) for d = 2 and 3 is determined
by the length vector ` ∈ Rn, [4, 22].
A lot less is known for d > 3. Kamiyama [13] has obtained a formula for the Euler
characteristic ofM4(`) in the equilateral case, that is, when ` = (1, 1, . . . , 1) ∈ Rn.
Schoenberg [21] shows thatMd(`) is homeomorphic to a disc if d ≥ n, which implies
that it is homeomorphic to a sphere for d = n− 1.
Another class of examples which has been extensively studied is given by ` =
(1, . . . , 1, n− 2) ∈ Rn, as in this case Md(`) coincides with the shape space Σn−1

d−1 ,
which is thoroughly examined in [17]. In particular, the homology groups of these
spaces are completely known [17]. It follows from their calculations that for 4 ≤
d < n− 1 the space Σn−1

d−1 is not a manifold.
Our method to study Md(`) is through equivariant Morse theory. We use the
fact that Md(`) = Cd(`)/SO(d − 1), where Cd(`) is the so-called chain space, and
construct a SO(d − 1)-invariant Morse-Bott function on Cd(`). By analyzing the
critical manifolds we obtain information on the homology of Md(`). Our method
works best for odd d and rational coefficients, as the spectral sequence arising from
the filtration given by the Morse-Bott function collapses. For even d we can still
obtain useful information on the topology of Md(`).

Theorem 1.1. Let ` ∈ Rn be a generic length vector such that Md(`) 6= ∅ for
d ≥ 2.

(1) For d ≥ 3 the space Md(`) is ((d− 1)(d− 2)/2 + d− 3)-connected.
(2) For n ≥ 3,Mn−1(`) is homeomorphic to the sphere of dimension n(n−3)/2.
(3) For 4 ≤ d ≤ n− 2, Md(`) is not homotopy equivalent to a closed manifold.
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Our Morse-theoretic methods imply homotopy equivalence in (2), but using the
result of Schoenberg [21] the homeomorphism can be obtained directly.
Part (3) is obtained by showing thatMd(`) does not satisfy Poincaré duality. Note
that for d = 2, 3 the space Md(`) is a smooth closed manifold.
As we have mentioned before, our homology calculations work best for odd d. To
obtain simple formulas for the Poincaré polynomial, we stick to the case d = 5.
Define

Q2m(t) =
(tm+1 − 1)2

(t− 1)2

Q2m+1(t) =
(tm+2 − 1)(tm+1 − 1)

(t− 1)2

for all m ≥ 0.

Theorem 1.2. Let ` ∈ Rn be a generic length vector. Let m ≥ 3 be such that
n = 2m−1 or n = 2m. Then there exist non-negative integers ci(`) depending only
on ` such that the Poincaré polynomial of M5(`) is

P `5 (t) = 1 + t9 ·
m−2∑
i=0

(ci(`) (Qn−6−i(t4)−Qi−4(t4)).

The exact form of ci(`) can be seen in Theorem 10.4.
The case d = 5 also contains interesting geometry closely related to the case d = 3.
Indeed, M3(`) carries extra symplectic and Kähler structures, which have been
studied in detail in [9, 16, 18]. In particular, in [16] a complex analytic equivalence
between M3(`) and a weighted quotient of (S2)n by PSL(2,C) is established.
Foth and Lozano [7] obtain an analogous statement for M5(`) and a weighted
quotient of (S4)n by PSL(2,H). They also generalize the Gel’fand-MacPherson
correspondence to the quaternion context and realize M5(`) as a quotient of a
subspace in a quaternion Grassmannian.
It can be easily read off Theorem 1.2 that the reduced rational homology ofM5(`)
starts in degree 9 and is limited to odd degrees. In particular the rational co-
homology ring structure is trivial. Given that the cohomology ring structure is
instrumental in distinguishing topological types for d = 2 and 3, one would hope
for more algebraic information also in the cases d ≥ 4. A suitable setting for this
appears to be intersection homology, which we plan to examine in a future project.
The paper is organized as follows. Section 2 collects some basic properties of linkage
spaces and Section 3 introduces the equivariant Morse-Bott function. While our
interest is mainly for large values of d, we also obtain results on the existence of
perfect Morse functions in the case d = 2 (Section 4) and d = 3 (Section 5). A cell
decomposition forMd(`) based on the Morse-Bott function is obtained in Sections
6 and 7, which is used to prove Theorem 1.1. Local homology calculations are done
in Sections 8 and 9, which culminate in the proof of Theorem 1.2 in Section 10.
We also obtain some Euler characteristic results for even d in Section 11. There
are two appendices, one showing the equivalence of the shape space with a certain
linkage space, and one deals with basic properties of the polynomials Qn(t).



HOMOLOGY OF MODULI SPACES OF LINKAGES 3

2. Basic definitions and properties of linkage spaces

Let d, n be positive integers and ` = (`1, . . . , `n) satisfy 0 < `i for all i = 1, . . . , n.
We call ` a length vector. The moduli space of ` in Rd consists of all closed linkages
with lengths ` up to rotations and translations. We can describe this space as

Md(`) =

{
(z1, . . . , zn) ∈ (Sd−1)n

∣∣∣∣∣
n∑
i=1

`izi = 0

}/
SO(d)

where SO(d) acts diagonally on (Sd−1)n. We also denote the space of chains of `
as

Cd(`) =

{
(z1, . . . , zn) ∈ (Sd−1)n−1

∣∣∣∣∣
n−1∑
i=1

`izi = (−`n, 0, . . . , 0)

}
If we let SO(d− 1) act on Sd−1 by fixing the first coordinate, we get an SO(d− 1)-
action on Cd(`) such that

Md(`) = Cd(`)/SO(d− 1).

It is clear that permuting the coordinates of ` does not change the homeomorphism
type of Md(`). However this is not true for Cd(`). In the cases d = 1, 2, 4, 8
one can use the multiplication structure of Sd−1 to construct a homeomorphism
Cd(`) ∼= Cd(σ`) for any permutation σ, but for other values of d these spaces are
usually not homeomorphic, compare [5, Rm.2.2].

Definition 2.1. Let ` be a length vector. A subset J ⊂ {1, . . . , n} is called `-short,
if ∑

j∈J
`j <

∑
i/∈J

`i.

It is called `-long, if the complement is `-short, and `-median, if it is neither `-short
nor `-long. The length vector is called generic, if there are no `-median subsets.
We also write

`J =
∑
j∈J

`j .

For m ∈ {1, . . . , n} the length vector is called m-dominated, if `m ≥ `i for all
i = 1, . . . , n.

If the length vector is generic, there do not exist collinear configurations, that is,
points [z1, . . . , zn] ∈Md(`) for which all zi ∈ {±x} for some x ∈ Sd−1. Notice that
generic is equivalent to M1(`) = ∅.
In the case that ` is generic, it is easy to see that Cd(`) is a closed manifold of
dimension (n − 2)(d − 1) − 1. In the case that d = 2 or d = 3, we then get that
SO(d − 1) acts freely on Cd(`), and Md(`) is also a closed manifold of dimension
(d−1)(n−3). For d ≥ 4, the action is no longer free, and we will see that generally
Md(`) is not a manifold. we denote the dimension of Md(`) by dnd . If d ≤ n − 1,
there exists a free

Definition 2.2. Let ` ∈ Rn be an m-dominated generic length vector. For k ∈
{0, . . . , n− 3} we write

Smk (`) = {J ⊂ {1, . . . , n} |m ∈ J, |J | = k + 1, J is `-short}.
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and

ak(`) = |Smk (`)|.

So the union Sm∗ (`) of Smk (`) over all k = 0, . . . , n − 3 contains all short subsets
J ⊂ {1, . . . , n} which include m. It is worth pointing out that Sm∗ (`) is an abstract
simplicial complex with 0-simplices given by Sm1 (`).
Note that a length vector can be m-dominated by more than one m ∈ {1, . . . , n}.
The numbers ak(`) however do not depend on this. We have a0(`) ≤ 1, and for
a generic length vector it is easy to see that Md(`) 6= ∅ for d ≥ 2 if and only if
a0(`) = 1.
If J ⊂ {1, . . . , n}, we define the hyperplane

HJ =

(x1, . . . , xn) ∈ Rn |
∑
j∈J

xj =
∑
j /∈J

xj


and let

H = Rn>0 −
⋃

J⊂{1,...,n}

HJ ,

where Rn>0 = {(x1, . . . , xn) ∈ Rn |xi > 0}. Then H has finitely many components,
which we call chambers. It is clear that a length vector ` is generic if and only if
` ∈ H.
It is shown in [8] that if ` and `′ are in the same chamber, then Cd(`) and Cd(`′)
are O(d − 1)-equivariantly diffeomorphic. In particular, Md(`) and Md(`′) are
homeomorphic.
It is easy to see that two m-dominated generic length vectors `, `′ are in the same
chamber if and only if Sm∗ (`) = Sm∗ (`′).

Definition 2.3. Let z = (z1, . . . , zn−1) ∈ Cd(`). The rank of z is the maximal
number of linearly independent vectors z1, . . . , zn−1 ∈ Rd. Note that the rank
remains the same under the SO(d − 1) action, and we can define the rank of z =
[z1, . . . , zn] ∈ Md(`) also as the maximal number of linearly independent vectors
z1, . . . , zn ∈ Rd.

The natural inclusion i : Cd−1(`)→ Cd(`) induces a natural map

ϕ :Md−1(`)→Md(`).

This map need not be injective, in fact, if ` = (1, 1, 1), it is clear that M2(`) = S0

and Md(`) = {∗} for d ≥ 3.

Lemma 2.4. Let ` ∈ Rn be a length vector.

(1) Let n ≤ d. Then ϕ :Md−1(`)→Md(`) is surjective.
(2) Let n ≤ d− 1. Then ϕ :Md−1(`)→Md(`) is a homeomorphism.
(3) Let z = (z1, . . . , zn−1) ∈ Cd(`) satisfy rank z ≥ d − 1. Then z is only fixed

by the identity element of SO(d− 1).

Proof. Let n ≤ d and z = [z1, . . . , zn] ∈ Md(`). Since
∑
`izi = 0, the rank of z is

at most n− 1 < d. Thus there exists a A ∈ SO(d) with Azi ∈ Rd−1×{0} ⊂ Rd for
all i = 1, . . . , n. But clearly [Az1, . . . , Azn] is in the image of ϕ.
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If n ≤ d − 1 and ϕ(z) = ϕ(z′), we get rank z = rank z′ ≤ d − 2. After using
rotations in Rd−1 we can therefore assume that all zi, z′i ∈ Rrank z ⊂ Rd−2 ⊂ Rd.
By assumption there is A ∈ SO(d) with Azi = z′i for all i = 1, . . . , n, which therefore
fixes Rrank z ⊂ Rd−2. We can now extend A|Rrank z ∈ O(rank z) to B ∈ SO(d− 1)
with Bzi = z′i for all i = 1, . . . , n. But this means z = z′ ∈ Md−1(`), and ϕ is
bijective, hence a homeomorphism by compactness.
Finally, if z has rank at least d− 1 and Az = z with A ∈ SO(d), choose a basis of
Rd where the first d− 1 elements are taken from the coordinates of z. Then A fixes
at least d− 1 elements of a basis of Rd and is therefore the identity. �

We remark that if z ∈ Cd(`) satisfies rank z ≥ d − 1, then n ≥ d. One checks that
for n ≥ d we can also find z ∈ Cd(`) which have rank z ≥ d − 1. If we denote the
dimension of Md(`) by dnd , we thus get for n ≥ d that

dnd = (n− 3)(d− 1)− (d− 2)(d− 3)
2

.

3. A Morse-Bott function on the space of chains

In this section we will assume that ` ∈ Rn is n-dominated.
Define the map F : Cd(`)→ R by

F (z1, . . . , zn−1) = `n−1p1(zn−1) + `n

where p1 : Rd → R is projection to the first coordinate. Notice that F is SO(d− 1)
invariant and

F (z1, . . . , zn−1) = −p1

(
n−2∑
i=1

`izi

)
.

We have obvious maxima and minima for points with zn−1 = ±e1. This leads to
embeddings of Cd(`+) and Cd(`−) into Cd(`), where

`+ = (`1, . . . , `n−2, `n + `n−1)
`− = (`1, . . . , `n−2, `n − `n−1).

Note that for generic ` we can assume that `n > `n−1, but `− need not be n − 1-
dominated.
Let J ⊂ {1, . . . , n− 2} be such that J ∪ {n} is `-short, and J ∪ {n− 1, n} is `-long.
Then with J̄ = {1, . . . , n− 2} − J we get

`n − `n−1 < `J − `J < `n + `n−1

and there exists a unique x ∈ S1 = {(x1, x2, 0, . . . , 0) ∈ Sd−1} with x1 > 0, x2 < 0
such that (z1, . . . , zn−1) ∈ Cd(`) with zj = x for all j ∈ J and zj = −x for j ∈ J ,
compare Figure 1.
The orbit under the SO(d−1) action is a sphere of dimension d−2 which we denote
by

SJ ⊂ Cd(`).

Lemma 3.1. The critical points of F are given by Cd(`±), and SJ for all J ⊂
{1, . . . , n− 2} for which J ∪ {n} is `-short and J ∪ {n− 1, n} is `-long.
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Figure 1.

Proof. We use Lagrange multipliers. Let f : (Rd)n−1×Rn−1×Rd → R be given by

f(z1, . . . , zn−1, λ, µ) = `n−1zn−1,1 + `n + λ1(
d∑
j=1

z2
1,j − 1) + · · ·+

λn−1(
d∑
j=1

z2
n−1,j − 1) + µ1(

n−1∑
i=1

`izi,1 + `n) +

µ2(
n−1∑
i=1

`izi,2) + · · ·+ µd(
n−1∑
i=1

`izi,d)

Taking partial derivatives with respect to zk,j and setting them zero leads to equa-
tions

µj = −2λkzk,j
`k

for (j, k) 6= (1, n− 1)

µ1 = −`n−1 + 2λn−1zn−1,1

`n−1
.

For i = 1, . . . , n− 1, let νi = λi/`i. This implies that

ziνi = z1ν1

for all i = 1, . . . , n − 2. Since the zi ∈ Sd−1 we either get that νi = 0 for all
i = 1, . . . , n− 2 or that z1, . . . , zn−2 ∈ {±x} for some x ∈ Sd−1.
The case that νi = 0 for i = 1, . . . , n− 2 easily leads to the case where zn−1 = ±e1,
which means that (z1, . . . , zn−1) ∈ Cd(`±). These points are clearly critical points
of F as they are the maxima and minima.
If the νi are such that z1, . . . , zn−2 ∈ {±x} for some x ∈ Sd−1, the condition that
(z1, . . . , zn−1) ∈ Cd(`) ensures that (z1, . . . , zn−1) ∈ SJ for some J ⊂ {1, . . . , n−2}.
Conversely, let (z1, . . . , zn−1) ∈ SJ . It is straightforward to check that µj and λi
can be chosen so that all partial derivatives of f vanish. �

We want to show that F is Morse-Bott. To do this consider the projection P :
Cd(`)→ Sd−1 given by P (z) = zn−1.

Lemma 3.2. The critical points of P : Cd(`) → Sd−1 are those points for which
the first n− 2 points are collinear.
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Proof. Let G : (Sd−1)n−2 → Rd be given by

G(z1, . . . , zn−2) =
1

`n−1

(
`ne1 +

n−2∑
i=1

`izi

)
The critical points ofG are clearly the collinear points. We have Cd(`) = G−1(Sd−1),
and since ` is generic, we get that G intersects Sd−1 transversally. Furthermore, P
is just the restriction of G to Cd(`), so if z ∈ Cd(`) is a regular point for G, then z
is a regular point for P . Also, if z ∈ Cd(`) is collinear, the rank of G∗ is d− 1, and
since the intersection with Sd−1 is transversal, the rank of P∗ at z is d− 2. �

Lemma 3.3. For generic `, the critical submanifolds Cd(`±) are Morse-Bott with
respect to F . Furthermore, the normal bundle is trivial.

Proof. let Dd−1 ⊂ Sd−1 be a small disc around ±e1. By Lemma 3.2, we have
P−1(Dd−1) ∼= Dd−1 × Cd(`±). The map F : Cd(`)|P−1(Dd−1) is just a scaling
and translation of the standard projection p1 : Sd−1 → R to the first coordinate,
restricted to Dd−1. Since this map is a Morse function with critical points ±e1, the
lemma follows. �

We remark that ` in the following proposition need not be generic, as the SJ stay
away from non-manifold points of Cd(`).

Proposition 3.4. Let ` be a length vector and J ⊂ {1, . . . , n−2} such that J ∪{n}
is `-short and J∪{n−1, n} is `-long. Then SJ is a Morse-Bott critical submanifold
of F with index (n− 3− |J |)(d− 1).

Proof. Let

Kd(`) = {(z1, . . . , zn−1) ∈ Cd(`) | zn−1 ∈ S1 × {0} ⊂ Sd−1}.

This has codimension d − 2 in Cd(`), and SJ ∩ Kd(`) = S0 consists of two points.
We claim that f |Kd(`) has Morse singularities near SJ ∩Kd(`), and the proposition
follows easily from that.
Let x ∈ S1 × {0} ⊂ Sd−1 so that zJ = (±x, . . . ,±x, zn−1) ∈ Kd(`) ∩ SJ , where
we assume that the sign of ±x is positive of the coordinate is in J , and negative
otherwise. Write x = (cosϕ, sinϕ) and assume ϕ ∈ (−π/2, 0), so that Figure 1
applies.

Note that we can write F |Kd(`) as a composition Kd(`)
F̃−→ S1 p1−→ R with F̃

being projection to S1 × {0}. If we replace p1 : S1 → R by p : S1 → R given by
p(z) = z · x, that is, scalar product with x, it is clear that near F̃ (zJ) we can write
p1 = h ◦ p where h is an orientation preserving diffeomorphism of open intervals of
R.
So to calculate the index of F at zJ we can look at the map F̄ : Kd(`) → R given
by

F̄ (z1, . . . , zn−1) = zn−1 · x

and calculate its index at the singularity zJ .
Note that we have an inclusion Kd(`) ⊂ (Sd−1)n−2 as those points for which∑n−2
i=1 `izi sits inside R2×{0} ⊂ Rd with distance `n−1 from (−`n, 0, . . . , 0). Using
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the Implicit Function Theorem, we can parametrize Kd(`) near zJ as

(Sd−1)n−3 −→ (Sd−1)n−2

(u1, . . . , un−3) 7→ (u1, . . . , un−3, g(u1, . . . , un−3))

where near zJ the ui are close to ±x.
In this parametrization, the map F̃ is given by

F̃ (u1, . . . , un−3) =
−1
`n−1

(
`ne1 +

n−3∑
i=1

`iui + `n−2g(u)

)
· x.

Use standard polar coordinates for the ui, that is, we write

ui = (sin θd−1 i · · · sin θ2 i cos θ1 i, sin θd−1 i · · · sin θ2 i sin θ1 i,
sin θd−1 i · · · sin θ3 i cos θ2 i, . . . , sin θd−1 i cos θd−2 i, cos θd−1 i)

for i = 1, . . . , n− 3, and θ1 i near ϕ or ϕ+ π, depending on whether i ∈ J , and θj i
near π/2 for j = 2, . . . , d−1. The (n−2)-th coordinate can also be written in angles
gj which depend smoothly on the θj i for all i = 1, . . . , n − 3 and j = 1, . . . , d − 1.
After ignoring the scaling factor1 and the translation through e1 · x, we have to
consider the function

F̃ =
n−3∑
i=1

`i(sin θd−1 i · · · sin θ2 i cos θ1 i cosϕ+ sin θd−1 i · · · sin θ2 i sin θ1 i sinϕ)

+`n−2(sin gd−1 · · · sin g2 cos g1 cosϕ+ sin gd−1 · · · sin g2 sin g1 sinϕ)

=
n−3∑
i=1

`i sin θd−1 i · · · sin θ2 i(cos(θ1 i − ϕ)) +

+`n−2 sin gd−1 · · · sin g2(cos(g1 − ϕ))

Writing θ̃1 i = θ1 i − ϕ+ π/2 and g̃1 = g1 − ϕ+ π/2 (and rewriting as θ1 i and g1),
we get that

∂F̃

∂θji
= `i sin θd−1 i · · · cos θj i · · · sin θ2 i sin θ1 i

+
d−1∑
k=1

`n−2 sin gd−1 · · · cos gk · · · sin g2 sin g1
∂gk
∂gj i

Note that the point zJ now corresponds to all angles being π/2 or 3π/2, so that
the cosine terms always vanish. At the point zJ , we therefore get

∂2F̃

∂θj i∂θj i
= −`i sin θ1 i −

d−1∑
k=1

`n−2 sin g1

(
∂gk
∂θj i

)2

and for (j, i) 6= (l,m) we get

∂2F̃

∂θj i∂θlm
= −

d−1∑
k=1

`n−2 sin g1
∂gk
∂θj i

∂gk
∂θlm

1Since we also ignore the −1, we have to flip the index at the end.
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where sin θ1 i = 1 for i ∈ J , −1 for i /∈ J and sin g1 = 1 for n − 2 ∈ J and −1 for
n−2 /∈ J . If we write δi = +1 for i ∈ J and δi = −1 for i /∈ J (i ≤ n−2), it follows
from Lemma 3.5 that

∂2F̃

∂θj i∂θj i
= −`iδi − δn−2

`2i
`n−2

∂2F̃

∂θj i∂θlm
= 0 for j 6= l

∂2F̃

∂θj i∂θj m
=

{
−δn−2δiδm

`i`m
`n−2

j = 1
−δn−2

`i`m
`n−2

j ≥ 2

The matrix
(

∂2F̃
∂θj i∂θl m

)
is a (n−3)(d−1)×(n−3)(d−1) matrix, which we consider

as a (d− 1)× (d− 1) matrix with entries (n− 3)× (n− 3) matrices
(

∂2F̃
∂θj i∂θl m

)
i,m

for fixed j, l. The off-diagonal entries are then 0, while the diagonal entries are
matrices

(
∂2F̃

∂θj i∂θj m

)
i,m

for j = 1, . . . , d− 1. These matrices are of the form(
∂2F̃

∂θ1 i∂θ1m

)
i,m

= −∆(`1δ1, . . . , `n−3δn−3)− δn−2

`n−2
(δi`iδm`m)i,m(

∂2F̃

∂θj i∂θj m

)
i,m

= −∆(`1δ1, . . . , `n−3δn−3)− δn−2

`n−2
(`i`m)i,m

for j = 2, . . . , d− 1. Here ∆ is a diagonal matrix with the given entries.
Since |J | ≤ n− 3, we can assume (after possibly rearranging the order of the links)
that n− 2 /∈ J , that is, δn−2 = −1. It follows that these matrices are congruent to

M = − 1
`n−2

(
∆(

`n−2δ1
`1

, . . . ,
`n−2δn−3

`n−3
)− E

)
where E has every entry equal to 1. Ignoring the factor −1/`n−2, which leads to the
second flipping of the index, compare Footnote 1, we need to calculate the index of
∆( `n−2δ1

`1
, . . . , `n−2δn−3

`n−3
) − E. A calculation as in [3, Lm.1.4] shows that the index

is n− 3− |J |. Since we have d− 1 such matrices, the result follows. �

Lemma 3.5. With notation as in Proposition 3.4, we have
∂gk
∂θj i

= 0 for k 6= j

∂gk
∂θk i

=

{
δi

`i
`n−2

k = 1
`i
`n−2

k ≥ 2

Proof. Define G : (Sd−1)n−2 → Rd−1

G(u1, . . . , un−2) =



∣∣∣∑n−2
i=1 `iui + `ne1

∣∣∣2
p3

(∑n−2
i=1 `iui

)
...

pd

(∑n−2
i=1 `iui

)


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Then Kd(`) = G−1(`n−1, 0, . . . , 0). In polar coordinates a calculation shows that

G1 = `2n +
n−2∑
i=1

`2i + 2`n
n−2∑
i=1

`i sin θd−1 i · · · sin θ2 i cos θ1 i

+2
∑
i<j

`i`j(sin θd−1 i · · · sin θ2 i sind−1 j · · · sin θ2 j(cos(θ1 i − θ1 j)

+ sin θd−1 i · · · sin θ3 i cos θ2 i sin θd−1 j · · · sin θ3 j cos θ2 j
+ · · ·+ cos θd−1 i cos θd−1 j).

Similarly, for k ≥ 2 we have

Gk =
n−2∑
i=1

`i sin θd−1 i · · · sin θk+1 i cos θk i.

Using the fact that zJ has θj i = π/2 for j > 1, it is easy to see that

∂G1

∂θ1 i
(zJ) =

{
2`n`i sinϕ i ∈ J
−2`n`i sinϕ i /∈ J

∂Gk
∂θj i

(zJ) = 0 for j 6= k

∂Gk
∂θk i

(zJ) = −`i for k ≥ 2

So for fixed i ≤ n−2, each
(
∂Gk

∂θj i
(zJ)

)
is an invertible diagonal matrix. In particular,

by the Implicit Function Theorem we get for i ≤ n− 3

∂gk
∂θj i

= 0 for k 6= j

∂gk
∂θk i

=

{
δi

`i
`n−2

k = 1
`i
`n−2

k ≥ 2

since the gk are obtained by applying the Implicit Function Theorem to G. �

4. Perfect Morse functions for planar polygon spaces

We can apply the results from the previous section to construct perfect Morse
functions on the manifolds M2(`) ∼= C2(`) for generic `. In this case, each SJ
consists of 2 points, and the index is n− 3− |J |. The maxima and minima give of
course rise to Morse-Bott singularities, which are not Morse in general.
Recall that up to scaling and translation, F : Cd(`) → R factors as p1 ◦ P with
P : Cd(`) → Sd−1 projection to the (n − 1)-th coordinate. In the generic case and
if d = 2 the critical points are exactly the 0-spheres SJ for J ⊂ {1, . . . , n − 2}
such that J ∪ {n} is `-short and J ∪ {n − 1, n} is `-long. In fact, we can consider
the resulting map P : C2(`) → S1 a Morse function to the circle. To calculate the
index of the appropriate critical points, note that S1 can be given the orientation in
the counterclockwise direction. Projection to the x-axis is then locally orientation
reversing, if z ∈ S1 has positive imaginary part, and orientation preserving if it
has negative imaginary part. Each 0-sphere SJ has a point which is mapped to the
upper half of S1 and one which is mapped to the lower half of S1. Therefore, one
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of these critical points has index n− 3− |J | and the other has index |J |. We have
thus proved the following.

Proposition 4.1. Let ` ∈ Rn be an n-dominated generic length vector. Then the
projection P : C2(`)→ S1 to the (n− 1)-th link is a Morse function whose critical
points are in one-to-one correspondence to 0-spheres SJ to subsets J ⊂ {1, . . . , n−2}
such that J ∪ {n} is `-short and J ∪ {n− 1, n} is `-long. Furthermore, the indices
of the pair SJ are n− 3− |J | and |J |.

Circle-valued Morse functions need not have maxima. In fact, in order to get a
maximum, we would need a J with |J | = 0 or |J | = n − 3. If |J | = n − 3, then
there is i ≤ n− 2 such that {i, n− 1} is `-long. Since ` is n-dominated, this implies
that C2(`) = Tn−3 × S0, and there is only one such chamber up to permutations.
If |J | = 0, then J = ∅, and {n − 1, n} is long. This actually means that the
map P : C2(`) → S1 is not surjective, and we can interpret this map as a map
P̃ : C2(`)→ R.

Proposition 4.2. If {n − 1, n} is `-long, then the Morse function P̃ : C2(`) → R
is perfect.

Proof. The homology of C2(`) is free abelian, and every J ⊂ {1, . . . , n − 1} with
J∪{n} short contributes two elements towards a basis, compare [6]. Since {n−1, n}
is long, such J already has to satisfy J ⊂ {1, . . . , n−2}. Furthermore, J∪{n−1, n}
has to be long. Therefore, any such J gives rise to two critical points, and these
give all the critical points of P̃ . Hence the map is perfect. �

For the general case we have to make a modification to construct a perfect Morse
function.

Theorem 4.3. Let ` be a generic length vector. Then there exists a perfect Morse
function f :M2(`)→ R.

Proof. The proof is by induction on n. If n ≤ 5, the statement is obvious because
there are only very few cases which can be checked by hand. For n > 5, let I ⊂ S1

be a small closed interval neighborhood of 1 ∈ S1 which does not contain any
critical values of P :M2(`) ∼= C2(`)→ S1.
Since there are no critical values in I, we get for z ∈ ∂I that P−1(z) ∼= P−1(1) ∼=
M2(`+).
Let h : S1 → R be a perfect Morse function whose two critical points are ∂I. The
composition h ◦ P :M2(`)→ R is then a Morse-Bott function with Morse critical
points for every J ⊂ {1, . . . , n− 2} with J ∪ {n} `-short and J ∪ {n− 1, n} `-long,
a singular manifold M2(`+) of index 0 and another M2(`+) of index 1.
By induction, there exists a perfect Morse function g :M2(`+)→ R, which can be
glued into h ◦ P to give a Morse function f :M2(`)→ R. Since g is perfect, every
J ⊂ {1, . . . , n− 2} such that J ∪{n− 1} is `+-short gives rise to two critical points
of g, whose indices are n− 4− |J | and |J |.
The critical points of f are therefore as follows:

• Every J ⊂ {1, . . . , n − 2} with J ∪ {n} `-short and J ∪ {n − 1, n} `-long
gives rise to two critical points of index |J | and n− 3− |J |.
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• Every J ⊂ {1, . . . , n− 2} with J ∪ {n− 1} `+-short gives rise to two pairs
of critical points of index |J |, n− 4− |J |, and |J |+ 1, n− 3− |J |.

We claim that f is perfect. Every J ⊂ {1, . . . , n− 1} with J ∪ {n} `-long produces
to Z-summands in H∗(M2(`)), and therefore has to correspond uniquely to a pair
of critical points listed above.
Let J ⊂ {1, . . . , n−2} with J∪{n} `-short and J∪{n−1, n} `-long. Then J∪{n−1}
is `+-long, so does not produce critical points coming from g.
If J ⊂ {1, . . . , n − 2} has J ∪ {n − 1, n} `-short, then J ∪ {n − 1} is `+-short, so
we get four critical points. Two of them, with index |J | and n− 3− |J | correspond
to the set J , which satisfies J ∪ {n} `-short. The other two, of index |J | + 1 and
n− 4− |J | correspond to J ∪ {n− 1}, which satisfies J ∪ {n− 1} ∪ {n} is `-short.
Therefore the critical points of f do correspond to a basis of the homology, which
means that f is perfect. �

Perfect Morse functions for some special cases of ` were constructed in [14]. It is
worth pointing out that the signed area of a linkage induces a Morse function on
M2(`), but this Morse function need not be perfect: see [11], where it is shown
that for ` = (1, 1, 1, 1, 1) the signed area has two maxima and two minima.
Let us return to the circle-valued map P : C2(`)→ S1. One can ask for perfectness
of this function in the sense of Novikov homology, compare [2, 20]. In fact, if
{n− 1, n} is `-short, then there do not exist maxima and minima, and it is easy to
see that P induces a surjection on fundamental group. Let M̃2(`) be the regular
Z-covering space corresponding to kerP#. Then P lifts to a smooth map P̃ :
M̃2(`)→ R whose critical points are liftings of the critical points of P and who are
Morse with associated indices.
Assume that M2(`) is triangulated. The triangulation can be lifted to M̃2(`),
and the corresponding chain complex C∗(M̃2(`)) is a finitely generated free chain
complex over the ring Z[t, t−1]. Let Z((t)) be the ring whose elements are Laurent
power series of the form

∑∞
i=−r ait

i for some r ∈ Z and ai ∈ Z. The homology

H∗(M2(`); Z((t))) = H∗(Z((t))⊗Z[t,t−1] C∗(M̃2(`)))

is called the Novikov homology of M2(`) with respect to P .
The ring Z((t)) is a Euclidean ring, see [2, 20], so these homology groups have a
finitely generated free part and a torsion part.

Theorem 4.4. Let ` ∈ Rn be an n-dominated and generic length vector such that
{n − 1, n} is `-short, and let P :M2(`) → S1 be projection to the (n − 1)-th link.
Then

Hi(M2(`); Z((t))) = Z((t))ai+an−3−i

where ai is the number of subsets J ⊂ {1, . . . , n − 2} with J ∪ {n} `-short and
J ∪ {n− 1, n} `-long.

In other words, P is perfect with respect to Novikov homology.

Proof. Just as in ordinary Morse theory, Novikov homology can be calculated from
the circle-valued Morse function by using chain complex over Z((t)) generated by
the critical points and counting trajectories between critical points of adjacent
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index, see [19]. We claim that the boundary is always the zero map. To see this,
let p̃, q̃ ∈ M̃2(`) be liftings of two critical points p, q ∈ M2(`) of P of adjacent
index. We need to show that the incidence numbers between p̃ and tkq̃ are zero
for all k ∈ Z. Here t : M̃2(`) → M̃2(`) is the covering translation satisfying
P̃ (z) − P̃ (t(z)) = 1. To calculate the incidence number, we only have to look
at a compact cobordism W = P̃−1([a, b]), where [a, b] is a compact interval large
enough so that p̃ and tkq̃ are in W (for fixed k). That the incidence number is zero
follows from [6, Thm.4], once we produce an involution on W which fixes exactly
the critical points. Note that [6, Thm.4] applies to manifolds whose boundary is
the maximum, but the same argument works for cobordisms with the homology
being relative with respect to the negative boundary.
The involution can be constructed onM2(`) and then lifted to W . Let z ∈M2(`) ∼=
C2(`). Since `n−1 < `n, which we can assume because ` is generic, we get that

n−2∑
i=1

`izi 6= 0.

If we let Tz : S1 → S1 be the standard reflection which fixes the line through this
point and 0, then (Tz(z1), . . . , Tz(zn−2), zn−1) ∈ C2(`), compare Figure 2.

z
1

T
z
z
1

Figure 2. Three links being reflected in the dotted line.

Define T : C2(`)→ C2(`) by T (z1, . . . , zn−1) = (Tz(z1), . . . , Tz(zn−2), zn−1). Since

n−2∑
i=1

`izi =
n−2∑
i=1

`iTz(zi),

this function is an involution and it preserves P . Therefore it lifts to an involution
on M̃2(`) and W . Furthermore, the critical points of P are exactly the points
which are fixed by T , since Tz is then the reflection in the line through x, that is,
x and −x are fixed. Hence the boundary in the Novikov complex is just 0. �

Nonvanishing Novikov homology is an obstruction for P to be homotopic to a fibre
bundle map over S1. On the other hand, if P has no critical points then M2(`)
fibres over S1 along P . Let us analyze this situation in more detail.
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If ` is a generic length vector, then there exists a δ > 0 such that∣∣∣∣∣∣
∑
j∈J

`j −
∑
i/∈J

`i

∣∣∣∣∣∣ > δ

for all subsets J ⊂ {1, . . . , n}. For 0 < ε < δ it is easy to see that the length vector
`ε = (ε, `1, . . . , `n) satisfies

M2(`ε) ∼= S1 ×M2(`)

and projection to the first coordinate gives the fibration over S1.
Assume P has no critical points. Then every J ⊂ {1, . . . , n−2} with J ⊂ {n} short
also satisfies J ∪ {n− 1, n} short. Let

`t = (`1, . . . , `n−2, `n−1 − t, `n + t)

for 0 ≤ t < `n−1. Since P has no critical points, it is easy to see that every
J ⊂ {1, . . . , n} is `-short if and only if J is `t-short for any 0 ≤ t < `n−1, so `t is
in the same chamber as `. But for t close to `n−1 we get M2(`) ∼= S1 ×M2(`′),
where `′ = (`1, . . . , `n−2, `n−1 + `n). So if P has no critical points, the (n − 1)-th
link is already so small that M2(`) fibres over S1 for obvious reasons.
It is therefore a natural question to ask whetherM2(`) fibres over the circle exactly
when there is a short link in the length vector. This is true by the above if we only
look at maps M2(`)→ S1 given by projections to a coordinate, but it is not clear
if we look at homotopy classes of arbitrary maps to S1.

5. Homology for the 3-dimensional case

In this section we show how the Betti numbers for M3(`) can be obtained from
the Morse-Bott function above. We will only sketch the argument, as these results
have already been obtained in [18]. Information on the cohomology is contained in
[9].
For d = 3 and generic `, the action of SO(2) is free on C3(`), andM3(`) is a closed
manifold. Furthermore, the SO(2)-invariant function F induces a Morse-Bott func-
tion f :M3(`) → R, which has M3(`−) as minimum, M3(`+) as maximum (with
index 2), and for each J ⊂ {1, . . . , n−2} with J ∪{n} short and J ∪{n−1, n} long
a critical point pJ of index 2(n− 3− |J |).
A simple induction argument using the Morse-Bott spectral sequence shows that
the homology ofM3(`) is free abelian and concentrated in even degrees. If we write
P`(t) for the Poincaré polynomial ofM3(`), we get the following recursive formula.

Proposition 5.1. Let ` ∈ Rn be a generic length vector. Then the Poincaré
polynomial of M3(`) satisfies

P`(t) = P`−(t) + t2P`+(t) +
∑

J⊂T (`)

t2|J|

where T (`) = {J ⊂ {1, . . . , n− 2} |J ∪ {n} short, J ∪ {n− 1, n} long}.

Remark 5.2. A similar recursive formula is obtained in [18, Cor.2.2.2] by using
different methods. In fact, we can get that formula by looking at −f instead of f .
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Klyachko goes on to give the following explicit formula for the Poincaré polynomial,
see [18, Thm.2.2.4].

P`(t) =
1

t2(t2 − 1)

(1 + t2)n−1 −
∑

J∈S(`)

t2|J|

 ,

where S(`) = {J ⊂ {1, . . . , n} |J short }.
Hausmann and Knutson [9, Cor.4.3] derive another formula, given by

P`(t) =
1

1− t2
∑

J∈Sn
∗ (`)

(t2|J| − t2(n−2−|J|)),

where we assume that ` is n-dominated.

Corollary 5.3. Let ` ∈ Rn be a generic length vector. Then there exists a perfect
Morse function f3 :M3(`)→ R, all of whose critical points are of even index.

Proof. The proof is by induction on n. For n = 4, we get M3(`) ∼= S2 and the
statement is clear. For n > 4 look at the Morse-Bott function f : M3 → R with
minimum attained atM3(`−) and maximum attained atM3(`+). Using standard
techniques to replace the Morse-Bott critical manifolds by a Morse function on
these manifolds, which can be assumed to be perfect by induction, we get a Morse
function on M3(`). Notice that since the index of the Morse-Bott manifolds are
even, the indices of the critical points are also even. It follows that the Morse
function is perfect. �

Let us give a formula for the number of critical points of a given index. For this let
µk(`) be the number of critical points of of f3 having index 2k.

Proposition 5.4. Let ` ∈ Rn be a generic length vector, and let m ∈ Z be such
that n = 2m− 1 or n = 2m. Then

µk(`) =
k∑
i=0

ai(`)− an−2−i(`)

for all k = 0, . . . ,m− 2, and

µk(`) = µn−3−k(`)

for all k = m− 1, . . . , n− 3.

Proof. The second equation just follows from Poincar’e duality, so let us assume
that k ≤ m− 2.
We use the formula from [9]. In terms of the coefficients ak(`) this is

P`(t) =
1

1− t2
n−3∑
i=0

ai(`)(t2i − t2(n−2−i)).

Since

(1− t2)(t2i + t2(i+1) + · · ·+ t2(n−3−i)) = t2i − t2(n−2−i)

we can write the Poincar’e polynomial as

P`(t) =
m−2∑
i=0

(ai(`)− an−2−i(`))(t2i + t2(i+1) + · · ·+ t2(n−3−i)).(1)
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Comparing coefficients then gives the result. �

6. An equivariant cell decomposition for Cd(`)

We want to derive an equivariant cell decomposition for Cd(`) using the Morse-Bott
function F in order to get a cell decomposition for Md(`) for d ≥ 3.
To do this we first want to understand the equivariant handle structure near a
critical manifold SJ in the sense of [24]. So if J ⊂ {1, . . . , n− 2} has the property
that SJ is a critical sphere, let x ∈ S1×{0} be such that pJ = (±x, . . . ,±x, zn−1) ∈
SJ and the minus signs correspond to coordinates from J . We may assume that
n− 2 ∈ J . Let Dd−1 ⊂ Sd−1 be a small disc with center at −x, and define

P : (Dd−1)n−3−|J| −→ Kd(`)
(u1, . . . , un−3−|J|) 7→ (v1, . . . , vn−3, g(u1, . . . , un−3−|J|))

where vi = x if i /∈ J , vi = uki for i ∈ J = {k1, . . . , kn−3−|J|}. That is, we use
the parametrization of Kd(`) from the proof of Proposition 3.4, but we keep the
coordinates away from J fixed.
By the same argument as in the proof of Proposition 3.4, F ◦P has a nondegenerate
maximal point at (−x, . . . ,−x), which is the center of (Dd−1)n−3−|J|.
For simplicity, let us center Dd−1 at 0, and we think of P as an inclusion i :
(Dd−1)n−3−|J| → Cd(`). If we let SO(d− 2) act diagonally on (Dd−1)n−3−|J|, with
SO(d− 2) acting in a standard way on Dd−1 ⊂ Rd−1 by fixing the first coordinate,
we get that i is SO(d− 2) equivariant.
The image of i is in Kd(`), and by using the action of SO(d − 1) on the image,
we get the negative normal bundle of SJ in the sense of equivariant Morse theory,
compare [24]. We thus write

N−(SJ) =
{
Ai(x) ∈ Cd(`) |A ∈ SO(d− 1), x ∈ (Dd−1)n−3−|J|

}
.

The map N−(SJ) → SO(d − 1)/SO(d − 2) ∼= SJ given by Ai(x) 7→ A · SO(d − 2)
is then a disc bundle map with fibre (Dd−1)n−3−|J|.

We want to have an equivariant Morse-Bott function F̃ : Cd(`) → R such that all
critical manifolds are spheres SO(d − 1)/SO(d − 2) with negative normal bundle
as the N−(SJ). The idea is to use the argument in the proof of Corollary 5.3,
but equivariantly. This can be done, as there are neighborhoods of Cd(`±) in Cd(`)
which are equivariantly diffeomorphic to Cd(`)×Dd−1, compare Lemma 3.3 and use
the fact that for ` and `′ in the same chamber, the chain spaces are equivariantly
diffeomorphic [8]. Notice that the critical manifolds do not depend on d. We thus
get the following result.

Proposition 6.1. Let ` ∈ Rn be a generic length vector. For all d ≥ 3 there is
an SO(d − 1) invariant Morse-Bott function F̃ : Cd(`) → R such that all critical
manifolds are of the form SO(d− 1)/SO(d− 2), and their indices are of the form
k(d − 1) for some k = 0, . . . , n − 3. The negative normal bundle N−(S) to each
critical manifold S is of the form (Dd−1)k −→ N−(S) −→ SO(d − 1)/SO(d − 2),
where SO(d − 2) acts on (Dd−1)k diagonally, and by fixing the first coordinate of
Dd−1.
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Furthermore, the critical manifolds S of index k(d−1) are in one-to-one correspon-
dence to the critical points of index 2k of the perfect Morse function f3 :M3(`)→ R
from Corollary 5.3. �

Denote by ∂N−(S) the sphere bundle corresponding to N−(S). In order to under-
stand the homotopy type of Md(`) we want to understand a relative SO(d − 1)-
equivariant cell structure on (N−(S), ∂N−(S)). Since N−(S) is the SO(d − 1)
orbit of the image of (Dd−1)k, we have to find a relative SO(d− 2)-equivariant cell
structure of ((Dd−1)k, ∂(Dd−1)k).
Let us begin with some elementary observations. If k = 1, the set D1×{0} ⊂ Dd−1

is the fixed set of the SO(d− 2) action. It therefore defines a 1-cell with SO(d− 2)
as the stabilizer group. If x ∈ Dd−1 − D1 × {0}, we can find an A ∈ SO(d − 2)
such that Ax = (a, b, 0, . . . , 0) ∈ Dd−1, with b 6= 0. If d > 3, we can furthermore
assume that b > 0. In particular, every other element of Dd−1 will be in the orbit
of an element of D2

+ = {(a, b, 0, . . . , 0) ∈ Dd−1 | b ≥ 0, a2 + b2 ≤ 1}.
In particular, we only need two cells. If we denote X = Dd−1/SO(d − 2) and
∂X = ∂Dd−1/SO(d− 2), we get a relative CW-structure of (X, ∂X) with X being
obtained from ∂X by an elementary expansion in the sense of [1, §4]. If d = 3, note
that SO(d− 2) is the trivial group. We either have to use two 2-cells (one for b > 0
and one for b < 0), or we do not use the 1-cell, and just use the 2-cell D2.
We can ignore the case d = 3, in which case we only need one cell for ((D2)k, ∂(D2)k)
of dimension 2k. So assume d ≥ 4 now. Let (x1, . . . , xk) ∈ (Dd−1)k. After applying
an element of SO(d− 2) we can assume x1 ∈ D2

+. If we actually have x1 ∈ D1, we
apply another element of SO(d − 2) to get x2 ∈ D2

+. We repeat this until we get
an element xi ∈ D2

+ −D1. If we do not get such an element, the original element
(x1, . . . , xk) is in (D1)k. So assume xi ∈ D2

+−D1 and xj ∈ D1 for j < i. Applying
an element of SO(d − 3) does not affect the first i elements, and can move xi+1

into D3, in fact D3
+ if d > 4. We can continue this and achieve that up to elements

of SO(d− 2), the element (x1, . . . , xk) is in a product of an increasing sequence of
discs.
To make this more precise, write

Di = {(x1, . . . , xi, 0, . . . , 0) ∈ Dd−1 |x2
1 + . . . , x2

i ≤ 1}
for i = 1, . . . , d− 2, and also write

Di
+ = {(x1, . . . , xi, 0, . . . , 0) ∈ Dd−1 |x2

1 + . . . , x2
i ≤ 1, xi ≥ 0}

for i = 2, . . . , d− 2.
Up to an element of SO(d− 2), any (x1, . . . , xk) ∈ (Dd−1)k sits in

(D1)k1 × (D2)k2 × · · · × (Dd−2)kd−2 × (Dd−1)kd−1

where all ki ≥ 0 and add up to k. Furthermore, if ki = 0 for i ≥ 2, then all
kj = 0 with j ≥ i, and if ki 6= 0 for i ∈ {2, . . . , d − 2}, we can replace (Di)ki by
Di

+ × (Di)ki−1.
In order to organise the cells we are going to introduce symbolic matrices. For
n,m ≥ 1 let S(m,n) be the set of upper semi-diagonal n × m matrices whose
entries are from the set {0,+, ∗}, which have a + sign for the first non-zero entry
in each of the first n − 1, with all entries to the right of the + as ∗, and the last
row contains only 0 and ∗, with no 0 to the right of any ∗.
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Typical examples are

(2)

 0 0 + ∗ ∗ ∗ ∗
0 0 0 + ∗ ∗ ∗
0 0 0 0 0 ∗ ∗

 ,

 + ∗ ∗ ∗
0 0 + ∗
0 0 0 0

 .

Each matrix stands for a product of discs, with columns refering to each disc. Here
the zero column stands for D1, a column containing a + stands for Dk

+ and a
column with only ∗ and 0 stands for Dk, where k − 1 is the number of non-zero
entries in the column.

Remark 6.2. Using such symbolic matrices was already done in [17] to get a cell
decomposition of the shape spaces Σmd , and our homology calculations below are
indeed quite similar to the calculations in [17].

So if A ∈ S(d − 2, k), we denote by DA ⊂ (Dd−1)k the corresponding product
of discs. Also, let SO(A) ⊂ SO(d − 2) be the stabilizer group of DA. Then
SO(A) = SO(d−2− i), where i is the maximal number of non-zero elements in the
columns of A, and SO(d− 2− i) acts on Dd−1 by fixing the first i+ 1 coordinates.
In particular SO(0) is the trivial group. We denote the image of DA under the
SO(d− 2)-action by σA, and call this the cell corresponding to A.

Lemma 6.3. Every interior point x ∈ (Dd−1)k is contained in the interior of a
cell corresponding to a symbolic matrix A ∈ S(d − 2, k). If the stabilizer of x is
non-trivial, this cell is unique.

Proof. The proof is by induction on k. If k = 1, there is only the zero matrix and a
matrix with one non-zero entry. It is easy to see that the result holds in this case.
Now let x = (x1, . . . , xk) ∈ (Dd−1)k with k > 1. If x1 ∈ D1, we can use induction
on x′ = (x2, . . . , xk) to get a matrix A′ ∈ S(d − 2, k − 1) so that x′ ∈ σoA′ , and
which is unique if the stabilizer of x′ is non-trivial. Then x ∈ σA, where A is the
matrix obtained from A′ by adding a zero column to the left of A′. Note that the
stabilizer of x is the stabilizer of x′, and the uniqueness applies if it is non-trivial.
If x1 /∈ D1, we can find an A ∈ SO(d − 2) such that Ax1 ∈ D2

+. Now let p :
Dd−1 → Dd−2 be projection to the last d − 2 coordinates and consider the point
x′ = (p(Ax2), . . . , p(Axk)). By induction, we can find a symbolic matrix A′ ∈
S(d − 3, k − 1) with x′ ∈ σA′ , and the matrix is unique if the stabilizer of x′ is
non-trivial (which implies that the stabilizer of x is non-trivial). Then x is in the
cell σA, where

A =
(

+ ∗
0 A′

)
,

and the cell is unique if the stabilizer of x is non-trivial. �

Lemma 6.4. Let x ∈ (Dd−1)k be an interior point with trivial stabilizer. Then x
is contained in a cell σA where the last two rows of A are of the form

(3)
(

0 · · · 0 + ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗

)
.

Furthermore, no two such matrices have interior points in common.
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Proof. We know from the previous lemma that x is contained in some matrix, and
since the stabilizer of x is trivial, the second but last row has to be non-zero. In
particular, there has to be a + in that row. Since the ∗ symbolize any possible
entry, including 0, x will be in a cell corresponding to such a matrix.
To see that no two such matrices have interior points in common, note that in the
column which has a + in second but last row, interior points y ∈ Dd−2

+ satisfy
yd−2 > 0, and this is the first column, for which this occurs. �

Notice that the matrices in (2) are not in the form of Lemma 6.4.
Define

Sc(d− 2, k) = {A ∈ S(d− 2, k) |The last two rows are of the form (3) or 0}

An equivariant relative cell decomposition of ((Dd−1)k, ∂(Dd−1)k) is therefore given
by the cells σA, where A ∈ Sc(d− 2, k).

7. The boundary operator for the cell decomposition

The equivariant cell decomposition described in the previous section gives a rel-
ative CW-structure on (Xk

d , ∂X
k
d ), where Xk

d = (Dd−1)k/SO(d − 2) and ∂Xk
d =

∂(Dd−1)k/SO(d − 2). The cells are simply of the form DA for A ∈ Sc(d − 2, k),
where each DA is a product of discs or halfdiscs.
Notice that the boundary of each factor Di is attached to ∂Xk

d , and each factor
Di

+ is attached to ∂Xk
d and to the same cell with the factor replaced by Di−1. So

the boundary of a cell DA is contained in ∂Xk
d together with cells DA′ , where the

A′ are obtained from A by replacing a + by a 0.
This needs to be made slightly more precise. If a matrix A contains a submatrix(

+ ∗
0 +

)
, replacing the + in the upper left corner by 0 leads to a matrix with

submatrix
(

0 ∗
0 +

)
, which is not an element of Sc. However, up to elements of

SO(d−2) we get that the corresponding boundary points are in the cell containing

the submatrix
(

0 +
0 0

)
. The dimension of this cell is the dimension of the original

cell −2. In particular, it will not occur in the boundary operator.

If the matrix A contains a submatrix
(

+ ∗
0 0

)
, replacing the + in the upper left

corner by 0 leads to the matrix with submatrix
(

0 +
0 0

)
, but the change from ∗ to

+ in the right upper corner means that the attaching is done twice, so the coefficient
in the boundary operator is 0 or 2, depending on orientation considerations.
Finally, if the last non-zero row of the matrix A is of the form ( 0 · · · 0 + ),
replacing this row by the zero row gives a matrix A′ ∈ Sc, and the corresponding
coefficient in the boundary operator is ±1.
For i = 1, . . . , d−3, define S(i)(d−2, k) to consist of those matrices A ∈ Sc(d−2, k)
for which the i-th row is ( 0 · · · 0 ) or ( 0 · · · 0 + ).

Let (Xk
(i),d, ∂X

k
d ) be the relative CW-complex consisting of the cells corresponding

to S(i)(d− 2, k).
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Lemma 7.1. The relative CW-complex (Xk
(i),d, ∂X

k
d ) collapses to (∂Xk

d , ∂X
k
d ) for

all i = 1, . . . , d− 3.

Proof. The proof is by induction on i. For i = 1, we only have two cells, corre-
sponding to the zero matrix and the matrix whose only non-zero entry is a +. By
the discussion above, the two cells form an elementary collapse in the sense of [1,
§4], and the result follows.
For i > 1 we show that (Xk

(i),d, ∂X
k
d ) collapses to (Xk

(i−1),d, ∂X
k
d ). Note that if

i > k, then Xk
(i),d = Xk

(i−1),d and there is nothing to show. So assume i ≤ k

and let A ∈ S(i)(d − 2, k) − S(i−1)(d − 2, k). Then the (i − 1)-th row of A is non-
zero, and different from ( 0 · · · 0 + ). The i-th row is either ( 0 · · · 0 )
or ( 0 · · · 0 + ), and the two possibilities form an elementary collapse. By
collapsing these pairs in the order of decreasing dimension, we see that (Xk

(i),d, ∂X
k
d )

collapses to (Xk
(i−1),d, ∂X

k
d ). The result follows. �

Corollary 7.2. For k < d− 2, the pair (Xk
d , ∂X

k
d ) is m-connected for all m ≥ 0.

Proof. The cells to form the relative CW-complex are in one-to-one correspondence
with Sc(d− 2, k), but since k < d− 2, we get Sc(d− 2, k) = S(d−3)(d− 2, k). The
result thus follows from Lemma 7.1. �

In the next result the condition a0(`) = 1 is needed to avoid the case Md(`) = ∅.

Proposition 7.3. Let ` ∈ Rn be a generic length vector with a0(`) = 1, and
d ≥ n ≥ 3. Then Md(`) is contractible.

Proof. Let F̃ : Cd(`)→ R the SO(d−1)-invariant Morse-Bott function from Propo-
sition 6.1, F :Md(`)→ R the induced function and let

∅ =M0 ⊂M1 ⊂ · · · ⊂ Mm =Md(`)

be a filtration such thatMm = F−1((−∞, am]) for some sequence of regular values
of F̃ such that Mm −Mm−1 contains exactly one critical point.
By Morse-Bott theory, Mm is homotopy equivalent to Mm−1 ∪Xk

d , where Xk
d is

attached toMm−1 along ∂Xk
d , and k is such that k(d−1) is the index of the critical

point in Mm −Mm−1. Since k ≤ n− 3, we get k < d− 2, and Mm has the same
homotopy type asMm−1, provided k ≥ 1. As there is a unique minimum for F by
the perfectness of the map F3 in Proposition 6.1, we get thatM1 has the homotopy
type of a point, and all other critical points have index bigger than 0. �

Of course, by [21] these spaces are homeomorphic to a disc.
If k ≥ d − 2, then S(d−3)(d − 2, k) 6= Sc(d − 2, k). A matrix A ∈ Sc(d − 2, k) −
S(d−3)(d − 2, k) has to have at least one ∗ in its last row, and therefore it has
(d − 1)(d − 2)/2 non-zero entries. It follows that DA has at least dimension (d −
1)(d− 2)/2 + k.

Lemma 7.4. Let k ≥ d − 2 ≥ 2, then (Xk
d , ∂X

k
d ) is ((d − 1)(d − 2)/2 + k − 1)-

connected, but not ((d− 1)(d− 2)/2 + k)-connected.
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Proof. We look at the connectedness of the pair (Xk
d , X

k
(d−3),d), which is obtained

by attaching cells corresponding to A ∈ Sc(d − 2, k) − S(d−3)(d − 2, k). There is
only one cell DA which has dimension at most (d− 1)(d− 2)/2 + k, namely the one
corresponding to

A =


0 · · · 0 + ∗ · · · ∗
...

. . . . . . . . .
...

...
. . . + ∗

0 · · · · · · 0 ∗

 ,

and if k > d − 2, there is only one cell with dimension (d − 1)(d − 2)/2 + k + 1,
namely the one corresponding to

A′ =



0 · · · 0 + ∗ ∗ · · · · · · ∗
... 0 0 +

. . .
...

...
. . . . . . . . .

...
...

. . . + ∗
0 · · · · · · 0 ∗


.

With the discussion on boundaries given above, we get Hm(Xk
d , X

k
(d−3),d; Z/2Z) =

Z/2Z for m = (d− 1)(d− 2)/2 + k. Using Corollary 7.1, the result follows. �

Theorem 7.5. Let ` ∈ Rn be a generic length vector with a0(`) = 1, and d ≥ 3.
Then Md(`) is ((d − 1)(d − 2)/2 + d − 3)-connected. Furthermore Mn−1(`) is
homotopy equivalent to the sphere of dimension n(n− 3)/2.

Proof. The proof begins in the same way as the proof of Proposition 7.3, with the
filtration

∅ =M0 ⊂M1 ⊂ · · · ⊂ Mm =Md(`).

As long as the index of the critical point is k(d−1) with k < d−2, no new homology
occurs, but if k ≥ d− 2, something can happen, but by Lemma 7.4 the new Mi+1

is still ((d− 1)(d− 2)/2 + d− 3)-connected.
If d = n−1, the case k ≥ d−2 = n−3 only appears once, with the absolute maximum
of the function. In that case only one cell of dimension (d − 1)(d − 2)/2 + d − 2
is attached to a contractible space. Hence, up to homotopy, we get a sphere of
dimension (n− 2)(n− 3)/2 + n− 3 = n(n− 3)/2. �

As mentioned in the introduction, the last result can be improved to a homeo-
morphism between Mn−1(`) and the sphere. To see this, note that the closure
of the space Ωn−1 of [21] can be identified with Mn(`) for ` ∈ Rn by sending a
linkage configuration to the distances between the points. By [21, Thm.1], this
space is homeomorphic to a disc of dimension n(n− 3)/2, and the boundary points
correspond to those points x ∈Mn(`) whose rank is at most n− 2.
The spaceMn−1(`) is now obtained by doublingMn(`) along the boundary, com-
pare Lemma 2.4 and also the proof of [12, Thm.C].
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8. Basic homological properties of (Xk
d , ∂X

k
d )

Let us denote the cellular chain complex for the pair (Xk
d , ∂X

k
d ) by C∗, that is,

the chain complex freely generated by the matrices of Sc(d − 2, k). This contains
the subcomplex for the pair (Xk

(d−3),d, ∂X
k
d ), which we denote by C0

∗ , and which
is freely generated by the matrices of S(d−3)(d− 2, k). By Lemma 7.1 we get that
H∗(C0

∗) = 0, and hence

H∗(Xk
d , ∂X

k
d ) = H∗(D∗),

where D∗ = C∗/C
0
∗ is freely generated by matrices whose last two rows are of the

form (3), and where the last row is non-zero.
Let us assume that k ≥ d− 2, so that D∗ 6= 0.
Notice that we can write D∗ as a direct sum of chain complexes

D∗ =
k−d+3⊕
j=1

Dk
∗(j),(4)

where Dk
∗(j) is generated by those matrices which have (k − d + 4) − j columns2

containing just ∗. In particular, Dk
∗(1) has only one generator, corresponding to

the matrix

A =


+ ∗ · · · ∗ · · · ∗

0
. . . . . .

...
...

...
. . . + ∗ · · · ∗

0 · · · 0 ∗ · · · ∗


The dimension of the cell DA is therefore

k + (k − d+ 3)(d− 2) +
(d− 2)(d− 3)

2
= k(d− 1)− (d− 2)(d− 3)

2
.

The top-dimensional cell in Dk
∗(j) corresponds to a matrix of the form

+ ∗ · · · ∗ · · · · · · ∗ ∗ · · · ∗

0
. . . . . .

...
...

...
...

...
. . . + ∗ · · · · · · ∗

...
...

0 · · · 0 0 · · · 0 + ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗


while the minimal-dimensional cell corresponds to a matrix of the form

0 · · · 0 + ∗ · · · ∗ · · · ∗
...

... 0
. . . . . .

...
...

...
...

...
. . . + ∗ · · · ∗

0 · · · 0 0 · · · 0 ∗ · · · ∗


So all the cells in Dk

∗(j) have dimension between

k(d− 1)− (d− 2)(d− 3)
2

− (j − 1)(d− 2) and k(d− 1)− (d− 2)(d− 3)
2

− 2(j − 1).

2The number is chosen so that Dk
∗ (1) has exactly one generator, while Dk

∗ (k − d + 3) has the

most generators.
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If we consider the complexes Dk
∗(j) with coefficients in Z/2Z, we get that every

boundary is zero. This follows from the discussion at the beginning of Section 7,
as there always is a column containing only ∗.
Even with coefficients in Z we can obtain some basic results on the homology of
Md(`).

Proposition 8.1. Let ` ∈ Rn be a generic length vector with a0(`) = 1, let d ≥ 4
and let n ≥ d+ 1. Then

Hdn
d
(Md(`); Z) = Z and Hdn

d−1(Md(`); Z) = 0

Recall that dnd denotes the dimension of Md(`).

Proof. Let F̃ : Cd(`) → R be the SO(d − 1)-invariant Morse function from Propo-
sition 6.1, F :Md(`)→ R the induced function and let

∅ =M0 ⊂M1 ⊂ · · · ⊂ Mm =Md(`)

be a filtration such thatMm = F−1((−∞, am]) for some sequence of regular values
of F̃ such that Mm −Mm−1 contains exactly one critical point.
Notice that F̃ has only one critical manifold of index (n − 3)(d − 1), which is the
absolute maximum. Since Mm−1 has the homotopy type of a CW-complex with
lower dimensional cells, we get Hq(Mm−1; Z) = 0 for q ≥ dnd−1. NowMd(`) is, up
to homotopy, obtained from Mm−1 by attaching the cells from ((Xn−3

d , ∂Xn−3
d ).

Only one cell has dimension ≥ dnd − 1, and this cell has dimension dnd . The result
follows. �

Theorem 8.2. Let ` ∈ Rn be a generic length vector with a0(`) = 1, let d ≥ 4 and
let n ≥ d + 2. Then Md(`) does not satisfy Poincaré duality with coefficients in
Z/2Z. In particular,Md(`) is not a topological manifold, with or without boundary.

Proof. First notice thatMd(`) cannot be a manifold with non-empty boundary, as
by Proposition 8.1 Hdn

d
(Md(`)) 6= 0.

Let us use the same filtration as in the previous proof.
We will distinguish the cases d = 4 and d ≥ 5. Let us first assume that d ≥ 5.
Then Mm−1 has the homotopy type of a CW-complex with cells of dimension at
most (n− 4)(d− 1)− (d−2)(d−3)

2 .

As n ≥ d+2, we get that Hdn
d−2(Dn−3(2); Z/2Z) = Z/2Z, which corresponds to the

maximal cell for Dn−3(2). As d ≥ 5, we get dnd−2−((n−4)(d−1)− (d−2)(d−3)
2 ) ≥ 2,

so

Hdn
d−2(Md(`); Z/2Z) ∼= Z/2Z.

But H2(Md(`); Z/2Z) = 0 by Theorem 7.5, so Poincaré duality cannot hold.

Now consider the case d = 4. Since dnd − 2− ((n− 4)(d− 1)− (d−2)(d−3)
2 ) = 1 now,

it is not clear whether Hdn
d−2(Md(`); Z/2Z) 6= 0.

But let c be the number of critical manifolds of index 3(n − 4). By Proposition
5.4, we get c = 1 + a1(`) − an−3. Now an−3(`) ≤ 1, and if an−3(`) = 1, then
a1(`) = n− 3. As n ≥ 6, we get c ≥ 2, unless a1(`) = 0 in which case c = 1.
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Let us first consider the case c ≥ 2. In that case the top-dimensional non-zero
homology group of Mm−1 is in degree 3(n − 4) − 1, and the rank of this homol-
ogy group is c. Attaching one cell of dimension 3(n − 4) cannot kill this homol-
ogy group, therefore H3(n−4)−1(M4(`); Z/2Z) 6= 0. But by Theorem 7.5 we have
H3(M4(`); Z/2Z) = 0, so Poincaré duality cannot hold.
It remains to consider the case c = 1. In that case Sm1 (`) = ∅ (where m is chosen
so that ` is m-dominated), which uniquely determines the chamber of `. In fact,
we can assume that

` = (1, . . . , 1, n− 2).

By Proposition A.1 we get that M4(`) ≈ Σn−1
3 , the shape space defined in the

appendix. But this space is known to not satisfy Poincaré duality, see [17, §4,§5].
In fact, the homology calculations in [17] give the same contradiction as above. �

9. Homology of (Xk
d , ∂X

k
d )

In this section we want to improve on the homology calculations of H∗(Xk
d , ∂X

k
d ).

Let us begin with the case d = 4. In that case

Dk
∗(j) = (Z, 3k − 1− 2(j − 1)),

where we use the notation (G,n) for the graded group whose only non-zero degree
is n ∈ Z, in which case the entry is the abelian group G.
It follows that for k ≥ 1 we get

H∗(Xk
4 , ∂X

k
4 ) =

k−1⊕
j=1

(Z, 3k − 1− 2(j − 1)).

In the case d ≥ 5 we have to analyze the boundary operator more carefully. This is
done by following the methods of [17, §4]. Let us take a closer look at d = 5. The
matrices appearing for the generators of Dk

∗(j) are of the form 0 · · · 0 + ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 0 · · · · · · 0 + ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗


A typical boundary is of the form

∂

 + ∗ ∗ ∗
0 0 + ∗
0 0 0 ∗

 =

 0 + ∗ ∗
0 0 + ∗
0 0 0 ∗

+

 0 − ∗ ∗
0 0 + ∗
0 0 0 ∗


The second matrix on the right-hand side comes from the fact that we write D2 =
D2

+ ∪D2
−, but our symbolic matrices require a + and not a −. Let A ∈ SO(3) ≤

SO(4) be the diagonal matrix which has −1 in the second and fourth entry, and
1 in the first and third entry. Then A(D2

−) = D2
+. This means we get the same

matrix on the right side twice. To work out the exact coefficients, we need to take
a closer look at orientations.
Recall that the matrices stand for products of discs Di or Di

+, and every non-
zero entry corresponds to one dimension. To choose an orientation, we choose the
standard orientation of the discs Di. We can actually think of every non-zero entry
in the matrix coming with a basis vector into that dimension, and by picking an
order of the entries in the matrix we get the orientation.



HOMOLOGY OF MODULI SPACES OF LINKAGES 25

Let us go back to the example above. The matrix A ∈ SO(3) used to turn D2
−

into D2
+ changes the orientation of D2

+. It also changes the orientation of the next
factor, which is a D3

+. But for the final factor D4, two basis elements are changed,
so there is no impact on the orientation. Since we had two changes of orientations,
we see that

∂

 + ∗ ∗ ∗
0 0 + ∗
0 0 0 ∗

 = ±2

 0 + ∗ ∗
0 0 + ∗
0 0 0 ∗


Notice that adding extra factors of D4 two the right has no impact on the signs.
Adding extra factors of D2 however does change the signs. So to work out the
homology of Dk

∗(j), we can ignore the last two rows of the matrix.
The remaining d− 2 rows all have to start with a +. Let us describe the remaining
matrices using sequences of decreasing numbers, compare [17, §4]. We can encode
the matrix by a sequence of numbers (k1, . . . , km) with

k1 > k2 > · · · > km ≥ 1

where each number ki stands for the number of non-zero entries in the i-th row.
Let E∗(m, j) be the chain complex freely generated by such sequences (k1, . . . , km)
where k1 ≤ m + j − 1, and we say that the sequence (k1, . . . , km) has degree
k1 + · · ·+ km −m(m+ 1)/2. The boundary is given by

∂(k1, . . . , km) =
m∑
j=1

(−1)k1+···+kj−1(1 + (−1)kj )(k1, . . . , kj − 1, . . . , km).

where a sequence (k′1, . . . , k
′
m) is interpreted as 0 if k′i = k′i+1 for some i ∈ 1, . . . ,m−

1 or if km = 0.

Remark 9.1. The sign (−1)k1+···+kj−1 comes from the following: Each non-zero
entry in the symbolic matrix spans a dimension, but only the entries with a + have
a non-zero boundary. If we order the basis for the orientation by starting with the
first row on the left, the + is at the 0-th position. Similarly, the + in the second
row is in the k1-th position, and so on.

It follows that, up to possibly a sign which has no impact on the homology,

Dk
∗(j) = E∗−u(d− 4, j),(5)

where u = (d− 1)k − (d− 2)(d− 3)/2− (d− 2)(j − 1).
Let us take a look at the case d = 5. Then E∗(1, j) is generated by (k), where
k ≤ j, the boundary maps are alternating between 2 and 0, and ∂(2) = 2(1). We
thus get

Lemma 9.2. Let j ≥ 1. Then

Hq(E∗(1, j)) =

 Z j odd, q = j − 1
0 q odd, or q ≥ j

Z/2Z q even
.

To understand the homology of E∗(m, j) for m ≥ 2, notice that we can think of
this complex as the total complex of a double complex E∗ ∗, where the horizontal
grading measures the first row, and the vertical grading the remaining rows. We can
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therefore think of E∗(m, j) as the total complex of the sequence of chain complexes
with chain maps

(6) E∗(m− 1, 1)
1+(−1)m−1

←− E∗(m− 1, 2)
1+(−1)m−2

←− · · · 1+(−1)m−j+1

←− E∗(m− 1, j).

Notice that every second map is 0, so that the total complex is just a direct sum
of sequences

E∗(m− 1, i) 2←− E∗(m− 1, i+ 1).

Using this and the particular form of the boundary in E∗(m, j) one can show that
the homology of E∗(m, j) only contains direct summands of Z and Z/2Z. One
should compare this with the results in [17, §4,§5], where closed formulas for the
number of such summands in the homology of similar chain complexes are given.
As these closed formulas are not that enlightening, and since we need to enter the
homology of (Xk

d , ∂X
k
d−1) into another spectral sequence coming from the filtration

(Mk)k≥0, we will abandon torsion and look instead at homology with coefficients
in Q.
Lemma 9.2 then reduces to

H∗(E∗(1, j); Q) =
{

0 j even
(Q, j − 1) j odd .

To describe the rational homology of E∗(m, j) for m ≥ 2 we want to give concrete
generators, and then show that they span the homology. Let us begin with m even,
that is, m = 2n for some n ≥ 1.
Let j +m− 1 ≥ k1 > · · · > kn ≥ 2 be a sequence of even numbers. Then

(k1, k1 − 1, k2, k2 − 1, . . . , kn, kn − 1)

is easily seen to be a cycle in E(2n, j). Furthermore, no non-zero integer multiple
can be a boundary, as only sequences which have a term (ki + 1, ki − 1) in them
could have this sequence in their boundary. But since ki + 1 is odd, the boundary
formula has a factor 1 + (−1)ki+1 = 0. In particular, such cycles span a Z factor in
H∗(E∗(2n, j)). It is also easy to see that the degree of this cycle is a multiple of 4.
For m = 2n+ 1 we can look at the sequence

(k0, k1, k1 − 1, k2, k2 − 1, . . . , kn, kn − 1)

where the ki are as before for i ≥ 1, and j + m − 1 ≥ k0 > k1. For this to be
a cycle, we need k0 to be odd. But if k0 + 1 ≤ j + m − 1, we get this to be a
(rational) boundary. To obtain a Z factor in H∗(E∗(2n+ 1, j)), we therefore need
k0 = j + m − 1. As m is odd, this is only possible if j is odd. In this case, notice
that the degree of this cycle is j − 1 + 4i for some i ≥ 0.

Proposition 9.3. Let n ≥ 1 and j ≥ 1. Then H∗(E∗(2n, j); Q) has a basis given
by elements

(k1, k1 − 1, k2, k2 − 1, . . . , km, km − 1)

where ki = 2(n + 1 − i) + ji for i = 1, . . . , n, where j1 ≥ j2 ≥ · · · ≥ jn ≥ 0 is
a sequence of even numbers with j1 + 2n ≤ j + 2n − 1. The degree of (k1, k1 −
1, k2, k2 − 1, . . . , kn, kn − 1) is 2(j1 + · · ·+ jn).
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Furthermore, H∗(E∗(2n + 1, j); Q) = 0 for j even, and H∗(E∗(2n + 1, j); Q) for j
odd has a basis given by elements

(k0, k1, k1 − 1, k2, k2 − 1, . . . , kn, kn − 1)

with the ki as above, and k0 = j + 2n. The degree of (k0, k1, k1 − 1, k2, k2 −
1, . . . , kn, kn − 1) is (j − 1) + 2(j1 + · · ·+ jn).

Proof. The proof is by induction. Let us first show that the statement for 2n − 1
implies the statement for 2n. We get that the chain complex E∗(2n, j) is the
total complex of the sequence (6). Now all the chain complexes E∗(2n−1, i) with i
even have 0 as their homology, so the homology of E∗(2n, j) is the direct sum of the
homologies of E∗(2m−1, i) with i odd. The basis elements for H∗(E∗(2m−1, i); Q)
are then of the form

(i+ 2n− 2, k1, k1 − 1, . . . , kn−1, kn−1 − 1)

with i ≤ j odd by the induction assumption. The way we think of E∗(2n, j) as a
double complex means these generators correspond to

(i+ 2n− 1, i+ 2n− 2, k1, k1 − 1, . . . , kn−1, kn−1 − 1).

But this gives exactly the statement for the rational homology of E∗(2n, j). Notice
that this also works for n = 1.
It remains to show that the statement for 2n implies the statement for 2n+ 1.
Again we use the sequence (6). The condition that k1 ≤ i+2n−1, implies that for i
odd the homologies of E∗(2n, i) and E∗(2n, i+1) have the same basis. Furthermore,
in (6) we get for i odd terms of the form

E∗(2n, i)
2←− E∗(2n, i+ 1)

which induce isomorphisms on rational homology. In particular, for j even all
homology vanishes. For j odd we are left with

H∗(E∗(2n+ 1, j); Q) ∼= H∗−j(E∗(2n, j); Q),

and because of the way the double complex structure of E∗(2n+ 1, j) is formed, we
see that the basis is represented by elements

(j + 2n, k1, k1 − 1, k2, k2 − 1, . . . , kn, kn − 1).

The statement about the degrees of these basis elements is easy to see. �

Definition 9.4. Let m ≥ 1. Then define

∇m = {(j1, . . . , jm) ∈ Zm | j1 ≥ j2 ≥ · · · ≥ jm ≥ 0}.

Also, if (j1, . . . , jm) ∈ ∇m, we define

|(j1, . . . , jm)| = j1 + j2 + · · ·+ jm

and

‖(j1, . . . , jm)‖ = 2j1 + 1.

Also, for m = 0 we let ∇0 = {()}, where we think of () as a point with |()| = 0 and
‖()‖ = 1.
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We write elements of ∇m as j = (j1, . . . , jm). Notice that every j ∈ ∇m produces a
generator in the homology of E(2m, j), provided that j ≥ ‖j‖, whose degree is 4|j|,
and a generator in the homology of E(2m+ 1, 2i+ 1), provided that 2i+ 1 ≥ ‖j‖,
whose degree is 2i+ 4|j|.
For j ≥ 1 and m ≥ 0 let

∇m(j) = {j ∈ ∇m | ‖j‖ ≤ j}.

We denote the Poincaré polynomial of the pair (Xk
d , ∂X

k
d ) by P kd (t), that is,

P kd (t) = b0(Xk
d , ∂X

k
d ) + b1(Xk

d , ∂X
k
d ) t+ · · · bn(Xk

d , ∂X
k
d ) tn

where n is the dimension of Xk
d and bj(Xk

d , ∂X
k
d ) is the Z-rank of Hj(Xk

d , ∂X
k
d ) for

all j = 0 . . . , n.

Theorem 9.5. Let m ≥ 0 and k ≥ 1. Then

P k2m+4(t) = tk+(m+1)(2m+3)
∑

j∈∇m(k−2m−1)

t4|j|
t(2m+2)(k−2m−‖j‖) − 1

t2m+2 − 1

and

P k2m+5(t) = tu(k,m)
∑

j∈∇m(k−2m−2)

t4|j|
t4(m+1)b k−2m−‖j‖

2 c − 1
t4(m+1) − 1

where

u(k,m) = (2m+ 4)k − (2m+ 3)(m+ 1)− 4(m+ 1)bk − 2m− 3
2

c.

Here bxc = max{n ∈ Z |n ≤ x}.

Proof. The proof is now merely an organisation of our previous results, using d =
2m+ 4 or 2m+ 5. By (4) the homology of (Xk

d , ∂X
k
d ) splits into summands, which

by (5) come from E∗(2m, j) or E∗(2m+ 1, j) shifted by

v(d, k, j) = (d− 1)k − (d− 2)(d− 3)/2− (d− 2)(j − 1),

and where j = 1, . . . , k − d+ 3.
Let d = 2m + 4. Using Proposition 9.3 we see that each j ∈ ∇m(k − 2m − 1)
produces a homology generator, and in fact for each j = 1, . . . , k − 2m − 1 with
j ≥ ‖j‖. The degree of such a generator is 4|j|+ v(2m+ 4, k, j), so the degrees vary
from

4|j|+ (2m+ 3)k − (m+ 1)(2m+ 1)− 2(m+ 1)(‖j‖ − 1)
down to

4|j|+ v(2m+ 4, k, k − 2m− 1) = 4|j|+ k + (m+ 1)(2m+ 3)

in steps of 2(m+ 1). Using

1 + t2m+2 + · · · t(2m+2)(k−2m−1−‖j‖) =
t(2m+2)(k−2m−‖j‖) − 1

t2m+2 − 1
,

we get the result.
The case d = 2m+ 5 is very similar, each j ∈ ∇m(k−2m−1) produces a homology
generator, but only for each odd j = 1, . . . , k − 2m − 2 with j ≥ ‖j‖, and with
degree (j − 1) + 4|j|+ v(2m+ 5, k, j). A similar argument as in the even case gives
the stated result. Note that 2bn−1

2 c+ 1 is the largest odd number not bigger than
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n, and the degree increase for each j is 4(m + 1) because we only consider odd
numbers between ‖j‖ and k − 2m− 2. �

For small values of m the sets ∇m have a very simple form, so we collect the
Poincaré polynomials in these special cases in the next corollary.

Corollary 9.6. For k ≥ 2 we have

P k4 (t) = tk+3
k−2∑
i=0

t2i.

For k ≥ 3 we have

P k5 (t) = t4k−4b k−3
2 c−3

b k−3
2 c∑
i=0

t4i.

For k ≥ 4 we have

P k6 (t) = tk+10Qk−4(t4).

For k ≥ 5 we have

P k7 (t) = t6k−8b k−5
2 c−10 (Qb k−5

2 c
(t8) + t4Qb k−5

2 c−1(t8)).

Proof. The cases with m = 0 are easy to see, as ∇0 only consists of one element.
To determine P k6 (t) and P k7 (t), note that

∇1(n) =
{

(i)
∣∣∣∣ 0 ≤ i ≤ bn− 1

2
c
}
.

Therefore

P k6 (t) = tk+10

b k−4
2 c∑
i=0

t4i
t4(k−3−2i) − 1

t4 − 1

= tk+10Qk−4(t4)

by Lemma B.3. Similarly,

P7(t) = tu(k,1)

b k−5
2 c∑
i=0

t4i
t8(b

k−5
2 c+1−i) − 1
t8 − 1

= t6k−8b k−5
2 c−10(Qb k−5

2 c
(t8) + t4Qb k−5

2 c−1(t8))

by Lemma B.4. �

10. Poincaré polynomials for linkage spaces in odd dimensional
Euclidean spaces

In order to calculate the Poincaré polynomial of Md(`) for d ≥ 4, we want to take
the filtration

∅ =M0 ⊂M1 ⊂ · · · ⊂ Mm =Md(`)
which arises from the SO(d − 1)-invariant Morse-Bott function from Proposition
6.1, so that

Ms+1 ' Ms ∪∂Xk
d
Xk
d
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for all s = 0, . . . ,m−1 and appropriate k depending on s. The long exact sequence
of the pair (Ms+1,Ms) takes on the form

· · · −→ Ht+1(Xk
d , ∂X

k
d ) −→ Ht(Ms) −→ Ht(Ms+1) −→ Ht(Xk

d , ∂X
k
d ) −→ · · ·

If we look at u(k,m) in Theorem 9.5, we see that for fixed m this number is always
odd (for m even) or even (for m odd) for all k ≥ 2m+ 3. It follows that

H∗(Ms+1; Q) = H∗(Ms; Q)⊕H∗(Xk
d , ∂X

k
d ; Q)(7)

for odd d ≥ 5.
This is not true for d ≥ 4 even, as the following example shows.

Example 10.1. Let `6 = (1, 1, 1, 1, 1, 4). Then a0(`6) = 1 and ai(`6) = 0 for all
i ≥ 1. Therefore the Morse numbers µi(`) of the Morse function f3 :M3(`6)→ R
of Corollary 5.3 are all 1. Since the function is constructed by induction over `′

with similar Morse functions, we can assume that the indices in the filtration are
increasing. We thus have 4 critical points of index 0, 2, 4 and 6, respectively, so
the respective values for k are 0, 1, 2 and 3.
If we look at the analogous function for d = 4, the filtration satisfies

M1 ' ∗, M2 ' S5, M3 = M4(`6) 'M2 ∪ e6 ∪ e8

which means that up to homotopy M4(`6) is obtained from S5 by adding a 6-cell
and an 8-cell. By Proposition A.1, we have M4(`6) = Σ5

3, and the Z-homology of
this space has been calculated in [17, Table 5.3] as

H∗(Σ5
3) =

 Z ∗ = 8
Z/2Z ∗ = 5

0 else
.

This shows that there is a non-trivial interaction between the critical points of index
2 and 3, which persists when looking at `n = (1, . . . , 1, n − 2) ∈ Rn, as [17, Table
5.3] shows.

One would expect similar interactions when looking at more general `, but we leave
that for a future project.

Definition 10.2. Let ` ∈ Rn be a generic length vector, and d ≥ 2. We denote
the Poincaré polynomial of Md(`) with Z coefficients by P `d(t).

The next proposition follows by a simple induction on (7), using Proposition 5.4.

Proposition 10.3. Let ` ∈ Rn be a generic length vector, and d = 2m + 5 with
m ≥ 0. Then

P `d(t) = a0(`) +
n−3∑

k=2m+3

µk(`)P kd (t),

where µk(`) are as in Proposition 5.4.

We can express the µk in terms of ak, and the P kd (t) are given by Theorem 9.5.
Using Corollary 9.6, we can make the dependence on the ak more explicit.
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Theorem 10.4. Let ` ∈ Rn be a generic length vector with a0(`) = 1. Let m ≥ 3
be such that n = 2m− 1 or n = 2m. Then

P `5 (t) = 1 + t9 ·
m−2∑
i=0

(ai − an−2−i) (Qn−6−i(t4)−Qi−4(t4)),

where ai = ai(`) for i = 1, . . . , n− 3, and an−2 = 0 = Qj for j < 0.

Proof. We know from Proposition 5.4 that a0(`) contributes to each µk(`) for k =
0, . . . , n−3. Similarly, a1(`)−an−3(`) contributes to µ1(`), . . . , µn−4(`), and am−2−
an−m contributes to µm−2 and µn−m−1.
Notice that µ1 and µ2 have no impact on the homology of M5(`).
According to Corollary 9.6 the contribution of a0(`) = 1 to the Poincaré polynomial
is therefore

1 +
n−3∑
k=3

P k5 (t) = 1 +
n−3∑
k=3

t4k−4b k−3
2 c−3

b k−3
2 c∑
i=0

t4i


= 1 + t9 ·

n−6∑
k=0

t4b
k+1
2 c

t4b
k+2
2 c − 1
t4 − 1

= 1 + t9Qn−6(t4),

where we use Lemma B.3 in the last line.
Similarly, the contribution of a1(`)− an−3(`) is t9Qn−7(t4), and so on. But notice
that for j ≥ 4 we get for the contribution of aj(`)− an−2−j(`) the formula

t9
n−6−j∑
k=j−3

t4b
k+1
2 c

t4b
k+2
2 c − 1
t4 − 1

= t9 (Qn−6−j(t4)−Qj−4(t4)).

Since we set Qk(t) = 0 for negative k, this also holds for all j ≥ 0. Adding all terms
together gives the result. �

Remark 10.5. If we write

Rk(t) = 1 + t+ · · ·+ tk,

and Rk(t) = 0 for k < 0, we can describe the Poincaré polynomials of M3(`) as

P `3 (t) = 1 + t2 ·
m−2∑
i=0

(ai − an−2−i) (Rn−4−i(t2)−Ri−2(t2)),

as follows easily from (1). Furthermore, we have Q2m(t) = Rm(t)Rm(t) and
Q2m+1(t) = Rm(t)Rm+1(t). It is therefore natural to ask what the correct for-
mula for P `2m+5(t) is and whether it fits into a similar pattern. However, by looking
at Corollary 9.6 in the case d = 7, we see that the Poincaré polynomial of M7(`)
will have non-zero coefficients in even degrees between 26 and dn7 for n ≥ 9.

Example 10.6. There exist 135 chambers for n = 7 up to permutations [10], and
the Poincaré polynomial for ` ∈ R7 is

P `5 (t) = a0(`)(1 + t9 + t13) + (a1(`)− a4(`))t9.
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Also, a4(`) = 0, unless ` = (1, 1, 1, 1, 5, 5, 5), in which case a1(`)− a4(`) = 3. If we
also assume that ` is different from (1, 1, 1, 1, 1, 1, 7), the Poincaré polynomial is

P `5 (t) = 1 + (a1(`) + 1)t9 + t13.

Since a1(`) ∈ {0, . . . , 6} there are not a lot of variations among the Poincaré poly-
nomials. Also notice that M5(`) up to homotopy is obtained from a wedge of
(a1(`) + 1) 9-spheres by attaching a cell of dimension 10, 11 and 13. As these three
cells correspond to a0(`) it seems unlikely to expect too many different homotopy
types between the chambers for n = 7.

11. The Euler characteristic for even dimensional linkage spaces

Let us begin with χ(Xk
2m+4, ∂X

k
2m+4). This is obtained by evaluating P k2m+4(−1)

in Theorem 9.5. Reorganising this term gives the following proposition.

Proposition 11.1. Let m ≥ 0 and k ≥ m+ 1. Then

χ(X2k
2m+4, ∂X

2k
2m+4) = (−1)m+1

k−m−1∑
jm=0

k−m−1∑
jm−1=jm

· · ·
k−m−1∑
j1=j2

(2k − 2m− 2j1 − 1),

and

χ(X2k+1
2m+4, ∂X

2k+1
2m+4) = (−1)m

k−m−1∑
jm=0

k−m−1∑
jm−1=jm

· · ·
k−m−1∑
j1=j2

(2k − 2m− 2j1).

The simplest cases m = 0 and m = 1 are easily seen to give the following.

Corollary 11.2. Let m ≥ 0 and k ≥ m+ 1. Then

χ(X2k
2m+4, ∂X

2k
2m+4) + χ(X2k+1

2m+4, ∂X
2k+1
2m+4) = (−1)m|∇m(2k − 2m− 1)|.

Furthermore, for k ≥ 0 we get

χ(Xk
4 , ∂X

k
4 ) = (−1)k+1(k − 1)

and

χ(X2k
6 , ∂X2k

6 ) = (k − 1)2

χ(X2k+1
6 , ∂X2k+1

6 ) = −k(k − 1).

It is worth pointing out that X0
d is a point with empty boundary, so the Euler

characteristic is just 1.

Corollary 11.3. Let k ≥ 3 and ` ∈ Rn be a generic length vector, and n = 2k or
n = 2k − 1. Then for n = 2k we get

χ(M4(`)) =
k−2∑
i=0

(−1)i(ai(`)− a2k−2−i(`)) (k − 1− i)

and for n = 2k − 1 we get

χ(M4(`)) = −(k − 3)
k−2∑
i=0

(−1)i(ai(`)− a2k−3−i(`)).
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Proof. Assume that n = 2k − 1. Write χi = χ(Xi
4, ∂X

i
4) = (−1)i+1(i − 1). Then

a0(`) contributes χ0 + χ1 + . . .+ χ2k−4 to the Euler characteristic ofM4(`). Since
χ2i + χ2i+1 = 1, this gives a contribution of

k−3∑
i=0

(χ2i + χ2i+1) + χ2k−4 = (k − 2)− (2k − 5)

= −(k − 3).

Similarly, the contribution of (aj(`)− a2k−3−j(`) is (−1)i+1(k − 3), where for odd
j one should note that χj + χj+1 = j − 1. Summing the contributions with the
appropriate factor gives the result.
The result for n = 2k is using the same type of argument. �

Example 11.4. Let ` = (1, . . . , 1) ∈ R2m+1. A subset J ⊂ {1, . . . , 2m + 1}
is `-short if and only if has at most m elements. It follows that ai =

(
2m
i

)
for

i = 0, . . . ,m− 1 and ai = 0 for i ≥ m. Hence

χ(M4(`)) = −(m− 2)
m−1∑
i=0

(−1)i
(

2m
i

)
= (−1)m(m− 2)

(
2m− 1
m− 1

)
where we used (−1)m−1

(
2m−1
m−1

)
=
∑m−1
i=0 (−1)i

(
2m
i

)
which follows from the binomial

formula. This formula has been obtained by Kamiyama in [13, Thm.A].

Corollary 11.5. Let k ≥ 4 and ` ∈ Rn be a generic length vector, and n = 2k or
n = 2k − 1. Then for n = 2k we get

χ(M6(`)) =
1
2

k−2∑
i=0

(−1)i+1 ci ((k − 3− b i2c)(k − 2− b i2c)− (b i−3
2 c · b

i−1
2 c))

and for n = 2k − 1 we get

χ(M6(`)) =
1
2

k−2∑
i=0

(−1)i ci ((k − 3− b i+1
2 c)(k − 2− b i+1

2 c) + (b i−3
2 c · b

i−1
2 c)),

where ci = ai(`)− an−2−i(`).

Proof. The proof is along the same lines as the proof of Corollary 11.3. If n = 2k−1,
the contribution of a2j is

2k−4−2j∑
i=2j

χi =
k−3−j∑
i=j

(χ2i + χ2i+1) + χ2k−4−2j

= −
k−4−j∑
i=j−1

i+ (k − 3− j)2

=
1
2

((k − 3− j)(k − 2− j) + (j − 2)(j − 1),

and a2j−1 contributes this term with a negative sign. The case n = 2k is similar. �
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Example 11.6. Let ˜̀ = (1, . . . , 1, 7) ∈ R8, so that Md(˜̀) ∼= Σ7
d−1 by Proposition

A.1. In particular, a0(˜̀) = 1 and ai(˜̀) = 0 for i ≥ 1. Then

χ(M4(˜̀)) = 3 and χ(M6(˜̀)) = 0

as can be readily seen from Corollaries 11.3 and 11.5.
If we let ` = (1, 1, 1, 1, 1, 3, 3, 6), we see that a0(`) = 1, a1(`) = 5, a2(`) = 10 and
ai(`) = 0 for i ≥ 3. This implies

χ(M4(`)) = χ(M4(˜̀)),

while

χ(M6(`)) = 5 6= χ(M6(˜̀)).

We can still show that M4(`) does not have the same homotopy type as M4(˜̀).
To see this, note that in the filtration (Mj) the relative complex (X4

4 , ∂X
4
4 ) is

attached 6 = a0(`) + a1(`) times, so that before attaching the final (X5
4 , ∂X

5
4 ), we

have H11(Mm−1; Q) ∼= Q6. Since H12(X5
4 , ∂X

5
4 ; Q) ∼= Q, we get that the 11-th

Betti number of M4(`) is at least 5. As H11(M4(˜̀)) ∼= Z/2Z by [17, Table 5.3],
these spaces have different homology.

This last argument can be generalized to obtain some kind of Morse inequalities;
we only give a few special cases.

Proposition 11.7. Let ` ∈ Rn be a generic length vector. For n ≥ 6 we have

b3(n−1)−10(M4(`))− b3(n−1)−9(M4(`)) = a1(`)− an−3(`)− a0(`),

and for n ≥ 7 we have

c2(`) + c1(`) + 2c0(`) ≥ b3(n−2)−10(M4(`)) ≥ c2(`)− c1(`),

where ci(`) = ai(`)− an−2−i(`) for i = 0, 1, 2.
Also, for n ≥ 9 we have

b5(n−1)−21(M6(`))− b5(n−1)−20(M6(`)) = a1(`)− an−3(`)− 2a0(`),

and for n ≥ 10 we have

c2(`) + c1(`) + c0(`) ≥ b5(n−2)−21(M6(`)) ≥ c2(`)− c1(`)− c0(`).

Proof. The dimension of Xn−4
4 is 3(n − 1) − 10, and in the filtration arising from

the standard Morse-Bott function we get c1 + c0-many of those. Therefore the
(3n− 1)− 10-th Betti number is at most c1 + c0. Furthermore, only one Xn−3

4 can
occur in the filtration, and only at the very end, so the 3(n−1)−9-th Betti number
can be at most a0(`). When obtaining the homology of M4(`) from the filtration,
this generator in degree (3(n − 1) − 9 may or may not cancel with a generator
in degree 3(n − 1) − 10. In either case, the difference of the Betti numbers is as
claimed.
To determine b3(n−2)−10(M4(`)), note that onlyXn−5

4 ’s and the finalXn−3
4 can con-

tribute to this number, and each Xn−4
4 may cancel a generator. As (Xn−4

4 , ∂Xn−4
4 )

has homology in degrees 3(n − 2) − 11 and 3(n − 2) − 9, we could get two cancel-
lations. As there are (c2 + c1 + 2c0)-many Xn−5

4 and Xn−3
4 , and (c1 + c0)-many of

Xn−4
4 in the filtration, the result follows.
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The result for d = 6 is analogous, but we use a different Poincaré polynomial for
(Xn−4

6 , ∂Xn−4
6 ), see Corollary 9.6. Note that the conditions n ≥ 9 and n ≥ 10

ensure that Q2(t4) is used, which means that the coefficient of t4 is 2. If Q1(t4) is
used, the formulas slightly improve. �

Appendix A. Shape spaces

In this appendix, we define the shape spaces occuring in statistical shape theory.
Roughly speaking, a shape is a collection of points in some Rd up to rotations and
translations and scalings. More information can be found for example in the book
[17].
We begin by defining the pre-shape space. Let

Snd =

{
(x1, . . . , xn) ∈ (Rd)n

∣∣∣∣∣
n∑
i=1

xi = 0,
n∑
i=1

|xi|2 = 1

}
.

This is the space of n points in Rd, whose centroid is 0 and who are scaled to sit on
the unit sphere. Notice that Snd is the intersection of the sphere of dimension nd−1
with a sub-vector space of codimension d. It is therefore a sphere of dimension
(n− 1)d− 1.
The group SO(d) acts diagonally on Snd , and the resulting quotient is called the
shape space

Σnd = Snd/SO(d).

Similarly, one can define the size and shape space SΣnd which is obtained in the
same way, but by dropping the condition that the points sit on the (nd−1)-sphere,
see [17, §11.2].
As is pointed out in [10], If we define T : SΣnd → Rn by

T (x1, . . . , xn) = (|x1 − x2|, . . . , |xn−1 − xn|, |xn − x1|)

we get thatMd(`) = T−1({`}). Furthermore, looking at inverse images of chambers
and further stratas in Rd leads to a decomposition of the size and shape space by
configuration spaces of linkages studied in [10].
An even more direct relation between linkage spaces and shape spaces is given by
the next proposition.

Proposition A.1. Let ` = (1, . . . , 1, n− 2) ∈ Rn. Then there exists an SO(d− 1)-
equivariant homeomorphism

Φ : Cd(`)→ Sn−1
d−1 .

In particular, the shape space Σn−1
d−1 is homeomorphic to Md(`).

Proof. Let (x1, . . . , xn−1) ∈ Cd(`). If p1 : Rd → R is projection to the first coordi-
nate, notice that p1(xi) < 0 by elementary geometry. Now let p : Rd → Rd−1 be
projection to the last d− 1 coordinates. Let

c =
n−1∑
i=1

|p(xi)|2.
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Then c > 0, for otherwise each xi = −e1 ∈ Rd, and

x1 + · · ·+ xn−1 = (−n+ 1, 0, . . . , 0) 6= (−n+ 2, 0, . . . , 0).

So we can define

Φ(x1, . . . , xn−1) = (p(x1)/
√
c, . . . , p(xn−1)/

√
c).

This is injective: If Φ(x1, . . . , xn−1) = Φ(y1, . . . , yn−1), then p(xi) = ep(yi) for some
e > 0 and all i = 1, . . . , n− 1. If e > 1, then p1(xi) < p1(yi) for all i = 1, . . . , n− 1,
but then

n−1∑
i=1

p1(xi) 6=
n−1∑
i=1

p1(yi),

contradicting that both are in Cd(`). The case e < 1 leads to a similar contradiction,
and e = 1 implies (x1, . . . , xn−1) = (y1, . . . , yn−1).
As Cd(`) is a closed manifold of the same dimension, Φ is also surjective. Equivari-
ance is clear from the construction, so the statement follows. �

Appendix B. Polynomial relations

We want to collect a few properties of the sequence of polynomials Qn(t) given by

Q2m(t) =
(tm+1 − 1)2

(t− 1)2

Q2m+1(t) =
(tm+2 − 1)(tm+1 − 1)

(t− 1)2

for all m ≥ 0. For convenience, we also add the equations Qn(t) = 0 for n < 0.
The next lemma follows directly from the fact that

tm+1 − 1
t− 1

= 1 + t+ · · ·+ tm.

Lemma B.1. Let m ≥ 1, then

Q2m−1(t) = Q2m−2(t) + tm + · · ·+ t2m−1

Q2m(t) = Q2m−1(t) + tm + · · ·+ t2m

Using an induction on Lemma B.1, we get a nice description for the coefficients of
Qn(t).

Lemma B.2. For m ≥ 0 we have

Q2m(t) = 1 + 2t+ · · ·+ (m+ 1)tm +mtm+1 + · · ·+ 2t2m−1 + t2m

Q2m+1(t) = 1 + 2t+ · · ·+ (m+ 1)tm + (m+ 1)tm+1 + · · ·+ 2t2m + t2m+1.

The next lemmata also follow by induction using Lemma B.1.

Lemma B.3. For m ≥ 0 we have

Qm(t) =
bm

2 c∑
i=0

ti
tm+1−2i − 1

t− 1

=
m∑
i=0

tb
i+1
2 c

tb
i+2
2 c − 1
t− 1

.
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Lemma B.4. For m ≥ 0 we have

Qm(t2) + tQm−1(t2) =
m∑
i=0

ti
t2(n+1−i) − 1

t2 − 1
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