The Walker conjecture for chains in \mathbb{R}^{d}

Michael FARBER, Jean-Claude HAUSMANN and Dirk SCHÜTZ

March 18, 2010

Abstract

A chain is a configuration in \mathbb{R}^{d} of segments of length $\ell_{1}, \ldots \ell_{n-1}$ consecutively joined to each other such that the resulting broken line connects two given points at a distance ℓ_{n}. For fixed generic set of length parameters the space of all chains in \mathbb{R}^{d} is a closed smooth manifold of dimension $(n-2)(d-1)-1$. In this paper we study cohomology algebras of spaces of chains. We give a complete classification of these spaces (up to equivariant diffeomorphism) in terms of linear inequalities of a special kind which are satisfied by the length parameters $\ell_{1}, \ldots, \ell_{n}$. This result is analogous to the conjecture of K . Walker which concerns the special case $d=2$.

MSC classes: $55 \mathrm{R} 80,70 \mathrm{G} 40,57 \mathrm{R} 19$

Introduction

For $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{R}_{>0}^{n}$ and d a positive integer, define the subspace $\mathcal{C}_{d}^{n}(\ell)$ of $\left(S^{d-1}\right)^{n-1}$ by

$$
\mathcal{C}_{d}^{n}(\ell)=\left\{z=\left(z_{1}, \ldots, z_{n-1}\right) \in\left(S^{d-1}\right)^{n-1} \mid \sum_{i=1}^{n-1} \ell_{i} z_{i}=\ell_{n} e_{1}\right\}
$$

where $e_{1}=(1,0, \ldots, 0)$ is the first vector of the standard basis e_{1}, \ldots, e_{d} of \mathbb{R}^{d}. An element of $\mathcal{C}_{d}^{n}(\ell)$, called a chain, can be visualised as a configuration of $(n-1)$-segments in \mathbb{R}^{d}, of length $\ell_{1}, \ldots, \ell_{n-1}$, joining the origin to $\ell_{n} e_{1}$. The vector ℓ is called the length vector.

The group $O(d-1)$, viewed as the subgroup of $O(d)$ stabilising the first axis, acts naturally (on the left) upon $\mathcal{C}_{d}^{n}(\ell)$. The quotient $S O(d-1) \backslash \mathcal{C}_{d}^{n}(\ell)$ is the polygon space \mathcal{N}_{d}^{n}, usually defined as

$$
\mathcal{N}_{d}^{n}(\ell)=S O(d) \backslash\left\{z \in\left(S^{d-1}\right)^{n} \mid \sum_{i=1}^{n} \ell_{i} z_{i}=0\right\}
$$

When $d=2$ the space of chains $\mathcal{C}_{2}^{n}(\ell)$ coincides with the polygon space $\mathcal{N}_{2}^{n}(\ell)$. Descriptions of several chain and polygon spaces are provided in [8] (see also [7] for a classification of $\mathcal{C}_{d}^{4}(\ell)$).

A length vector $\ell \in \mathbb{R}_{>0}^{n}$ is generic if $\mathcal{C}_{1}^{n}(\ell)=\emptyset$, that is to say there is no collinear chain. It is proven in e.g. [7] that, for ℓ generic, $\mathcal{C}_{d}^{n}(\ell)$ is a smooth closed manifold of dimension

$$
\operatorname{dim} \mathcal{C}_{d}^{n}(\ell)=(n-2)(d-1)-1
$$

Another known fact is that if $\ell, \ell^{\prime} \in \mathbb{R}_{>0}^{n}$ satisfy

$$
\left(\ell_{1}^{\prime}, \ldots, \ell_{n-1}^{\prime}, \ell_{n}^{\prime}\right)=\left(\ell_{\sigma(1)}, \ldots, \ell_{\sigma(n-1)}, \ell_{n}\right)
$$

for some permutation σ of $\{1, \ldots, n-1\}$, then $\mathcal{C}_{d}^{n}\left(\ell^{\prime}\right)$ and $\mathcal{C}_{d}^{n}(\ell)$ are $O(d-1)$ equivariantly diffeomorphic, see $[8,1.5]$.

A length vector $\ell \in \mathbb{R}_{>0}^{n}$ is ordered if $\ell_{1} \leq \ell_{2} \leq \ldots \leq \ell_{n}$.
A length vector $\ell \in \mathbb{R}_{>0}^{n}$ is dominated if $\ell_{i} \leq \ell_{n}$ for all $i=1, \ldots, n-1$.
The goal of this paper is to show that for $d \geq 3$ the diffeomorphism types of spaces $\mathcal{C}_{d}^{n}(\ell)$ (for ℓ generic and dominated) are in one-to-one correspondence with some pure combinatorial objects, described below.

Theorem A. Let $d \in \mathbb{N}, d \geq 3$. Then, the following properties of generic and dominated length vectors $\ell, \ell^{\prime} \in \mathbb{R}_{>0}^{n}$ are equivalent:
(a) $\mathcal{C}_{d}^{n}(\ell)$ and $\mathcal{C}_{d}^{n}\left(\ell^{\prime}\right)$ are $O(d-1)$-equivariantly diffeomorphic.
(b) $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ and $H^{*}\left(\mathcal{C}_{d}^{n}\left(\ell^{\prime}\right) ; \mathbb{Z}\right)$ are isomorphic as graded rings.
(c) $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}_{2}\right)$ and $H^{*}\left(\mathcal{C}_{d}^{n}\left(\ell^{\prime}\right) ; \mathbb{Z}_{2}\right)$ are isomorphic as graded rings.

Moreover, if the vectors ℓ and ℓ^{\prime} are ordered ${ }^{1}$, then the above conditions are equivalent to:
(d) For a subset $J \subset\{1, \ldots, n\}$ the inequality

$$
\sum_{i \in J} \ell_{i}<\sum_{i \notin J} \ell_{i}
$$

holds if and only if

$$
\sum_{i \in J} \ell_{i}^{\prime}<\sum_{i \notin J} \ell_{i}^{\prime} .
$$

The equivalence (a) \sim (d) means that the topology of the chain space $\mathcal{C}_{d}^{n}(\ell)$ determines the length vector ℓ, up to certain combinatorial equivalence.

In the case $d=2$ we do not know if (c) \Rightarrow (a) although the equivalences (a) $\sim(\mathrm{b}) \sim(\mathrm{d})$ are true. This is related to a conjecture of K. Walker [13] who suggested that planar polygon spaces are determined by their integral cohomology rings. The conjecture was proven for a large class of length vectors in [4] and the (difficult) remaining cases were settled in [11]. The spatial polygon spaces \mathcal{N}_{3}^{n} are also determined up to diffeomorphism by their mod2-cohomology ring if $n>4$, see [4, Theorem 3]. No such result is known for \mathcal{N}_{d}^{n} when $d>3$.

One may interpret Theorem A as follows. Consider the simplex $A^{n-1} \subset$ \mathbb{R}^{n} of dimension $n-1$ given by the inequalities

$$
0<\ell_{1}<\ldots<\ell_{n-1}<\ell_{n}=1
$$

and the hyperplanes $H_{J} \subset \mathbb{R}^{n}$ defined by the equations

$$
\sum_{i \in J} \ell_{i}=\sum_{i \notin J} \ell_{i},
$$

for all possible subsets $J \subset\{1, \ldots, n\}$. The connected components of the complement $A^{n-1}-\cup_{J} H_{J}$ are called chambers. Theorem A implies that for a fixed $d \geq 3$ the manifolds $\mathcal{C}_{d}^{n}(\ell)$ and $\mathcal{C}_{d}^{n}\left(\ell^{\prime}\right)$, where $\ell, \ell^{\prime} \in\left(A^{n-1}-\cup_{J} H_{J}\right)$, are equivariantly diffeomorphic if and only if the vectors ℓ and ℓ^{\prime} lie in the same chamber. Thus we obtain a one-to-one correspondence between the

[^0]chambers and the equivariant diffeomorphism types of the manifolds $\mathcal{C}_{d}^{n}(\ell)$ for generic length vectors $\ell \in A^{n-1}$.

The number c_{n} of chambers in A^{n-1} grows fast with the number of parameters n. It was established in [10] that $c_{3}=2, c_{4}=3, c_{5}=7, c_{6}=21$, $c_{7}=135, c_{8}=2470$ and $c_{9}=175428$.

We now give the scheme of the proof of Theorem A. We first recall that the $O(d-1)$-diffeomorphism type of $\mathcal{C}_{d}^{n}(\ell)$ is determined by d and the sets of ℓ-short (or long) subsets, which play an important role all along this paper. A subset J of $\{1, \ldots, n\}$ is ℓ-short, or just short, if

$$
\sum_{i \in J} \ell_{j}<\sum_{i \notin J} \ell_{j} .
$$

The reverse inequality defines long (or ℓ-long) subsets. Observe that ℓ is generic if and only if any subset of $\{1, \ldots, n\}$ is either short or long.

The family of subsets of $\{1, \ldots, n\}$ which are long is denoted by $\mathcal{L}=\mathcal{L}(\ell)$. Short subsets form a poset under inclusion, which we denote by $\mathcal{S}=\mathcal{S}(\ell)$. We are interested in the subposet

$$
\begin{equation*}
\dot{\mathcal{S}}=\dot{\mathcal{S}}(\ell)=\{J \subset\{1, \ldots, n-1\} \mid J \cup\{n\} \in \mathcal{S}\} . \tag{1}
\end{equation*}
$$

The following lemma is proven in [8, Lemma 1.2] (this reference uses the poset $\mathcal{S}_{n}(\ell)=\{J \in \mathcal{S} \mid n \in J\}$ which is determined by $\left.\dot{\mathcal{S}}(\ell)\right)$.

Lemma 0.1. Let $\ell, \ell^{\prime} \in \mathbb{R}_{>0}^{n}$ be generic length vectors. Suppose that $\dot{\mathcal{S}}(\ell)$ and $\dot{\mathcal{S}}\left(\ell^{\prime}\right)$ are isomorphic as simplicial complexes. Then $\mathcal{C}_{d}^{m}(\ell)$ and $\mathcal{C}_{d}^{m}\left(\ell^{\prime}\right)$ are $O(d-1)$-equivariantly diffeomorphic.

Lemma 0.1 gives the implication (d) \Rightarrow (a) in Theorem A.
Note that $H^{*}\left(\mathcal{C}_{d}^{n} ; \mathbb{Z}_{2}\right)=0$ if and only if $\mathcal{C}_{d}^{n}=\emptyset$, which happens if and only if $\{n\}$ is long. We can thus suppose that $\{n\}$ is short and hence $\dot{\mathcal{S}}(\ell)$ is determined by its subposet

$$
\begin{equation*}
\tilde{\mathcal{S}}=\tilde{\mathcal{S}}(\ell)=\dot{\mathcal{S}}(\ell)-\{\emptyset\} . \tag{2}
\end{equation*}
$$

The poset $\tilde{\mathcal{S}}$ is an abstract simplicial complex (as a subset of a short subset is short) with vertex set contained in $\{1, \ldots, n-1\}$. To prove Theorem A, it then suffices to show that the graded ring $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}_{2}\right)$ determines $\tilde{\mathcal{S}}(\ell)$ when ℓ is dominated.

For a finite simplicial complex Δ whose vertex set $V(\Delta)$ is contained in $\{1, \ldots, n\}$, consider the graded ring

$$
\Lambda(\Delta)=\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(\Delta)
$$

where $\mathcal{I}(\Delta)$ is the ideal of the polynomial ring $\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n}\right]$ generated by X_{i}^{2} and the monomials $X_{j_{1}} \cdots X_{j_{k}}$ when $\left\{j_{1}, \ldots, j_{k}\right\}$ is not a simplex of Δ. Let Δ and Δ^{\prime} be two finite simplicial complexes with vertex sets contained in $\{1, \ldots, n\}$. By a result of J. Gubeladze, any graded ring isomorphism $\Lambda(\Delta) \approx$ $\Lambda\left(\Delta^{\prime}\right)$ is induced by a simplicial isomorphism $\Delta \approx \Delta^{\prime}$ (see [6, Example 3.6]; for more details, see [4, Theorem 8]). Hence, the implication (c) \Rightarrow (d) of Theorem A will be established if we prove the following result:

Theorem B. Let $\ell \in \mathbb{R}_{>0}^{n}$ be a generic dominated length vector. When $d \geq 3$, the subring $H^{(d-1) *}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}_{2}\right)$ of $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}_{2}\right)$ is isomorphic to $\Lambda(\tilde{\mathcal{S}}(\ell))$.

The implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$ follows since under the condition that ℓ is dominated, $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ is torsion free, see Theorem 2.1. Note also Remark 2.2 which shows that the condition that ℓ is dominated is necessary.

The proof of Theorem B is given in Section 4. The preceding sections are preliminaries for this goal. For instance, the computation of $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ as a graded abelian group, is given in Theorem 2.1.

1 Robot arms in \mathbb{R}^{d}

Let

$$
\mathbb{S}=\mathbb{S}_{d}^{n}=\left\{\rho:\{1, \ldots, n\} \rightarrow S^{d-1}\right\} \approx\left(S^{d-1}\right)^{n}
$$

By post-composition, the orthogonal group $O(d)$ acts smoothly on the left upon \mathbb{S}. In $[5, \S 4-5]$, the quotient $W=S O(2) \backslash \mathbb{S}_{2}^{n} \approx\left(S^{1}\right)^{n-1}$ is used to get cohomological informations about \mathcal{C}_{2}^{n}. In this section, we extend these results for $d>2$. The quotient $S O(d) \backslash \mathbb{S}_{d}^{n}$ is no longer a convenient object to work with, so we replace it by the fundamental domain for the $O(d)$-action given by the submanifold

$$
Z=Z_{d}^{n}=\left\{\rho \in \mathbb{S} \mid \rho(n)=-e_{1}\right\} \approx\left(S^{d-1}\right)^{n-1}
$$

Observe that Z inherits an action of $O(d-1)$.

For a length vector $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{R}_{>0}^{n}$ the ℓ-robot arm is the smooth map $\tilde{F}_{\ell}: \mathbb{S} \rightarrow \mathbb{R}^{d}$ defined by

$$
\tilde{F}_{\ell}(\rho)=\sum_{i=1}^{n} \ell_{i} \rho(i)
$$

Observe that the point $\rho \in \mathcal{C}_{d}^{4}$ in the above figure lies in Z. We also define an $O(d)$-invariant smooth map $\tilde{f}_{\ell}: \mathbb{S} \rightarrow \mathbb{R}$ by

$$
\tilde{f}_{\ell}(\rho)=-\left|F_{\ell}(\rho)\right|^{2}
$$

The restrictions of \tilde{F} and \tilde{f} to Z are denoted by F and f respectively. Observe that

$$
\mathcal{C}=\mathcal{C}_{d}^{n}(\ell)=f^{-1}(0) \subset Z .
$$

Define

$$
\mathbb{S}^{\prime}=\mathbb{S}-\mathcal{C} \text { and } Z^{\prime}=Z-\mathcal{C}
$$

The restriction of \tilde{f} and f to \mathbb{S}^{\prime} and Z^{\prime} are denoted by \tilde{f}^{\prime} and f^{\prime} respectively.
Denote by $\operatorname{Crit}(g)$ be the subspace of critical points of a real value map g. One has $\operatorname{Crit}(\tilde{f})=\mathcal{C} \dot{\cup} \operatorname{Crit}\left(\tilde{f}^{\prime}\right)$ and $\operatorname{Crit}(f)=\mathcal{C} \dot{\cup} \operatorname{Crit}\left(f^{\prime}\right)$, where $\dot{\cup}$ denotes the disjoint union. It is easy and well known that $\rho \in \operatorname{Crit}\left(\tilde{f}^{\prime}\right)$ if and only if ρ is a collinear configuration, i.e. $\rho(i)= \pm \rho(j)$ for all $i, j \in\{1, \ldots, n\}$.

We will index the critical points of f^{\prime} and f^{\prime} by the long subsets. For each $J \in \mathcal{L}$, let $\operatorname{Crit}_{J}\left(\tilde{f}^{\prime}\right) \subset \operatorname{Crit}\left(\tilde{f}^{\prime}\right)$ be defined by

$$
\operatorname{Crit}_{J}\left(\tilde{f}^{\prime}\right)=\left\{\rho \in \mathbb{S} \mid \kappa_{J}(j) \rho(j)=\kappa_{J}(i) \rho(i) \text { for all } i, j \in\{1, \ldots, n\}\right\} .
$$

where $\kappa_{J}:\{1, \ldots, n\} \rightarrow\{ \pm 1\}$ the multiplicative characteristic function of J, defined by:

$$
\kappa_{J}(i)= \begin{cases}-1 & \text { if } i \in J \\ 1 & \text { if } i \notin J .\end{cases}
$$

In particular, $\kappa_{\bar{J}}=-\kappa_{J}$ if \bar{J} is the complement of J in $\{1, \ldots, n\}$. In words, $\operatorname{Crit}_{J}\left(\tilde{f}^{\prime}\right)$ is the space of collinear configurations ρ which take constant values on J and \bar{J} and such that $\rho(J)=-\rho(\bar{J})$. The space $\operatorname{Crit}_{J}\left(\tilde{f}^{\prime}\right)$ is a submanifold of \mathbb{S} diffeomorphic, via \tilde{F}, to the sphere in \mathbb{R}^{d} of radius $\sum_{j \in J} \ell_{j}-\sum_{j \notin J} \ell_{j}$ (this number is positive since J is long). One has

$$
\operatorname{Crit}\left(\tilde{f}^{\prime}\right)=\bigcup_{J \in \mathcal{L}} \operatorname{Crit}_{J}\left(\tilde{f}^{\prime}\right)
$$

The $O(d)$-invariance of \tilde{f}^{\prime} has two consequences: each sphere $\operatorname{Crit}_{J}\left(\tilde{f}^{\prime}\right)$ intersects Z transversally in the single point ρ_{J} and $\operatorname{Crit}\left(f^{\prime}\right)=\operatorname{Crit}\left(\tilde{f}^{\prime}\right) \cap Z$. Hence

$$
\begin{equation*}
\operatorname{Crit}\left(f^{\prime}\right)=\left\{\rho_{J} \mid J \in \mathcal{L}\right\} \tag{3}
\end{equation*}
$$

(note that $\rho_{J} \notin \mathcal{C}$ as ℓ is generic). As $\rho(n)=-e_{1}$ if $\rho \in Z$, the critical points ρ_{J} are of two types, depending on $n \in J$ or not:

$$
\rho_{J}(i)=\left\{\begin{align*}
\kappa_{J}(i) e_{1} & \text { if } n \in J \tag{4}\\
-\kappa_{J}(i) e_{1} & \text { if } n \notin J .
\end{align*}\right.
$$

Lemma 1.1. The map $f^{\prime}: Z^{\prime} \rightarrow(-\infty, 0)$ is a proper Morse function with set of critical points $\left\{\rho_{J} \mid J \in \mathcal{L}\right\}$. The index of ρ_{J} is $(d-1)(n-|J|)$.

Proof. Because f^{\prime} extends to $f:(Z, \mathcal{C}) \rightarrow((-\infty, 0], 0)$, the map f^{\prime} is proper. We already described $\operatorname{Crit}\left(f^{\prime}\right)$ in (3). The non-degeneracy of ρ_{J} and the computation of its index are classical in topological robotics using arguments as in [7, proof of Theorem 3.2].

Consider the axial involution $\hat{\tau}$ on $\mathbb{R}^{d}=\mathbb{R} \times \mathbb{R}^{d-1}$ defined by $\hat{\tau}(x, y)=$ $(x,-y)$. It induces an involution τ on \mathbb{S} and on Z. The maps \tilde{f} and f are τ-invariant. Moreover, the critical set of $f^{\prime}: Z^{\prime} \rightarrow(-\infty, 0)$ coincides with the fixed point set Z^{τ}. By Lemma 1.1 and [5, Theorem 4], this proves the following

Lemma 1.2. The Morse function $f^{\prime}: Z^{\prime} \rightarrow(-\infty, 0)$ is \mathbb{Z}-perfect, in the sense that $H_{i}\left(Z^{\prime}\right)$ is free abelian of rank equal to the number of critical points of index i. Moreover, the induced map $\tau_{*}: H_{i}\left(Z^{\prime}\right) \rightarrow H_{i}\left(Z^{\prime}\right)$ is multiplication by $(-1)^{i}$.
(Theorem 4 of [5] is stated for a Morse function $f: M \rightarrow \mathbb{R}$ where M is a compact manifold with boundary. To use it in the proof of Lemma 1.2, just replace Z^{\prime} by $Z-N$ where N is a small open tubular neighbourhood of \mathcal{C}.)

We now represent a homology basis for Z and Z^{\prime} by convenient closed manifolds. For $J \subset\{1, \ldots, n\}$, define

$$
\mathbb{S}_{J}=\{\rho \in \mathbb{S}| | \rho(J) \mid=1\}
$$

(the condition $|\rho(J)|=1$ is another way to say that ρ is constant on J). The space \mathbb{S}_{J} is a closed submanifold of \mathbb{S} diffeomorphic to $\left(S^{d-1}\right)^{n-|J|+1}$. As it is $O(d)$-invariant, it intersects Z transversally. Let

$$
W_{J}=\mathbb{S}_{J} \cap Z \approx\left(S^{d-1}\right)^{n-|J|} .
$$

The manifold W_{J} is $O(d-1)$-invariant and then is τ-invariant. As in Formula (4), the dichotomy " $n \in J$ or not" occurs:

$$
W_{J}= \begin{cases}\left\{\rho \in Z \mid \rho(J)=-e_{1}\right\} & \text { if } n \in J \tag{5}\\ \{\rho \in Z| | \rho(J) \mid=1\} & \text { if } n \notin J .\end{cases}
$$

We denote by $\left[W_{J}\right] \in H_{(d-1)(n-|J|)}(Z ; \mathbb{Z})$ the class represented by W_{J} (for some chosen orientation of W_{J}). If J is long, then $W_{J} \subset Z^{\prime}$ and we also denote by $\left[W_{J}\right]$ the class represented by W_{J} in $H_{(d-1)(n-|J|)}\left(Z^{\prime} ; \mathbb{Z}\right)$.

Lemma 1.3. (a) $H_{*}\left(Z^{\prime} ; \mathbb{Z}\right)$ is freely generated by the classes $\left[W_{J}\right]$ for $J \in$ \mathcal{L}.
(b) $H_{*}(Z ; \mathbb{Z})$ is freely generated by the classes $\left[W_{J}\right]$ for all $J \in\{1, \ldots, n\}$ with $n \in J$.

Proof. For (a), we invoke [5, Theorem 5]. Indeed, the the collection of τ invariant manifolds $\left\{W_{J} \mid J \in \mathcal{L}\right\}$ satisfies all the hypotheses of this theorem (see also [5, Lemma 8]).

Let $K=\{1, \ldots, n-1\}$. The restriction of $\rho \in Z$ to K gives a diffeomorphism from $h: Z \xrightarrow{\approx} \mathbb{S}_{K} \approx\left(S^{d-1}\right)^{n-1}$. By the Künneth formula, $H_{*}\left(\mathbb{S}_{K} ; \mathbb{Z}\right)$ is freely generated by the classes $\left[W_{I}\right]$ for all $I \subset K$. If $n \in J, h\left(W_{J}\right)=W_{J-\{n\}}$, which proves (b).

Let $J, J^{\prime} \subset\{1, \ldots, n\}$. When $|J|+\left|J^{\prime}\right|=n+1$, one has $\operatorname{dim} W_{J}+$ $\operatorname{dim} W_{J^{\prime}}=\operatorname{dim} Z=\operatorname{dim} Z^{\prime}$ and the intersection number $\left[W_{J}\right] \cdot\left[W_{J^{\prime}}\right] \in \mathbb{Z}$ is defined (intersection in Z). We shall use the following formulae.

Lemma 1.4. $J, J^{\prime} \subset\{1, \ldots, n\}$ with $|J|+\left|J^{\prime}\right|=n+1$. Then

$$
\left[W_{J}\right] \cdot\left[W_{J^{\prime}}\right]= \begin{cases} \pm 1 & \text { if }\left|J \cap J^{\prime}\right|=1 \\ 0 & \text { if }\left|J \cap J^{\prime}\right|>1 \text { and } n \in J \cup J^{\prime}\end{cases}
$$

Proof. Suppose that $J \cap J^{\prime}=\{q\}$. Then $\left|J \cup J^{\prime}\right|=|J|+\left|J^{\prime}\right|-\left|J \cap J^{\prime}\right|=n$. Then, $n \in J \cup J^{\prime}$ and $W_{J} \cap W_{J^{\prime}}$ consists of the single point $\rho_{J \cup J^{\prime}}$ (satisfying $\rho_{J \cup J^{\prime}}(i)=-e_{1}$ for all $\left.i \in\{1, \ldots, n\}\right)$. It is not hard to check that the intersection is transversal (see [5, proof of (34)]), so $\left[W_{J}\right] \cdot\left[W_{J^{\prime}}\right]= \pm 1$.

In the case $\left|J \cap J^{\prime}\right|>1$, there exists $q \in J \cap J^{\prime}$ with $q \neq n$. Let α be a rotation of \mathbb{R}^{d} such that $\alpha\left(e_{1}\right) \neq e_{1}$. Let $h: Z \rightarrow Z$ be the diffeomorphism such that $h(\rho)(k)=\rho(k)$ if $k \neq q$ and $h(\rho)(q)=\alpha \circ \rho(q)$. We now use that $n \in J \cup J^{\prime}$, say $n \in J^{\prime}$. Then, $\rho(q)=-e_{1}$ for $\rho \in W_{J^{\prime}}$. Hence, $h\left(W_{J}\right) \cap W_{J^{\prime}}=\emptyset$. As h is isotopic to the identity of Z, this implies that $\left[W_{J}\right] \cdot\left[W_{J^{\prime}}\right]=0$.

Remark 1.5. In Lemma 1.4, the hypothesis $n \in J \cup J^{\prime}$ is not necessary if d is even, by the above proof, since there exists a diffeomorphism of S^{d-1} isotopic to the identity and without fixed point. But, for example, if $n=d=3$, one checks that $\left[W_{J}\right] \cdot\left[W_{J^{\prime}}\right]= \pm 2$ for $J=J^{\prime}=\{1,2\}$.

In the case $n \in J \cap J^{\prime}$ and $|J|+\left|J^{\prime}\right|=n+1$, Lemma 1.4 takes the following form:

$$
\left[W_{J}\right] \cdot\left[W_{J^{\prime}}\right]= \begin{cases} \pm 1 & \text { if } J \cap J^{\prime}=\{n\} \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Therefore, the basis $\left\{\left[W_{J}\right]||J|=n-k, n \in J\}\right.$ of $H_{k(d-1)}(Z ; \mathbb{Z})$ has a dual basis (up to sign) $\left\{\left[W_{J}\right]^{\sharp} \in H_{(n-k)(d-1)}(Z ; \mathbb{Z})| | J \mid=n-k, n \in J\right\}$ for the intersection form, defined by $\left[W_{J}\right]^{\sharp}=\left[W_{K}\right]$, where $K=\bar{J} \cup\{n\}$.

We are now in position to express the homomorphism $\phi_{*}: H_{*}\left(Z^{\prime} ; \mathbb{Z}\right) \rightarrow$ $H_{*}(Z ; \mathbb{Z})$ induced by the inclusion $Z^{\prime} \subset Z$. By Lemma 1.3 , one has a direct sum decomposition

$$
H_{*}\left(Z^{\prime} ; \mathbb{Z}\right)=A_{*} \oplus B_{*},
$$

where

- A_{*} is the free abelian group generated by $\left[W_{J}\right]$ with $J \subset\{1, \ldots, n\}$ long and $n \in J$.
- B_{*} is the free abelian group generated by $\left[W_{J}\right]$ with $J \subset\{1, \ldots, n\}$ long and $n \notin J$.

Lemma 1.3 also gives a direct sum decomposition

$$
H_{*}(Z ; \mathbb{Z})=A_{*} \oplus C_{*}
$$

where

- A_{*} is the free abelian group generated by $\left[W_{J}\right]$ with $J \subset\{1, \ldots, n\}$ with $n \in J$ and J long.
- C_{*} is the free abelian group generated by $\left[W_{J}\right]$ with $J \subset\{1, \ldots, n\}$ with $n \in J$ and J short.

Lemma 1.6. (a) ϕ_{*} restricted to A_{*} coincides with the identity of A_{*}.
(b) Suppose that ℓ is dominated. Then $\phi_{*}\left(B_{*}\right) \subset A_{*}$.

Proof. Point (a) is obvious. For (b), let $\left[W_{J}\right] \in B_{(n-|J|)(d-1)}$. By what has been seen, it suffices to show that $\left[W_{J}\right] \cdot\left[W_{K}\right]^{\sharp}=0$ for all $\left[W_{K}\right] \in C_{*}$ with $|K|=|J|$. Suppose that there exists $\left[W_{K}\right] \in C_{*}$ with $|K|=|J|$ such that $\left[W_{J}\right] \cdot\left[W_{K}\right]^{\sharp}= \pm 1$. One has $\left[W_{K}\right]^{\sharp}=\left[W_{L}\right]$ where $L=\bar{K} \cup\{n\}$. By Lemma 1.4, this means that $J \cap(\bar{K} \cup\{n\})=J-K=\{i\}$, with $i<n$. As $|K|=|J|$, this is equivalent to $K=(J-\{i\}) \cup\{n\}$. As $\ell_{n} \geq \ell_{j}$, this contradicts the fact that J is long and K is short.

2 The Betti numbers of the chain space

Let $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a dominated length vector. Let $a_{k}=a_{k}(\ell)$ be the number of short subsets J containing n with $|J|=k+1$. Alternatively, a_{k} is the number of sets $J \in \dot{\mathcal{S}}$ with $|J|=k$.

Theorem 2.1. Let $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a dominated length vector. Then, if $d \geq 3, H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ is free abelian with rank

$$
\operatorname{rank} H^{k}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)= \begin{cases}a_{s} & \text { if } k=s(d-1), \quad s=0,1, \ldots, n-3 \\ a_{n-s-2} & \text { if } k=s(d-1)-1, \quad s=0, \ldots, n-2, \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let N be a closed tubular neighbourhood of $\mathcal{C}=\mathcal{C}_{d}^{n}(\ell)$ in $Z=Z_{d}^{n}$. Let $Z^{\prime}=Z-\mathcal{C}$. By Poincaré-Lefschetz duality and excision, one has the isomorphisms on integral homology

$$
H^{k}(\mathcal{C}) \approx H^{k}(N) \approx H_{(n-1)(d-1)-k}(N, \partial N) \approx H_{(n-1)(d-1)-k}\left(Z, Z^{\prime}\right)
$$

and

$$
\begin{aligned}
H^{k}(Z, \mathcal{C}) & \approx H^{k}(Z, N) \approx H^{k}(Z-\operatorname{int} N, \partial N) \\
& \approx H_{(n-1)(d-1)-k}(Z-\operatorname{int} N) \approx H_{(n-1)(d-1)-k}\left(Z^{\prime}\right)
\end{aligned}
$$

The homology of Z and Z^{\prime} are concentrated in degrees which are multiples of $(d-1)$. Hence, $H^{k}(\mathcal{C})=0$ if $k \not \equiv 0,-1 \bmod (d-1)$. The possibly nonvanishing $H^{k}(\mathcal{C})$ sit in a diagram

with $r=n-1-s$. The horizontal sequences are exact. The (co)homology is with integral coefficients and the diagram commutes up to sign [1, Theorem I.2.2].

We deduce that $H_{r(d-1)}\left(Z, Z^{\prime}\right) \approx$ coker $\phi_{r(d-1)}$ which is isomorphic to $C_{r(d-1)}$ by Lemma 1.6. Therefore, $H^{s(d-1)}\left(\mathcal{C}_{d}^{n}(\ell)\right)$ is free abelian with rank

$$
\operatorname{rank} H^{s(d-1)}\left(\mathcal{C}_{d}^{n}(\ell)\right)=\operatorname{rank} C_{(n-1-s)(d-1)}=a_{s}
$$

On the other hand, $H_{r(d-1)+1}\left(Z, Z^{\prime}\right) \approx \operatorname{ker} \phi_{r(d-1)}$ which, by Lemma 1.6 is isomorphic (though not equal, in general) to $B_{r(d-1)}$. Therefore, $H^{s(d-1)-1}\left(\mathcal{C}_{d}^{n}(\ell)\right)$ is free abelian with rank

$$
\operatorname{rank} H^{s(d-1)-1}\left(\mathcal{C}_{d}^{n}(\ell)\right)=\operatorname{rank} B_{(n-1-s)(d-1)}=a_{n-s-2}
$$

Remark 2.2. Theorem 2.1 is wrong if ℓ is not dominated. For example, let $\ell=(1,1,1, \varepsilon)$ with $\varepsilon<1$. Then, $\mathcal{C}_{d}^{4}(\ell)$ is diffeomorphic to the unit tangent bundle $T^{1} S^{d-1}$ of S^{d-1} : a map $g: \mathcal{C}_{d}^{4}(\ell) \rightarrow T^{1} S^{d-1}$ is given by $g(\rho)=(\rho(1), \hat{\rho}(2))$, where the latter is obtained from $(\rho(1), \rho(2))$ by the Gram-Schmidt orthonormalization process. The map g is clearly a diffeomorphism for $\varepsilon=0$ and the robot arm $F_{(1,1,1)}: \mathbb{S}_{d}^{3} \rightarrow \mathbb{R}^{d}$ of Section 1 has no critical value in the disk $\{|x|<1\} \subset \mathbb{R}^{d}$. In particular, $\mathcal{C}_{3}^{4}(\ell)$ is diffeomorphic to $S O(3)$, and thus $H^{2}\left(\mathcal{C}_{3}^{4}(\ell) ; \mathbb{Z}\right)=\mathbb{Z}_{2}$. What goes wrong is Point (b) of Lemma 1.6: for instance $A_{2}=0, B_{2}=H_{2}\left(Z, Z^{\prime}\right) \approx H^{2}(Z)=C_{2} \approx \mathbb{Z}^{3}$ and, by the proof of Theorem 2.1, $\phi: H^{2}\left(Z^{\prime}\right) \rightarrow H^{2}(Z)$ must be injective with cokernel \mathbb{Z}_{2}. To obtain this fine result with our technique would require to control the signs in Lemma 1.4.

3 The manifold $V_{d}(\ell)$

Let $\ell \in \mathbb{R}_{>0}^{n}$ be a length vector. In $[7,8]$, a manifold $V_{d}(\ell)$ is introduced, whose boundary is $\mathcal{C}=\mathcal{C}_{d}^{n}(\ell)$, and Morse Theory on $V_{d}(\ell)$ provides some information on \mathcal{C}. In this section, we further study the manifold $V_{d}(\ell)$ in order to compute the ring $H^{(d-1) *}(\mathcal{C})$ when $d \geq 3$.

Presented as a submanifold of $Z=Z_{d}^{n}$, the manifold $V_{d}(\ell)$ is

$$
V_{d}(\ell)=\left\{\rho \in Z \mid \sum_{i=1}^{n-1} \ell_{i} \rho(i)=t e_{1} \text { with } t \geq \ell_{n}\right\}
$$

Observe that $V_{d}(\ell)$ is $O(d-1)$-invariant. Let $g: V_{d}(\ell) \rightarrow \mathbb{R}$ defined by $g(z)=-\left|\sum_{i=1}^{n-1} \ell_{i} z_{i}\right|$. The following proposition is proven in [7, Th. 3.2].

Proposition 3.1. Suppose that the length vector $\ell \in \mathbb{R}_{>0}^{n}$ is generic. Then
(i) $V_{d}(\ell)$ is a smooth $O(d-1)$-submanifold of Z, of dimension $(n-2)(d-1)$, with boundary \mathcal{C}.
(ii) $g: V_{d}(\ell) \rightarrow \mathbb{R}$ is an $O(d-1)$-equivariant Morse function, with critical points $\left\{\rho_{J} \mid J\right.$ short and $\left.n \in J\right\}$ (see (4) for the definition of ρ_{J}). The index of ρ_{J} is equal to $(d-1)(|J|-1)$.

Corollary 3.2. The cohomology group $H^{*}\left(V_{d}(\ell) ; \mathbb{Z}\right)$ is free abelian and

$$
\operatorname{rank} H^{k}\left(V_{d}(\ell) ; \mathbb{Z}\right)= \begin{cases}a_{s} & \text { if } k=s(d-1) \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. The number of critical point of g is equal to a_{s}. Corollary 3.2 is then obvious if $d \geq 3$. When $d=2$, one uses [5 , Theorem 4], the Morse function g being τ-invariant and its critical set being the the fixed point set $V_{d}(\ell)^{\tau}$.

For each $J \subset\{1, \ldots, n-1\}$, define the submanifold $\mathcal{R}_{d}(J)$ of $Z_{d}^{n}=Z$ by

$$
\mathcal{R}_{d}(J)=\left\{\rho \in Z \mid \rho(i)=e_{1} \text { if } i \notin J\right\} \approx\left(S^{d-1}\right)^{J} .
$$

Consider the space

$$
\mathcal{R}_{d}(\ell)=\bigcup_{J \in \mathcal{\mathcal { S }}} \mathcal{R}_{d}(J) \subset Z
$$

As $\dot{\mathcal{S}}$ is a simplicial complex, the family $\left\{\left[\mathcal{R}_{d}(J)\right] \mid J \in \dot{\mathcal{S}}\right\}$ is a free basis for $H_{*}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}\right)$ (homology classes of $\mathcal{R}_{d}(J)$ in lower degrees coincide in $H_{*}\left(\mathcal{R}_{d}(\ell)\right)$ with $\left[\mathcal{R}_{d}\left(J^{\prime}\right)\right]$ for $\left.J^{\prime} \subset J\right)$. Thus, $H_{*}\left(\mathcal{R}_{d}(\ell)\right)$ is free abelian and

$$
\operatorname{rank} H_{k}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}\right)= \begin{cases}a_{s} & \text { if } k=s(d-1) \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

Lemma 3.3. For $d \geq 2$, there exists a map $\mu: \mathcal{R}_{d}(\ell) \rightarrow V_{d}(\ell)$ such that $H^{*} \mu: H^{*}\left(V_{d}(\ell) ; \mathbb{Z}\right) \rightarrow H^{*}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}\right)$ is a ring isomorphism.

Proof. Let $J \in \dot{\mathcal{S}}$. Elementary Euclidean geometry shows that, for $\rho \in$ $\mathcal{R}_{d}(J)$, there is a unique $\hat{\rho} \in V_{d}(\ell)$ satisfying the three conditions
(a) $\hat{\rho}(i)=\rho(i)$ if $i \in J$ and
(b) $|\hat{\rho}(\bar{J})|=1$, where $\bar{J}=\{1, \ldots, n-1\}-J$.
(c) $\left\langle\hat{\rho}(i), e_{1}\right\rangle>0$ if $i \in \bar{J}$.

This defines an embedding $\mu_{J}: \mathcal{R}_{d}(J) \rightarrow V_{d}(\ell)$ by $\mu_{J}(\rho)=\hat{\rho}$. An example is drawn below with $n=6$ and $J=\{1,2,3\}$ (the last segments $\ell_{n} \rho(n)=-\ell_{n} e_{1}$ of the configurations are not drawn).

We shall construct the map $\mu: \mathcal{R}_{d}(\ell) \rightarrow V_{d}(\ell)$ so that its restriction to $\mathcal{R}_{d}(J)$ is homotopic to μ_{J} for each $J \in \mathcal{S}$. Unfortunately, when $J \subset J^{\prime}$, the restriction of $\mu_{J^{\prime}}$ to $\mathcal{R}_{d}(J)$ is not equal to μ_{J} so the construction of μ requires some work.

For $J \in \dot{\mathcal{S}}$, consider the space of embeddings

$$
\mathfrak{N}_{J}=\left\{\alpha: \mathcal{R}_{d}(J) \rightarrow V_{d}(\ell) \mid \alpha(\rho) \text { satisfies (a) and (c) }\right\}
$$

We claim that \mathfrak{N}_{J} retracts by deformation onto its one-point subspace $\left\{\mu_{J}\right\}$. Indeed, let $\alpha \in \mathfrak{N}_{J}$ and let $\rho \in \mathcal{R}_{d}(\ell)$. For $J \in \dot{\mathcal{S}}$, consider the space

$$
A_{\rho}=\left\{\zeta: \bar{J} \rightarrow S^{d-1} \mid\left\langle\zeta(i), e_{1}\right\rangle>0 \text { and } \sum_{i \in J} \rho(i)+\sum_{i \in \bar{J}} \zeta(i)=\lambda e_{1} \text { with } \lambda>0\right\} .
$$

Obviously, $\alpha(\rho)_{\mid \bar{J}} \in A_{\rho}$. The space A_{ρ} is a submanifold of $\left(S^{d-1}\right)^{|\bar{J}|}$ which can be endowed with the induced Riemannian metric. The parameter λ provides a function $\lambda: A_{\rho} \rightarrow \mathbb{R}$. As usual, this is a Morse function with critical points the lined configurations $\zeta(i)= \pm \zeta(j)$. But, as $\left\langle\zeta(i), e_{1}\right\rangle>0$, the only critical point is a maximum, the restriction of $\mu_{J}(\rho)$ to J. Following the gradient line at constant speed thus produces a deformation retraction of A_{ρ} onto $\mu_{J}(\rho)_{\mid \bar{J}}$. The manifold A_{ρ} and its gradient vector field depending smoothly on ρ, this provides the required deformation retraction of \mathfrak{N}_{J} onto $\left\{\mu_{j}\right\}$.

Let $\mathcal{B} \mathcal{S}_{n}$ be the first barycentric subdivision of $\dot{\mathcal{S}}$. Recall that the vertices of $\mathcal{B} \mathcal{S}_{n}$ are the barycenters $\hat{J} \in|\dot{\mathcal{S}}|$ of the simplexes J of $\dot{\mathcal{S}}$, where $|\cdot|$ denotes the geometric realization. A family $\left\{\hat{J}_{0}, \ldots, \hat{J}_{k}\right\}$ of distinct barycenters forms a k-simplex $\sigma \in \mathcal{B} S_{n}$ if $J_{0} \subset J_{1} \subset \cdots \subset J_{k}$. Set $\min \sigma=J_{0}$. For $J \in \dot{\mathcal{S}}$, we also see \hat{J} as a point of $\left|\mathcal{B} \mathcal{S}_{n}\right|=|\dot{\mathcal{S}}|$.

Let us consider the quotient space:

$$
\begin{equation*}
\hat{\mathcal{R}}_{d}(\ell)=\coprod_{\sigma \in \mathcal{B} \mathcal{S}_{n}}|\sigma| \times \mathcal{R}_{d}(\min \sigma) / \sim, \tag{8}
\end{equation*}
$$

where $(t, \rho) \sim\left(t^{\prime}, \rho^{\prime}\right)$ if $\sigma<\sigma^{\prime}, t=t^{\prime} \in|\sigma| \subset\left|\sigma^{\prime}\right|$ and $\rho \mapsto \rho^{\prime}$ under the inclusion $\mathcal{R}_{d}(\min \sigma) \hookrightarrow \mathcal{R}_{d}\left(\min \sigma^{\prime}\right)$. The projections onto the first factors in (8) provide a map $q: \hat{\mathcal{R}}_{d} \rightarrow\left|\mathcal{B} \mathcal{S}_{n}\right|$ such that $q^{-1}(\hat{J})=\{\hat{J}\} \times \mathcal{R}_{d}(J) \approx \mathcal{R}_{d}(J)$. Over a 1-simplex $e=\left\{\{J\},\left\{J, J^{\prime}\right\}\right\}$ of $\mathcal{B} \mathcal{S}_{n}$, one has $q^{-1}(\{J\}) \approx \mathcal{R}_{d}(J)$, $q^{-1}\left(\left\{J^{\prime}\right\}\right) \approx \mathcal{R}_{d}\left(J^{\prime}\right)$ and $q^{-1}(|e|)$ is the mapping cylinder of the inclusion $\mathcal{R}_{d}(J) \hookrightarrow \mathcal{R}_{d}\left(J^{\prime}\right)$.

We now define a map $\hat{\mu}: \hat{\mathcal{R}}_{d} \rightarrow V_{d}(\ell)$ by giving its restriction

$$
\hat{\mu}^{k}: q^{-1}\left(\left|\mathcal{B S}_{d}(\ell)^{k}\right| \rightarrow V_{d}(\ell)\right.
$$

over the k-skeleton of $\mathcal{B} \mathcal{S}_{n}$. We proceed by induction on k. The restriction of $\hat{\mu}$ to $q^{-1}(\hat{J})=\mathcal{R}_{d}(J)$ is equal to $\mu_{J} \in \mathfrak{N}_{J}$. This defines $\hat{\mu}^{0}$. For an edge $e=\left\{\{J\},\left\{J, J^{\prime}\right\}\right\}$, we use that \mathfrak{N}_{J} is contractible, as seen above. The restriction of $\mu_{J^{\prime}}$ to $\mathcal{R}_{d}(J)$ is thus homotopic to μ_{J} and we can use a homotopy to extend $\hat{\mu}^{0}$ over $|e|$. Thus $\hat{\mu}^{1}$ is defined. Suppose that $\hat{\mu}^{k-1}$ is defined. Let
$\sigma=\left\{\hat{J}_{0}, \ldots, \hat{J}_{k}\right\}$ be a a k-simplex of $\mathcal{B} \mathcal{S}_{d}(\ell)$ with $\min \sigma=J_{0}$ and with boundary $\operatorname{Bd} \sigma$. As $\mathfrak{N}_{J_{0}}$ is contractible, the restriction of $\hat{\mu}^{k-1}$ to $q^{-1}(|\operatorname{Bd} \sigma|)$ extends to $q^{-1}(|\sigma|)$. This process permits us to define $\hat{\mu}^{k}$.

Now the projections to the second factors in (8) give rise to a surjective map $p: \hat{\mathcal{R}}_{d}(\ell) \rightarrow \mathcal{R}_{d}(\ell)$. Let $x \in \mathcal{R}_{d}(\ell)$. Let $J \in \dot{\mathcal{S}}$ minimal such that $x \in \mathcal{R}_{d}(J)$. Then

$$
p^{-1}(\{x\})=\left|\operatorname{Star}\left(\hat{J}, \mathcal{B} \mathcal{S}_{n}\right)\right| \times\{x\}
$$

is a contractible polyhedron. The preimages of points of p are then all contractible and locally contractible, which implies that p is a homotopy equivalence [12]. Using a homotopy inverse for p and the map $\hat{\mu}$, we get a map $\mu: \mathcal{R}_{d}(\ell) \rightarrow V_{d}(\ell)$.

For $J \in \dot{\mathcal{S}}$, let us compose μ_{J} with the inclusion β : $V_{d}(\ell) \hookrightarrow Z$. When $\rho \in \mathcal{R}_{d}(J)$, the common value $\hat{\rho}(i)$ for $i \notin J$ is not equal to $-\left(e_{1}, e_{1}, \ldots, e_{1}\right)$. Using arcs of geodesics in S^{d-1} enables us to construct a homotopy from $\beta \circ \mu_{J}$ to the inclusion of $\mathcal{R}_{d}(J)$ into Z. This implies that $H_{*} \mu: H_{*}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}\right) \rightarrow$ $H_{*}\left(V_{d}(\ell) ; \mathbb{Z}\right)$ is injective. By Corollary 3.2 and (7), $H_{*} \mu$ is an isomorphism. Hence, $H^{*} \mu: H^{*}\left(V_{d}(\ell) ; \mathbb{Z}\right) \rightarrow H^{*}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}\right)$ is a ring isomorphism.

Remark 3.4. When $d \geq 3$, Lemma 3.3 implies that $\mu: \mathcal{R}_{d}(\ell) \rightarrow V_{d}(\ell)$ is a homotopy equivalence, since the spaces under consideration are simply connected. We do not know if μ is also a homotopy equivalence when $d=2$.

4 Proof of Theorm B

Theorem B is a direct consequence of Propositions 4.1 and 4.3 below.
Proposition 4.1. Let $\ell \in \mathbb{R}_{>0}^{n}$ be a generic length vector which is dominated. Then the inclusion $\mathcal{C}_{d}^{n}(\ell) \subset V_{d}(\ell)$ induces an injective ring homomorphism

$$
\begin{equation*}
H^{*}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}\right) \approx H^{*}\left(V_{d}(\ell) ; \mathbb{Z}\right) \hookrightarrow H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right) \tag{9}
\end{equation*}
$$

When $d \geq 3$ its image is equal to the subring $H^{(d-1) *}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$.
Proof. By Theorem 2.1 and its proof, the homomorphism $H^{s(d-1)}\left(Z_{d}^{n} ; \mathbb{Z}\right) \rightarrow$ $H^{s(d-1)}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ induced by the inclusion is surjective and rank $H^{s(d-1)}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)=$ a_{s} (recall that $Z_{d}^{n}=Z$). As the inclusion $\mathcal{C}_{d}^{n}(\ell) \subset Z_{d}^{n}$ factors through $V_{d}(\ell)$ the homomorphism $H^{s(d-1)}\left(V_{d}(\ell) ; \mathbb{Z}\right) \rightarrow H^{s(d-1)}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ induced by the inclusion is also surjective. As $\operatorname{rank} H^{s(d-1)}\left(V_{d}(\ell) ; \mathbb{Z}\right)=a_{s}$ by Corollary 3.2, this proves the proposition.

Remark 4.2. Proposition 4.1 is wrong if ℓ is not dominated. For example, let $\ell=(1,1,1, \varepsilon)$ with $\varepsilon<1$. Then $a_{1}=3$, so $H^{d-1}\left(V_{d}(\ell) ; \mathbb{Z}\right) \approx \mathbb{Z}^{3}$. But, for $d=3$, we saw in Remark 2.2 that $H^{2}\left(\mathcal{C}_{3}^{4}(\ell) ; \mathbb{Z}\right)=\mathbb{Z}_{2}$.

As in the introduction, consider the polynomial ring $\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n-1}\right]$ with formal variables X_{1}, \ldots, X_{n-1}. If $J \subset\{1, \ldots, n-1\}$, we denote by $X_{J} \in \mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n-1}\right]$ the monomial $\prod_{j \in J} X_{j}$. Let $\mathcal{I}(\tilde{\mathcal{S}}(\ell))$ be the ideal of $\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n-1}\right]$ generated by the squares X_{i}^{2} of the variables and the monomials X_{J} for $J \notin \tilde{\mathcal{S}}(\ell)$ (non-simplex monomials).

Proposition 4.3. The ring $H^{*}\left(\mathcal{R}_{d}(\ell) ; \mathbb{Z}_{2}\right)$ is isomorphic to the quotient ring $\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n-1}\right] / \mathcal{I}(\tilde{\mathcal{S}}(\ell))$ (The degree of X_{i} being $d-1$).

Proof. The coefficients of the (co)homology groups are \mathbb{Z}_{2} and are omitted in the notation. Consider the inclusion $\beta: V_{d}(\ell) \hookrightarrow Z=Z_{d}^{n}$. The map $\rho \mapsto(\rho(1), \ldots, \rho(n-1))$ is a diffeomorphism from Z to $\left(S^{d-1}\right)^{n-1}$. Using this identification, the homology $H_{*}(Z)$ is the \mathbb{Z}_{2}-vector space with basis the classes $\left.\left[\mathcal{R}_{d}(I)\right)\right]$ for $I \subset\{1, \ldots, n-1\}$. (To compare with the basis of Lemma 1.3, the submanifolds $R_{d}(J)$ and $W_{\bar{J}}$ are isotopic, where \bar{J} is the complement of J in $\{1, \ldots, n\}$.) The homology $H_{*}\left(\mathcal{R}_{d}(\ell)\right)$ has basis $\left[\mathcal{R}_{d}(J)\right]$ for $J \in \tilde{\mathcal{S}}(\ell)$. The homomorphism $H_{*} \beta: H_{*}\left(\mathcal{R}_{d}(\ell)\right) \rightarrow H_{*}(Z)$ is induced by the inclusion of the above bases. Hence, $H_{j} \beta: H_{j}\left(\mathcal{R}_{d}(\ell)\right) \rightarrow H_{j}(Z)$ is injective and coker H_{j} is freely generated by the classes $\left[\mathcal{R}_{d}(J)\right]$ for $|J|=j$ and $J \notin \tilde{\mathcal{S}}(\ell)$.

In particular, the classes $\left[\mathcal{R}_{d}(\{i\})\right]$, for $i=1, \ldots, n-1$, form a basis of $H_{d-1}(Z)$. Let $\left\{\xi_{1}, \ldots, \xi_{n-1}\right\} \in H^{d-1}(Z)=\operatorname{hom}\left(H_{d-1}(Z), \mathbb{Z}_{2}\right)$ be the Kronecker dual basis. By the Künneth formula, the correspondence $X_{i} \mapsto \xi_{i}$ extends to a ring isomorphism $\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n-1}\right] \stackrel{\approx}{\rightrightarrows} H^{*}(Z)$. The the family of monomials $\left\{X_{J} \mid J \subset\{1, \ldots, n-1\}\right\}$ is sent to the the Kronecker dual basis to $\left\{\left[\mathcal{R}_{d}(J)\right] \mid J \subset\{1, \ldots, n-1\}\right\}$. The properties of $H_{*} \beta$ mentioned above then imply that the composed ring homomorphism

$$
\mathbb{Z}_{2}\left[X_{1}, \ldots, X_{n-1}\right] \stackrel{\approx}{\rightarrow} H^{*}(Z) \xrightarrow{H^{*} \beta} H^{*}\left(\mathcal{R}_{d}(\ell)\right)
$$

is surjective with kernel $\mathcal{I}(\tilde{\mathcal{S}}(\ell))$.
The proof of Theorem B is thus complete which, as seen in the introduction, implies Theorem A.

5 Comments

5.1. The authors are trying to unify the notations used for the various posets of short subsets. Our notation $\tilde{\mathcal{S}} \subset \dot{\mathcal{S}} \subset \mathcal{S}$ are identical to that of [11]. In [9], $\dot{\mathcal{S}}$ is denoted by \mathcal{S}_{n} but, in the more recent papers [10, 8], $\mathcal{S}_{n}=\{J \in \mathcal{S} \mid n \in$ $J\}$. This is not used here but could have been naturally in e.g. Theorem 2.1.
5.2. When $d=2$, Assertion (9) still holds true but not the last assertion of Proposition 4.1. The image $\mathcal{J}_{2}^{n}(\ell)$ of the homomorphism $H^{*}\left(V_{2}(\ell) ; \mathbb{Z}\right) \rightarrow$ $H^{*}\left(\mathcal{C}_{2}^{n}(\ell) ; \mathbb{Z}\right)$ induced by the inclusion is just some subring of $H_{(1)}^{*}\left(\mathcal{C}_{2}^{n}(\ell) ; \mathbb{Z}\right)$, where the latter denotes the subring of $H^{*}\left(\mathcal{C}_{2}^{n}(\ell) ; \mathbb{Z}\right)$ generated by the elements of degree 1 . For length vectors such that $\mathcal{J}_{2}^{n}(\ell)=H_{(1)}^{*}\left(\mathcal{C}_{2}^{n}(\ell) ; \mathbb{Z}\right)$, our proof of Theorem B (and then of Theorem A) holds. Such length vectors are called normal in [4].
5.3. The ring structure of $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}_{2}\right)$ is necessary to differentiate the chain spaces up to diffeomorphism: the Betti numbers are not enough. The first example occurs for $n=6$ with $\ell=(1,1,1,2,3,3)$ and $\ell^{\prime}=(\varepsilon, 1,1,1,2,2)$, where $0<\varepsilon<1$. (The chamber of ℓ is $\langle 632,64\rangle$ and that of ℓ^{\prime} is $\langle 641\rangle$, see [8, Table C].) Then, $\tilde{\mathcal{S}}(\ell)$ and $\tilde{\mathcal{S}}\left(\ell^{\prime}\right)$ are both graphs with 4 vertices and 3 edges. Therefore, $a_{s}(\ell)=a_{s}\left(\ell^{\prime}\right)$ for all s which, by Theorem 2.1, implies that $\mathcal{C}_{d}^{6}(\ell)$ and $\mathcal{C}_{d}^{6}\left(\ell^{\prime}\right)$ have the same Betti numbers. However, $\tilde{\mathcal{S}}(\ell)$ and $\tilde{\mathcal{S}}\left(\ell^{\prime}\right)$ are not poset isomorphic: the former is not connected while the latter is.
5.4. It would be interesting to know if, in Theorem A, the ring \mathbb{Z}_{2} could be replaced by any other coefficient ring. In the corresponding result for spatial polygon spaces $\mathcal{N}_{3}^{n}(\ell)$, which are distinguished by their \mathbb{Z}_{2}-cohomology rings if $n>4$ [4, Theorem 3], the ring \mathbb{Z}_{2} cannot be replaced by \mathbb{R}. Indeed, $\mathcal{N}_{3}^{5}(\varepsilon, 1,1,1,2) \approx \mathbb{C} P^{2} \sharp \overline{\mathbb{C}} P^{2}$ while $\mathcal{N}_{3}^{5}(\varepsilon, \varepsilon, 1,1,1) \approx S^{2} \times S^{2}(\varepsilon$ small; see [8, Table B]). These two manifolds have non-isomorphic \mathbb{Z}_{2}-cohomology rings but isomorphic real cohomology rings. One can of course replace \mathbb{Z}_{2} by \mathbb{Z} in Theorem A since, by Theorem 2.1, $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}\right)$ determines $H^{*}\left(\mathcal{C}_{d}^{n}(\ell) ; \mathbb{Z}_{2}\right)$ when ℓ is dominated.
5.5. We do not know if Theorem A is true for generic length vectors which are not dominated. The techniques developped in [3] might useful to study this more general case.
5.6. Let K be a flag simplicial complex (i.e. if K contains a graph L isomorphic to the 1 -skeleton of a r-simplex, then L is contained in a r-simplex
of $K)$. Then the complex $\mathcal{R}_{1}(K)$ is the Salvetti complex of the right-angled Coxeter group determined by the 1 -skeleton of K, see [2].

Acknowledgements: The second author would like to thank E. DrorFarjoun for useful discussions.

References

[1] W. Browder. "Surgery on simply connected manifolds". Springer-Verlag (1972).
[2] R. Charney. "An introduction to right-angled Artin groups" Geom. Dedicata 125 (2007) 141-158.
[3] M. Farber and V. Fromm, "Homology of planar telescopic linkages", Preprint, ArXiv:0909.3023.
[4] M. Farber, J-Cl. Hausmann and D. Schütz, "On a conjecture of Kevin Walker", Journal of Topology and Analysis 1 (2009) 65-86.
[5] M. Farber and D. Schütz, "Homology of planar polygon spaces", Geom. Dedicata 125 (2007) 75-92.
[6] J. Gubeladze, "The isomorphism problem for commutative monoid rings", Journal of Pure and Applied Algebra 129 (1998), 35-65.
[7] J.-C. Hausmann. "Sur la topologie des bras articulés", in Algebraic topology Poznań 1989, Springer Lectures Notes 1474 (1989), 146-159.
[8] J.-C. Hausmann. "Geometric descriptions of polygon and chain spaces". In Topology and robotics, Contemp. Math. 438 47-57, Amer. Math. Soc. (2007).
[9] J.-C. Hausmann and A. Knutson, "The cohomology rings of polygon spaces", Ann. Inst. Fourier (Grenoble) 48 (1998), 281-321.
[10] J.-C. Hausmann and E. Rodriguez, " The space of clouds in an Euclidean space" Experimental Mathematics. 13 (2004), 31-47.
[11] D. Schütz, "The isomorphism problem for planar polygon spaces", preprint (2009), arXiv:0906.4499.
[12] S. Smale, "A Vietoris mapping theorem for homotopy". Proc. Amer. Math. Soc., 8 (1957) 604-610.
[13] K. Walker "Configuration spaces of linkages". Bachelor's thesis, Princeton (1985).

[^0]: ${ }^{1}$ This can be achieved by a permutation of $\ell_{1}, \ldots, \ell_{n-1}$, see above.

