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Abstract. In this article we describe relations of the topology of closed
1-forms to the group theoretic invariants of Bieri-Neumann-Strebel-Renz.
Starting with a survey, we extend these Sigma invariants to finite CW-
complexes and show that many properties of the group theoretic version
have analogous statements. In particular we show the relation between
Sigma invariants and finiteness properties of certain infinite covering
spaces. We also discuss applications of these invariants to the Lusternik-
Schnirelmann category of a closed 1-form and to the existence of a non-
singular closed 1-form in a given cohomology class on a high-dimensional
closed manifold.

To S.P. Novikov on the occasion of his 70-th birthday

Introduction

The last three decades have seen a growing interest in the topology of closed
1-forms ever since S.P. Novikov [22, 23] introduced Morse theoretic tech-
niques to study classical problems in mathematical physics. In analogy to
the Morse-Smale complex of an ordinary Morse function on a closed man-
ifold, he constructed a chain complex, now called the Novikov complex,
associated to a closed 1-form whose singularities are non-degenerate in the
sense of Morse. While Novikov’s interest was to study such problems as
Kirchhoff type equations [23, 24, 25], other applications in different areas of
mathematics would soon become apparent. Gradient vector fields of closed
1-forms, for example, give rise to fascinating results in dynamical systems,
and some of the topics arising this way have been covered in a recent mono-
graph [12] and survey article [17].
Another quite surprising link has been made to geometric group theory,
when it became clear that the work of Sikorav [28], who applied Novikov
theory to symplectic topology, was closely related to the work of Bieri, Neu-
mann, Strebel and Renz [5, 6]. More specifically, the geometric invariants
Σk(G) of a group G, which contain important information on the finite-
ness properties of certain subgroups of G and whose definition is recalled
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in Section 1, can be described in terms of vanishing results of a generalized
Novikov homology.
The feature that combines these areas is that closed 1-forms represent coho-
mology classes ξ ∈ H1(X; R). If X is a smooth manifold this is a special case
of de Rham theory, and the first-named author has developed a theory of
closed 1-forms on topological spaces for which this result holds more gener-
ally, see [10]. Now if X is connected, H1(X; R) can be identified with the set
of homomorphisms Hom(π1(X),R), where R is considered as a group with
the usual addition. Indeed, the invariants Σk(G) can be viewed as subsets
of the unit sphere in Hom(G,R).
One purpose of this article is to describe these relations in a general setting,
and to develop the theory of Bieri-Neumann-Strebel-Renz using the language
of the topology of closed 1-forms. In particular, we extend the notion of
Sigma invariants to finite CW-complexes. These invariants Σk(X) for k ≥ 1
are defined as generalizations of the group theoretic versions, and they have
similar properties. This generalization is motivated by the fact that the
group theoretic invariants regularly occur in the topology of closed 1-forms.
For example, the condition ξ ∈ Σ2(π1(M)) appears implicitly in the work of
Latour [20] as a necessary condition for the existence of a non-singular closed
1-form in ξ ∈ H1(M ; R), where M is a high-dimensional closed manifold
(dimM ≥ 6). Another necessary condition of [20], which in fact implies
ξ ∈ Σ2(π1(M)), is the contractibility of a certain function space. It turns
out that contractibility of this space is equivalent to ξ ∈ Σk(M) for all k ≥ 1.
We remark that for compact 3-manifolds the condition ξ ∈ Σ1(π1(M)) is
sufficient for the existence of a non-singular closed 1-form representing ξ,
see [5].
Another property of these new Sigma invariants is that they reflect finiteness
properties of infinite abelian covering spaces q : X → X. By an abelian
covering we mean a regular covering with π1(X)/π1(X) an abelian group.
Denote

S(X,X) =
{

0 6= ξ : π1(X)→ R
∣∣∣ ξ|π1(X) = 0

}
.

Theorem. Let X be a finite connected CW-complex and q : X → X a
regular covering space with π1(X)/π1(X) abelian. For k ≥ 1, the following
properties are equivalent.

(1) X is homotopy equivalent to a CW-complex with finite k-skeleton.
(2) S(X,X) ⊂ Σk(X).

Furthermore, if S(X,X) ⊂ ΣdimX(X), then X is finitely dominated.

The proof of this theorem is given in Section 7.
A common feature in the definitions and techniques is the notion of mov-
ability of subsets of a space X. Here movability is meant with respect to
a closed 1-form ω representing a cohomology class ξ ∈ H1(X; R). Roughly,
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movability of a set A ⊂ X means that there is a homotopy H of A into
X starting with the inclusion and such that for every point a ∈ A the
integral of ω along the path t 7→ Ht(a) is large. While homological ver-
sions, using chain homotopies, of this appeared already in Bieri and Renz
[6, Thm.C], a topological version was formulated in a quite different con-
text in developing a Lusternik-Schnirelmann theory for closed 1-forms, see
[10, 11, 12, 13, 17]. Due to the similar nature one expects a closer relation,
which we derive in Section 4. A movability notion for homology classes is
developed in Section 8, which has applications to cup-length estimates for
the Lusternik-Schnirelmann theory of a closed 1-form.
This article is written as a companion to the recent survey article [17] which
was focussing on applications of closed 1-forms in dynamical systems. The
present paper contains a significant amount of new material, although parts
of it are also meant as a survey.

1. Bieri-Neumann-Strebel-Renz Invariants

Let G be a finitely generated group. We want to recall the definition of the
Bieri-Neumann-Strebel-Renz invariants Σk(G; Z), introduced in [5, 6]. We
denote

S(G) = (Hom(G,R)− {0})/R+,

that is, we identify nonzero homomorphisms, if one is a positive multiple of
the other. This is a sphere of dimension r − 1, where r denotes the rank
of the abelianization of G. We will identify S(G) with the unit sphere in
Hom(G,R) (after choosing an inner product on the latter) and simply write
ξ ∈ S(G).
Given ξ ∈ S(G), we denote

ZGξ =

∑
g∈G

ngg ∈ ZG

∣∣∣∣∣∣ ng = 0 for ξ(g) < 0

 ,

a subring of ZG.
We say that the trivial ZG-module Z is of type FPk over ZGξ, if there exists
a resolution

(1) . . . −→ Fi −→ Fi−1 −→ . . . −→ F0 −→ Z −→ 0

of Z by free ZGξ-modules with each Fi finitely generated for i ≤ k.

Definition 1. The Bieri-Neumann-Strebel-Renz invariants are now defined
as

Σk(G; Z) = {ξ ∈ S(G) |Z is of type FPk over ZGξ}.

The power of these invariants lies in the fact that they are closely related
to the finiteness properties of subgroups of G. Let us recall the relevant
finiteness properties.
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Definition 2. For k ≥ 1 a group G is of type FPk, if there is a resolution
(1) of Z by free ZG-modules with each Fi finitely generated for i ≤ k. Also,
we say that G is of type Fk, if there is an Eilenberg-MacLane space for G
with finite n-skeleton.

We get that G of type Fk implies type FPk by looking at the cellular chain
complex of the universal cover of the Eilenberg-MacLane space, and type
FP1 is equivalent to type F1 which simply means finitely generated. But
type FP2 does not imply finitely presented, as the examples of Bestvina
and Brady show [1]. For more information on these finiteness properties see
Brown [8] and Geoghegan [18].
Notice that ZG, when viewed as a ZGξ-module for any ξ, is a direct limit
of free ZGξ-modules. It is therefore a flat ZGξ-module. Furthermore, for
every ZG-module A we have ZG⊗ZGξA

∼= A. Thus if Σk(G; Z) 6= ∅ for some
k ≥ 1, we can apply ZG⊗ZGξ − to the resolution (1) for some ξ ∈ Σk(G; Z),
to get that G is itself of type FPk.
The following theorem, which we generalize in Section 7, relates finiteness
properties of certain subgroups to the invariants.

Theorem 1 (Bieri-Renz, [6]). Let G be a group of type FPk, N a subgroup of
G containing the commutator subgroup of G. Then N is of type FPk if and
only if Σk(G; Z) contains the subsphere S(G,N) = {ξ ∈ S(G) |N ≤ Ker ξ}.

There also exists a version of Theorem 1 which gives a criterion for N to
be of type Fk, involving a homotopical invariant Σk(G). We will see more
about this invariant below. Another result, proven in [6] is that all Σk(G; Z)
are open subsets of S(G).
In [5] it was shown that even the particular case k = 1 has very important
applications to group theory.

Theorem 2 (Bieri-Neumann-Strebel, [5]). Let G be a finitely presented
group without non-abelian free subgroups. Then

Σ1(G; Z) ∪ −Σ1(G; Z) = S(G).

Here −Σ1(G) denotes the image of Σ1(G) under the antipodal map.
We now want to give a more geometrical interpretation of these invariants,
for the moment we will confine ourselves to the case k = 1 and for simplicity
we will assume that G is finitely presented. Let X be a finite CW-complex
with π1(X) ∼= G and let q : X → X be the universal abelian covering.
Given a non-zero homomorphism ξ : G→ R we can build a map h : X → R
with h(gx) = ξ(g) + h(x) for all g ∈ G and x ∈ X by induction over the
skeleta of X. Note that G acts on X by covering transformations, with the
commutator subgroup acting trivially. Write N = h−1([0,∞)), then N need
not be connected, but has a unique component on which h is unbounded,
see [5, Lm.5.2]. In the result below we assume that the basepoint of N is
chosen in this component.
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Theorem 3 (Bieri-Neumann-Strebel, [5]). We have ξ ∈ Σ1(G; Z) if and
only if i# : π1(N) → π1(X) is an epimorphism, where i : N → X is the
inclusion.

This geometric criterion is closely related to a concept of movability of a
subset of X with respect to a given ξ and which has recently been studied in
connection with a Lusternik-Schnirelmann theory of such ξ, see [10, 12, 17].
Let us recall the definition of a closed 1-form on a topological space X.

Definition 3. A continuous closed 1-form ω on a topological space X is
defined as a collection {fU}U∈U of continuous real-valued functions fU :
U → R where U = {U} is an open cover of X such that for any pair
U, V ∈ U the difference

fU |U∩V − fV |U∩V : U ∩ V → R
is a locally constant function. Another such collection {gV }V ∈V (where V
is another open over of X) defines an equivalent closed 1-form if the union
collection {fU , gV }U∈U ,V ∈V is a closed 1-form, i.e., if for any U ∈ U and
V ∈ V the function fU − gV is locally constant on U ∩ V .

These closed 1-forms behave in the same way as smooth closed 1-forms on
manifolds; they can be integrated along paths γ : [a, b]→ X, and integration
along loops defines a homomorphism ξω : π1(X) → R. Furthermore, every
such homomorphism can be realized by a closed 1-form. See [17, §3] for
details.

Example 1. A continuous function f : X → S1 determines a closed 1-form
in the following way. Think of S1 as R/Z and let p : R → R/Z be the
projection. If I = (a, b) ⊂ R is an open interval with b − a ≤ 1, then I is
homeomorphic to the open subset p(I) ⊂ R/Z via p. The collection

ω =
{

(p|I)−1 ◦ f |f−1(p(I)) : f−1(p(I))→ I
}

then defines a closed 1-form. Furthermore, ξω : π1(X)→ R can be identified
with f# : π1(X)→ π1(S1), if the standard generator of π1(S1) is identified
with 1 ∈ R.

Definition 4. Let X be a finite connected CW-complex, G = π1(X) and
ω a closed 1-form on X. A subset A ⊂ X is called n-movable with respect
to ω and control C ≥ 0 (where n is an integer), if there is a homotopy
H : A× [0, 1]→ X such that H(a, 0) = a or all a ∈ A, and∫ H1(a)

a
ω ≥ n

and ∫ Ht(a)

a
ω ≤ −C

for all a ∈ A and t ∈ [0, 1]. Here the integral is taken over the path s 7→
H(a, s) for s ∈ [0, t].
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This notion of movability has its roots in the Lusternik-Schnirelmann theory
of a closed 1-form, compare [10, 17]. The next Proposition shows that it also
gives a criterion for Σ1(G; Z).

Proposition 1. Let X be a finite connected CW-complex, G = π1(X) and
ξ : G → R a homomorphism which is represented by a closed 1-form ω.
Then the following are equivalent.

(1) ξ ∈ Σ1(G; Z).
(2) There is a C ≥ 0 such that the 1-skeleton X(1) ⊂ X is n-movable

with respect to ω and control C for every n > 0.

Proof. (1) =⇒ (2): Let X be the universal abelian cover of X and h : X → R
be obtained from the pullback of ω to X. It is easy to see that we have
h(gx) = ξ(g) + h(x) for all x ∈ X and g ∈ G. We choose N = h−1([0,∞)),
and let N ′ ⊂ N be the component such that h is unbounded on N ′ by [5,
Lemma 5.2]. For every cell σ of X pick a lift σ̄ ⊂ h−1((−∞,−1]). If σ is a
0-cell, we can find a cellular map Hσ : [0, 1]→ X such that Hσ(0) = σ̄ and
Hσ(1) ∈ N ′. Here [0, 1] has the standard cell structure with two 0-cells and
one 1-cell. Using equivariance, this gives an equivariant cellular homotopy
H0 : X(0)×[0, 1]→ X. Note that G acts on X×[0, 1] by g(x, t) = (gx, t), and
H0 induces a homotopy on X(0) which gives 1-movability of the 0-skeleton.
As the image of H0

1 is in the 0-skeleton, we can iterate this homotopy to
obtain n-movability for any n > 0.
Now pick a cell σ̄ ⊂ h−1((−∞,−1]) for every 1-cell σ of X and let u, v be
the boundary points of σ̄. By possibly iterating H0, we can assume that
H0(u, 1), H0(v, ) ∈ N ′ and since N ′ is connected, we can find a cellular map
Hu,v : [0, 1]→ N ′ connecting these points.
Note that Hu,v([0, 1]), H0({u, v} × [0, 1]) and σ̄ combine to a closed loop
in X̃ when suitably oriented. But by Theorem 3 this loop is representable
by a loop in N ′. In other words, by changing the path Hu,v suitably in
N ′, we can assume that this loop bounds. Therefore we can extend H0 to
Hσ : (X(0) ∪ σ̄) × [0, 1] → X cellularly such that Hσ(σ̄, 1) = Hu,v([0, 1]).
Doing this for every 1-cell of X and extending equivariantly gives a cellular
and equivariant homotopy H1 : X(1) × [0, 1]→ X such that H1

0 is inclusion
and h(H1(x, 1))− h(x) ≥ 1.
Since H1 is equivariant we get a homotopy H : X(1) × [0, 1] → X which
shows that X(1) is 1-movable with respect to ω. By compactness there is
a C > 0 such that X(1) is 1-movable with control C. Again the image of
H1 is in the 1-skeleton of X, so we can iterate the homotopy. Note that
iterating the homotopy does not increase the control, so we get that X(1) is
n-movable with respect to ω with control C for every n > 0.
(2) =⇒ (1): Let h : X → R and N ′ ⊂ N = h−1([0,∞)) be as above. Pick a
basepoint x0 ∈ N ′ with f(x0) ≥ C + 1. Let γ : (S1, 1)→ (X̃, x0) be a loop
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which can be assumed cellular. By compactness of S1 there is a K ≤ 0 such
that γ(S1) ⊂ f−1([K,∞)).

By assumption there is a homotopy H̄ : X(1)×[0, 1]→ X with H̄0 is inclusion
and

h(H̄1(x))− h(x) ≥ C −K
h(H̄t(x))− h(x) ≥ −C

for all x ∈ X. Let µ : X̃ → [0, 1] be a map with µ|f−1([C + 1,∞)) ≡ 0
and µ|f−1((−∞, C]) ≡ 1. Now define A : S1 × [0, 1] → X̃ by A(x, t) =
H̄(γ(x), µ(γ(x)) · t). Then A(x, 0) = γ(x), A(x, 1) = H̄(γ(x), µ(γ(x))) ∈ N ′
and A(x0, t) = x0 for all t ∈ [0, 1]. Therefore ξ ∈ Σ1(G; Z) by Theorem
3. �

A criterion analogous to condition (2) of Proposition 1 leads to the homotopi-
cal version of the Bieri-Neumann-Strebel-Renz invariants Σk(G), introduced
in [6]. For this we assume that X is an Eilenberg-MacLane space with finite
n-skeleton for some n ≥ 1.

Definition 5. Let X be as above, ξ ∈ S(G), ω a closed 1-form on X
representing ξ and k ≥ 0. We say that ξ ∈ Σk(G), if there is ε > 0 and
a cellular homotopy H : X(k) × [0, 1] → X such that H(x, 0) = x for all
x ∈ X(k) and ∫

γx

ω ≥ ε

for all x ∈ X(k), where γx : [0, 1] → X is given by γx(t) = H(x, t). Here
X(k) denotes the k-skeleton of X.

The condition that H is cellular ensures that H1 has image in X(k), so that
the homotopy can be iterated. As a result we see that ε can be arbitrarily
large which shows that the definition does not depend on the particular ω.
These iterations all have the same control C ≥ 0. Using cellular approxi-
mations it is easy to see that condition (2) of Proposition 1 is equivalent to
ξ ∈ Σ1(G).
The above definition is not the usual definition of Σk(G), but it follows from
Proposition 2 below that it agrees with the definition given in Bieri and
Renz [6, §6].
Even though it is generally quite difficult to describe Σk(G) and Σk(G; Z),
there are some important classes of groups for which the Sigma invariants
can be determined, for example right-angled Artin groups, see [21], and
Thompson’s group F , see [4]. For more information and applications of
these invariants see, for example, [2, 3, 5, 6, 19].
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2. Sigma invariants for CW-complexes

There is no particular reason for X to be aspherical in Definition 5, so we
can extend this definition to more general X. For simplicity we will assume
that X is a finite connected CW-complex, but it is possible to consider the
case where X has finite n-skeleton for some n ≥ 1, in which case we can
define Σk(X) for k ≤ n. Let us first define

S(X) = (Hom(H1(X),R)− {0})/R+

where we again identify a homomorphism with its positive multiples. Clearly
S(X) = S(G) with G = π1(X).
The Sigma invariants for CW-complexes are now defined in analogy to Def-
inition 5.

Definition 6. Let X be a finite connected CW-complex, ξ ∈ S(X), ω a
closed 1-form on X representing ξ and k ≥ 0. We say that ξ ∈ Σk(X), if
there is ε > 0 and a cellular homotopy H : X(k) × [0, 1] → X such that
H(x, 0) = x for all x ∈ X(k) and∫

γx

ω ≥ ε

for all x ∈ X(k), where γx : [0, 1]→ X is given by γx(t) = H(x, t).

Let p : X̃ → X be the universal covering space. Just as in the smooth
manifold case, a closed 1-form ω pulls back to an exact form on X̃, p∗ω = dh
for some h : X̃ → R with

h(gx) = h(x) + ξ(g)(2)

for all g ∈ π1(X) and x ∈ X̃. A function h : X̃ → R with property (2)
is called a height function. Such a height function defines a closed 1-form
representing ξ. A subset N ⊂ X̃ is called a neighborhood of ∞ with respect
to ξ, if there exists a height function hξ : X̃ → R and a ∈ R such that

h−1
ξ ([a,∞)) ⊂ N.

It is easy to check that if N is a neighborhood of ∞ with respect to ξ for
some height function, it is also a neighborhood of ∞ with respect to ξ for
every other height function.
If a particular height function hξ is given, we write Ni = h−1

ξ ([i,∞)) for
every i ∈ R.
We can describe Σk(X) in terms of height functions alone. For this we need
one more definition.

Definition 7. Let X be a finite connected CW-complex, hξ : X̃ → R a
height function and ξ ∈ H1(X; R) be nonzero. A path to ∞ with respect to
ξ is a map γ : [0,∞) → X̃ such that for every neighborhood N of ∞ there
is a T ≥ 0 such that γ(t) ∈ N for all t ≥ T .
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Given a path γ to ∞ we can pick points γ(TN ) ∈ N for every neighborhood
N of ∞ and get an inverse system {π∗(X̃,N, γ(TN ))} where the basepoint
change is done via γ|[TN , TN ′ ]. We will often suppress the basepoints but we
want to point out that there is always a path to ∞ in the background. The
next proposition shows that the basepath is not important for our purposes.

Proposition 2. Let X be a finite connected CW-complex, ξ ∈ H1(X; R) be
nonzero and hξ : X̃ → R a height function. The following are equivalent.

(1) ξ ∈ Σk(X).
(2) There is a λ ≥ 0 such that j# : πl(X̃,Ni) → πl(X̃,Ni−λ) is trivial

for all l ≤ k and every i ∈ R.
(3) For every neighborhood N of ∞ with respect to ξ, there is another

neighborhood N ′ ⊂ N such that j# : πl(X̃,N ′)→ πl(X̃,N) is trivial
for all l ≤ k.

(4) There is an ε > 0 and an equivariant cellular homotopy H̃ : X̃(k) ×
[0, 1]→ X̃, such that H̃0 is inclusion and hξ(H̃1(x̃))− hξ(x̃) ≥ ε for
all x̃ ∈ X̃(k).

Proof. (1) ⇐⇒ (4) as we can lift H to H̃ and H̃ determines H. (2) =⇒
(3) is obvious. (3) =⇒ (4): We define H by induction on the skeleta of
X̃. The homotopy can always be defined on X̃(0) as X̃ is connected and ξ
nonzero. Assume that H : X̃(k−1)× [0, 1]→ X̃ satisfies the conclusion of (4).
Let N = N0 = h−1

ξ ([0,∞)) be a neighborhood of ∞ with respect to ξ and
N ′ ⊂ N as in (3), and choose a ε > 0. Choose a lift σ̃ ⊂ X̃ −N−ε for every
k-cell σ of X. By iterating H if necessary, we can assume that H1(∂σ̃) ⊂
N ′. Given a characteristic map χσ : (Dk, Sk−1) → (X̃(k), X̃(k−1)), we can
compose χσ|Sk−1 with H to get an element of πk(X̃,N ′) which restricts to
the trivial element of πk(X̃,N). This gives a homotopy χ : Dk × [0, 1]→ X̃
with χ0 = χσ and χ1(Dk) ⊂ N . We can use this homotopy to extend H
equivariantly to the k-skeleton such that (4) is satisfied.
To see that (4) =⇒ (2) observe that H can be used to homotop every map
ϕ : (Dk, Sk−1) → (X̃,Ni) to a map with image in any neighborhood of ∞.
As the base point should not be moved during the homotopy, we have to
modify H on a ‘buffer zone’ Ni−λ − Ni so that points mapped to Ni will
not be changed. Nevertheless we can find Ni−λ such that every ϕ can be
homotoped to a map (Dk, Sk−1)→ (Ni−λ) which gives (1). �

Remark 1. Notice that in (4) we can choose ε > 0 arbitrary large: as the
homotopy is cellular, we can simply iterate it to increase the ε.

Our next result shows that the Sigma invariants are in fact open subsets of
S(X), for the group theoretic version of this statement see [5, 6]. For the
proof we need a version of an Abel-Jacobi map. Let q : X → X be the
universal abelian cover of X and let r = b1(X), the first Betti number of X.
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Then H1(X) acts on X by covering translations and on Rr = H1(X)⊗R by
translation.
There exists an equivariant map A : X → Rr, canonical up to homotopy,
called an Abel-Jacobi map, see [14, Prop.1]. For a different construction,
note that we have a canonical epimorphism π1(X) → Zr factoring through
H1(X). Then A is a lift of the resulting classifying map X → (S1)r.

Theorem 4. Let X be a finite connected CW-complex. For every k ≥ 0 the
set Σk(X) is open and Σn(X) = ΣdimX(X) for n ≥ dimX.

Proof. Let h : X̃ → Rr by the composition of the covering map p̄ : X̃ → X
with the Abel-Jaobi map A : X → Rr. Then, given ξ : π1(X)→ R we get a
height function by hξ = lξ ◦ h where lξ : π1(X)/[π1(X), π1(X)] ⊗ R → R is
defined by lξ([g]⊗ t) = ξ(g) · t. Now let H̃ be a homotopy as in Proposition
2 (4) for a ξ. Define K̃ : S(X)× X̃(k) → R by

K̃(ξ′, x̃) = hξ′(H1(x̃))− hξ′(x̃).

By the choice of H we get K̃(ξ, x̃) ≥ ε for all x̃ ∈ X̃ and some ε > 0. It also
induces a map K : S(X) × X(k) → R. From the compactness of X(k), we
get

K̃(ξ′, x̃) ≥ ε

2
for all x̃ ∈ X̃(k)and all ξ′ in a neighborhood of ξ in S(X). Therefore Propo-
sition 2 (4) is satisfied for all such ξ′. �

We get the following relation between Σk(X) and the group-theoretic version
Σk(π1(X)).

Proposition 3. Let X be a finite connected CW-complex and k ≥ 0. If X̃
is k-connected, then Σk(X) = Σk(π1(X)) and Σk+1(X) ⊂ Σk+1(π1(X)).

The inclusion can be proper, as the example X = S1∨Sk with k ≥ 2 shows.

Proof. Note that we can build a K(π1(X), 1) out of X by attaching n-cells
for n ≥ k+ 2. Denote this Eilenberg-MacLane space by Y . If ξ ∈ Σk+1(X),
the cellular homotopy H̃ : X̃(k+1)×[0, 1]→ X̃ from Proposition 2 (4) induces
a homotopy H̃ ′ : Ỹ (k+1) × [0, 1] → Ỹ , since Ỹ (k+1) = X̃(k+1) and X̃ ⊂ Ỹ .
Therefore ξ ∈ Σk+1(π1(X)).
If ξ ∈ Σk(π1(X)), we get a cellular homotopy H̃ : Ỹ (k) × [0, 1] → Ỹ (k+1) as
in Proposition 2 (4), and since Ỹ (k+1) = X̃(k+1), this gives ξ ∈ Σk(X). �

In analogy to the homological invariants Σk(G,Z) of Bieri and Renz [6] we
now want to define homological invariants Σk(X,Z). We will in fact intro-
duce a more general definition for chain complexes which will also generalize
the invariants of [6]. We assume that all chain complexes satisfy Ci = 0 for
i < 0.
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Definition 8. Let R be a ring, n a non-negative integer and C a chain
complex over R. Then C is of finite n-type, if there is a finitely generated
projective chain complex C ′ and a chain map f : C ′ → C with fi : Hi(C ′)→
Hi(C) an isomorphism for i < n and an epimorphism for i = n. In this
situation we call f an n-equivalence.

It is clear that this is equivalent to the existence of a free R-chain complex
D and a chain map f : D → C inducing an isomorphism on homology, and
such that Di is finitely generated for i ≤ n.

Definition 9. Let C be a chain complex over ZG and k ≥ 0. Then

Σk(C) = {ξ ∈ S(G) |C is of finite k-type over ZGξ}.
Definition 10. If X is a finite connected CW-complex, we set

Σk(X; Z) = Σk(C∗(X̃)).

The invariants Σn(G;A) of Bieri and Renz [6] are given by Σk(G;A) =
Σk(P ), where P is a projective ZG resolution of the ZG-module A.

Remark 2. Notice that ZG is a flat ZGξ-module, as ZG is a direct limit of
free ZGξ-modules. As ZG⊗ZGξ A

∼= A for every ZG-module A, we see that
ξ ∈ Σn(C) implies that C is of finite n-type over ZG. If the chain complex
C is free, we then get that C is chain-homotopy equivalent to a free chain
complex D such that Di is finitely generated for i ≤ n.

To get an analogue of Proposition 2 we will define a chain complex version
of a height function.

Definition 11. Let C be a finitely generated free chain complex over ZG
and ξ : G→ R a non-zero homomorphism. A valuation on C extending ξ is
a sequence of maps v : Ck → R∞ satisfying the following

(1) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ Ck.
(2) v(ga) = ξ(g) + v(a) for all g ∈ G, a ∈ Ck.
(3) v(−a) = v(a) for all a ∈ Ck.
(4) v(∂a) ≥ v(a) for all a ∈ Ck.
(5) v−1({∞}) = {0}.

Here R∞ denotes the reals together with an element ∞ with the obvious
extension of addition and ≥.
To define a valuation on a free ZG complex C which is finitely generated in
every degree, let Xi be a basis for Ci. We begin with setting v(x) = 0 for
all x ∈ X0. The valuation can then be extended in the obvious way to C0.
Inductively we now define for x ∈ Ci the valuation by v(x) = 0 if ∂x = 0,
or v(x) = v(∂x), if ∂x 6= 0. Again we can extend v to Ci which gives the
existence of valuations on C.

Proposition 4. Let X be a finite connected CW-complex, ξ ∈ H1(X; R) be
nonzero and v : C∗(X̃) → R∞ a valuation extending ξ. The following are
equivalent.
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(1) ξ ∈ Σk(X,Z).
(2) There is a λ ≥ 0 such that j∗ : Hl(X̃,Ni) → Hl(X̃,Ni−λ) is trivial

for all l ≤ k and every i ∈ R.
(3) For every neighborhood N of ∞ with respect to ξ, there is another

neighborhood N ′ ⊂ N such that j∗ : Hl(X̃,N ′)→ Hl(X̃,N) is trivial
for all l ≤ k.

(4) Given ε > 0 there exists a ZG-chain map A : C∗(X̃)→ C∗(X̃) chain
homotopic to the identity with v(A(x)) ≥ v(x) + ε for all non-zero
x ∈ Ci(X̃) with i ≤ k.

The equivalences of (2),(3) and (4) are similar to the proof of Proposition
2 and will be omitted. For the equivalence to (1) we refer to Appendix A
which treats a more general version.

Corollary 5. Let X be a finite connected CW-complex. For every k ≥ 0
the set Σk(X,Z) is open and Σn(X,Z) = ΣdimX(X,Z) for n ≥ dimX. �

Corollary 6. Let X be a finite connected CW-complex. Then

(1) Σ1(X) = Σ1(X,Z).
(2) Σk(X) ⊂ Σk(X,Z) for k ≥ 2.

Proof. It is easy to see that Condition (3) of Proposition 2 implies Condition
(3) of Proposition 4 so that Σk(X) ⊂ Σk(X,Z) for k ≥ 1. Also, for k = 1 the
chain homotopy of Proposition 4 (3) can easily be used to realize a homotopy
as in Proposition 2 (3). �

It follows from the examples of Bestvina and Brady [1] that in general
Σ2(X) 6= Σ2(X,Z), see [21].

3. Novikov rings and homology

Let G be a finitely generated group and ξ ∈ S(G). We then let

ẐGξ =

∑
g∈G

ngg

∣∣∣∣∣∣ for all t ∈ R #{g |ng 6= 0 and ξ(g) > t} <∞

 ,

a ring containing the group ring ZG. If ξ : G → R is injective, this is the
Novikov ring first defined in [23]. For general ξ we call it the Novikov-Sikorav
ring, first introduced in [28].
The relation to the Bieri-Neumann-Strebel-Renz invariants was immediately
apparent once the work of Sikorav in [28] became known. This relation also
extends to our situation and is explained in Proposition 7 below.
If X is a finite connected CW-complex, p : X → X a regular covering space
with π1(X) ⊂ Ker ξ, we get an induced homomorphism, also denoted by
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ξ : G → R, where G = π1(X)/π1(X). We then obtain a finitely generated
free ẐGξ-chain complex by setting

C∗(X; ẐGξ) = ẐGξ ⊗ZG C∗(X)

and we denote by

H∗(X; ẐGξ) = H∗(C∗(X; ẐGξ))

the resulting homology, called the Novikov-Sikorav homology (Novikov ho-
mology if ξ is injective).
The case of the universal cover is the one directly related to Σk(X), but the
case of abelian covers plays an important role for the cup-length estimates
of the Lusternik-Schnirelmann categories.

Proposition 7. Let X be a finite connected CW-complex, ξ ∈ H1(X; R)
non-zero, X̃ the universal cover of X and G = π1(X). Then the following
are equivalent.

(1) ξ ∈ Σk(X; Z).
(2) Hi(X; ẐG−ξ) = 0 for i ≤ k.

Note that for testing ξ ∈ Σk(X; Z) we have to use the Novikov-Sikorav ring
with respect to −ξ. The reason for this is that we allow infinitely many
non-zero coefficients in elements of ẐGξ in the “negative direction”, which
is in line with the original definition of the Novikov ring [22]. But to adhere
to the convention of [6] one has to complete in the “positive direction”.
In order to stick to the convention used in [17], we have to introduce the
minus-sign above.

Proof of Proposition 7. (1) =⇒ (2): Let A : C∗(X̃) → C∗(X̃) be the chain
map chain homotopic to the identity, given by Proposition 4 (4). Then
id−A : Ci(X; ẐG−ξ)→ Ci(X; ẐG−ξ) is an isomorphism with inverse id+A+
A2+. . ., which converges over ẐG−ξ by the valuation property in Proposition
4(4). So the map on homology is both an isomorphism and zero, which
means that the homology vanishes.
(2) =⇒ (1): As C∗(X; ẐG−ξ) is free and bounded below, the vanishing of
its homology groups up to degree k guarantees the existence of a chain
homotopy δ : C∗(X; ẐG−ξ)→ C∗+1(X; ẐG−ξ) with ∂i+1δi + δi−1∂i = id for
i ≤ k. “Cutting off” gives a chain homotopy δ̄ : C∗(X̃) → C∗(X̃) with
∂i+1δ̄i + δ̄i−1∂i = id−A. Then A is a chain map homotopic to the identity,
and by approximating δ sufficiently well with δ̄, condition (4) of Proposition
4 is satisfied. �
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4. Relations to the Lusternik-Schnirelmann category of
closed 1-forms

We now want to describe a connection to the Lusternik-Schnirelmann theory
of closed 1-forms, which has been introduced in a series of papers [10, 11, 13]
and for which more information, in particular on applications and calcula-
tions, can be found in [12, 17]. Indeed, there exist various different notions,
and the one related closest to Σk(X) is denoted by Cat(X, ξ). Here again X
is a finite CW-complex and ξ ∈ H1(X; R). Let us recall the definition from
[17].

Definition 12. Let X be a finite CW-complex and ξ ∈ H1(X; R). Fix a
closed 1-form ω representing ξ. Then Cat(X, ξ) is defined as the minimal
integer k such that there exists an open subset U ⊂ X satisfying

(1) catX(X − U) ≤ k.
(2) for some homotopy h : U × [0,∞)→ X one has

h(x, 0) = x and lim
t→∞

∫ ht(x)

x
ω = −∞

for any point x ∈ U .
(3) the limit in (2) is uniform in x ∈ U .

The integral is taken along the path γ : [0, t]→ X given by γ(τ) = h(x, τ).

Here catX(A) for A ⊂ X is the minimal number i such that there exist
open sets U1, . . . , Ui ⊂ X covering A, each of which is null-homotopic in X.
The invariant Cat(X, ξ) originally appeared in [11]. It is easy to see that it
does not depend on positive multiples of ξ, therefore it is well defined for
ξ ∈ S(X). Note that it is also defined for ξ = 0, in which case we recover
the original Lusternik-Schnirelmann category of X, see [17] for details.
The connection to Σk(X) can now be described as follows. Because of our
sign conventions, we obtain another minus-sign in front of a ξ.

Theorem 5. Let X be a finite connected CW-complex and ξ ∈ H1(X; R)
be nonzero. Write n = dimX. If −ξ ∈ Σk(X) for some k ≤ n. Then
Cat(X, ξ) ≤ n− k.

Proof. Let U be a small open neighborhood of X(k) in X which deformation
retracts to X(k). Let H : X(k) × [0, 1] → X be a homotopy starting with
inclusion which lifts to a homotopy as in Proposition 2 (3). Now define
h : X(k) × [0,∞) → X by h(x, t) = H(Hm(x, 1), t − m), where m is an
integer with t ∈ [m,m + 1]. Notice that H is cellular so Hm(x, 1) ∈ X(k).
It is easy to see that h combined with the deformation retraction of U to
X(k) gives a homotopy as required in Definition 12. It is well known that
catX(X −X(k)) ≤ dim(X)− k so the result follows. �
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There are other definitions for a Lusternik-Schnirelmann category of ξ, de-
noted by cat(X, ξ) and cat1(X, ξ), see [10, 12, 13, 17], satisfying

cat(X, ξ) ≤ cat1(X, ξ) ≤ Cat(X, ξ).

Therefore Theorem 5 provides an upper bound for these as well.

5. A Hurewicz type result

We can get a converse of Corollary 6 if we assume that ξ ∈ Σ2(π1(X)). This
can be described in the following way.

Definition 13. Let G be a finitely presented group and ξ : G→ R a nonzero
homomorphism. Let X be a finite connected CW-complex with π1(X) = G.
We say ξ ∈ Σ2(G), if there is a λ ≥ 0 such that j# : πl(Ni) → πl(Ni−λ) is
trivial for l ≤ 1 and every i ∈ R.

Note that we can think of ξ ∈ H1(X; R) so neighborhoods of ∞ are defined
as above.

Theorem 6. Let X be a finite connected CW-complex and ξ ∈ H1(X; R)
nonzero. Let k ≥ 2. If ξ ∈ Σ2(π1(X)) ∩ Σk(X,Z), then ξ ∈ Σk(X).

The theorem will follow from two lemmas.

Lemma 8. Let X be a finite connected CW-complex and ξ ∈ H1(X; R)
nonzero. If ξ ∈ Σ2(π1(X)), then {π2(X̃,N)} and {H2(X̃,N)} are pro-
isomorphic.

Proof. Notice that

Im(π2(X̃,Ni)→ π2(X̃,Ni−λ)) = Im(π2(X̃)→ π2(X̃,Ni−λ))

if every 1-sphere in Ni bounds in Ni−λ, in particular the images become
abelian. As ξ ∈ Σ2(π1(X)), we can define a homomorphism π2(X̃,Ni) →
H2(X̃,Ni−λ) as in a typical proof of the classical Hurewicz Theorem (after
possibly increasing λ), see, for example, Spanier [29]. The details will be
left to the reader. �

Lemma 9. Let X be a finite connected CW-complex and ξ ∈ H1(X; R)
nonzero. Let k ≥ 3 and ξ ∈ Σk−1(X). Then {πk(X̃,N)} and {Hk(X̃,N)}
are pro-isomorphic.

Proof. This is similar to the proof of Lemma 8, but easier, as we can define
the homomorphism directly. �

These two Lemmas combine to a proof of Theorem 6.

Remark 3. Theorem 6 also follows from Latour’s Theorem 5.10 and 5.3
[20].
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6. Functoriality properties

Proposition 10. Let X and Y be finite CW-complexes, f : X → Y and
g : Y → X maps with fg ' idY . Then for all k ≥ 0 we have

(f∗)−1(Σk(X)) ⊂ Σk(Y )

(f∗)−1(Σk(X,Z)) ⊂ Σk(Y,Z).

Proof. We give a proof for the homotopy invariant Σk(Y ). Choose liftings
f̃ : X̃ → Ỹ and g̃ : Ỹ → X̃ with f̃ g̃ ' idỸ equivariantly. Let ξ ∈ S(Y ) satisfy
f∗(ξ) ∈ Σk(X). Let hξ : Ỹ → R be a height function. Then hξ ◦ f̃ : X̃ → R
is a height function for f∗ξ.
By cocompactness, there exists a C ≥ 0 such that

|hξ(f̃ g̃(ỹ))− hξ(ỹ)| ≤ C

for every ỹ ∈ Ỹ .
By assumption, Proposition 2 and Remark 1, there is an equivariant homo-
topy H̃ : X̃(k) × [0, 1]→ X̃ starting with inclusion, such that

hξ f̃(H(x̃, 1))− hξ f̃(x̃) ≥ C + 1

for all x̃ ∈ X̃. Therefore

hξ f̃(H(g̃(ỹ), 1))− hξ(ỹ) ≥ 1.

Now f̃H(g̃, ·) can be combined with the homotopy f̃ g̃ ' idỸ to show that
ξ ∈ Σk(Y ). �

Corollary 11. Let X and Y be finite connected CW-complexes and h : X →
Y a homotopy equivalence. Then h∗(Σk(Y )) = Σk(X) and h∗(Σk(Y,Z)) =
Σk(X,Z) for all k ≥ 0.

Proposition 12. Let X and Y be finite CW-complexes and f : X → Y
m-connected with m ≥ 1. Then

(f∗)−1(Σk(X)) ⊂ Σk(Y )

(f∗)−1(Σk(X,Z)) ⊂ Σk(Y,Z)

for all k ≤ m.

Proof. Add cells of dimension ≥ m+1 to X to get a (possibly infinite) CW-
complex X ′ containing X such that f extends to a homotopy equivalence
f ′ : X ′ → Y . Let g : Y → X ′ be a cellular homotopy inverse. Then
g(Y (m)) ⊂ X. If f∗(ξ) ∈ Σk(X), the homotopy H : X̃(k) × [0, 1] → X̃ can
now be used as in the proof of Proposition 10 to show that ξ ∈ Σk(Y ) for
k ≤ m. �

Example 2. Let X be a finite connected CW-complex and f : X → X a
map. The mapping torus Mf is the quotient space Mf = X × [0, 1]/ ∼,
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where (x, 0) ∼ (f(x), 1). There is a natural map g : Mf → S1 given by
g([x, t]) = exp 2πit. Let

ξ = [g] ∈ [Mf ,S1] = H1(Mf ; Z) ⊂ H1(Mf ; R).

The homotopy h : Mf × [0, 1]→Mf given by

H([x, t], s) =
{

[x, t− s] t ≥ s
[f(x), 1 + t− s] t ≤ s

shows that −ξ ∈ Σk(Mf ) for all k ≥ 0.

Proposition 13. Let X be a finite connected CW-complex and ξ ∈ H1(X; Z)
be nonzero. Let q : X̄ → X be the infinite cyclic covering space correspond-
ing to Ker ξ. Assume that X̄ is homotopy equivalent to a CW-complex Y
with finite k-skeleton. Then ±ξ ∈ Σk(X).

Proof. Let h : X̄ → R be induced by a height function hξ : X̃ → R and
ζ : X̄ → X̄ the generating covering transformation with hζ(x) > h(x) for
all x ∈ X̄. Let a : Y → X̄ and b : X̄ → Y be mutually inverse homotopy
equivalences. The there is a homotopy equivalence g : Mbζa → X given by

Mbζa 'Mζab 'Mζ ' X
where the last homotopy equivalence is given by [x̄, t]→ q(x̄) for x̄ ∈ X̄.
We can assume that bζa : Y → Y sends the k-skeleton to the k-skeleton.
Let ϕ : Y (k) → Y (k) be the restriction of bζa to Y (k). The induced map
Mϕ →Mbζa is k-connected and so there is a k-connected map f : Mϕ → X.
By Example 2 −f∗(ξ) ∈ Σk(Mϕ). It follows from Proposition 12 that −ξ ∈
Σk(X). To get ξ ∈ Σk(X) as well, replace ζ by ζ−1. �

In the next section we will show that the converse of Proposition 13 also
holds.

7. Domination results for covering spaces

Let X be a finite connected CW-complex and q : X → X a regular covering
space with π1(X)/π1(X) abelian. Then we define

S(X,X) = {ξ ∈ S(X) | q∗ξ = 0}.
In particular, if X is the universal abelian covering of X, then S(X,X) =
S(X). More generally, S(X,X) is a sphere of dimension d − 1, where d is
the rank of the finitely generated abelian group π1(X)/π1(X).

Theorem 7. Let X be a finite connected CW-complex and q : X → X
a regular covering space with π1(X)/π1(X) abelian. Let k ≥ 1. Then the
following are equivalent.

(1) X is homotopy equivalent to a CW-complex with finite k-skeleton.
(2) S(X,X) ⊂ Σk(X).

Furthermore, if S(X,X) ⊂ ΣdimX(X), then X is finitely dominated.
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We derive Theorem 7 from a more general version for chain complexes which
is a generalization of [6, Thm.B]. To get an alternative proof for (1) =⇒ (2)
one can use the techniques of [27, Thm.3.2].
If N is a normal subgroup of G with G/N abelian, we write

S(G,N) = {ξ ∈ S(G) |N ≤ Ker ξ}

Theorem 8. Let C be a free ZG-chain complex which is finitely generated in
every degree i ≤ n, and N a normal sugroup of G such that G/N is abelian.
Then C is of finite n-type over ZN if and only if S(G,N) ⊂ Σn(C).

Theorem 7 follows from Theorem 8 by the work of Wall [31, 32].

Proof. Assume that C is of finite n-type over ZN . Let ξ ∈ S(G,N) and
denote Q = G/N . Then ξ induces a homomorphism, also denoted ξ, ξ :
Q → R. As ZG is free over ZN , there is a chain homotopy equivalence
f : P → C over ZN with Pj finitely generated free for all j ≤ n. Then
f : ZGξ⊗ZN P → ZGξ⊗ZN C shows that ZGξ⊗ZN C is of finite n-type over
ZGξ. Also ZGξ⊗ZN C ∼= ZQξ⊗C where the chain complex on the right has
ZGξ acting diagonally. The isomorphism is given by g⊗c 7→ π(g)⊗gc, where
π : G → Q is projection. By [6, Lm.5.2] there is a free resolution E∗ → Z
over ZQξ which is finitely generated in every degree. Therefore each Ep⊗C
is of finite n-type over ZGξ. Let f : Pp q → Ep ⊗ Cq be the corresponding
chain map, notice that Pp q is just a positive power of ZGξ⊗ZN Pq depending
on the rank of Ep. As C is free over ZN , we get that ZQξ⊗C ∼= ZGξ⊗ZN C
is free over ZGξ, and we can assume that f is a chain homotopy equivalence
with inverse gq : Ep ⊗ Cq → Pp q. Denote by L : Ep ⊗ Cq → Ep ⊗ Cq+1 the
chain homotopy L : fg ' 1.
For k ≥ 0 define

F k : Pp q → Ep−k ⊗ Cq+k by F k = (Ld)kf,

where d : Ep → Ep−1 is the boundary of the resolution. Also define

Ki : Pp q → Pp−i q−1+i by Ki = gdF i−1

for i ≥ 1. We also set K0 = ∂ : Pp q → Pp−1 q.

Lemma 14. Let ∂ denote the boundaries ∂ : Pp q → Pp q−1 and ∂ : Ep⊗Cq →
Ep ⊗ Cq−1. Then ∂F 0 = F 0∂ and for m ≥ 1 we have

∂Fm + (−1)m+1Fm∂ =
m−1∑
k=0

(−1)kF kKm−k − dFm−1.

Proof. The proof by induction is straightforward. �

Lemma 15. For m ≥ 0 we have
m∑
s=0

(−1)sKm−sKs = 0.
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Proof. For m = 0 this means ∂∂ = 0, so assume the statement holds for
m ≥ 0. Then

m+1∑
s=0

(−1)sKm−sKs = gdFm∂ + (−1)m+1∂gdFm +
m∑
s=1

(−1)sKm−sKs

= (−1)m+1

(
gd

m−1∑
k=0

(−1)kF kKm−k − gddFm−1

)
+

+
m∑
s=1

(−1)sgdFm−s−1Ks

= 0

by Lemma 14 and since dd = 0. �

Now define a chain complex TP by TPk =
⊕

p+q=k

Pp q and δ : TPk → TPk−1

by

δ =
∞∑
s=0

(−1)pKs

where (−1)p refers to Pp k−p. By Lemma 15 we get that δδ = 0. Also
define TEk =

⊕
p+q=k

Ep ⊗ Cq with δ = (−1)p(∂ + d). We get a chain map

F : TP → TE by setting

F =
∞∑
k=0

(−1)kF k

That F is indeed a chain map follows from Lemmata 14 and 15.
Using the filtrations (TP (m))k =

⊕
p+q=k,p≤m

Pp q and

(TE(m))k =
⊕

p+q=k,p≤m
Ep ⊗ Cq we see that F induces a chain homotopy

equivalence F̄ : TP (m)/TP (m−1) → TE(m)/TE(m−1) and by a spectral se-
quence argument F is a chain homotopy equivalence. Another spectral
sequence argument gives a homology isomorphism from TE to C. As TPk
is finitely generated free over ZGξ, we now get that C is of finite n-type over
ZGξ.
Now assume that S(G,N) ⊂ Σn(C).
Let Xi be a ZG-basis of Ci for i ≤ n, a finite set by assumption. Given
c ∈ Ci, we can therefore write

c =
mi∑
j=1

nijx
i
j
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with nij ∈ ZG and

∂c =
mi−1∑
j=1

ni−1
j xi−1

j

here the xij denote the elements of Xi. For y ∈ ZG we denote supp y as the
elements of G with nonzero coefficient and for c ∈ Ci as above we let

supp c =
mi⋃
j=1

suppnij ∪
mi−1⋃
j=1

suppni−1
j

In particular, we get supp ∂c ⊂ supp c. The support depends on the chosen
basis, but we fix the basis once and for all.
We also denote π : G → G/N = Q. By choosing an inner product on
QR = R⊗Q we get a norm ‖ · ‖ on QR and we can think of S(G,N) ⊂ QR
as the unit sphere in this normed vector space. We extend the norm to C
by setting

‖c‖ =
{

max{‖π(g)‖ | g ∈ supp c} c 6= 0
0 c = 0

Notice that we set ‖0‖ = 0 despite the fact that ‖0‖ = −∞ in [6]. For
ξ ∈ S(G,N) ⊂ QR we also obtain a valuation vξ by setting

vξ(c) =
{

min{〈π(g), ξ〉 | g ∈ supp c} c 6= 0
∞ c = 0

Let us also set for a, b ∈ C

diam(a, b) = max{‖π(g)− π(h)‖ | g ∈ supp a, h ∈ supp b}

with the convention that diam(a, b) = 0 if a or b is zero. Finally, for r > 0
and c ∈ C we let

Br(c) = {d ∈ C | diam(c, d) ≤ r}.

Given r > 0, as S(G,N) ⊂ Σn(C) we can find for every ξ ∈ S(G,N) a chain
map ϕξ : C → C and a chain homotopy Hξ : 1 ' ϕξ such that vξ(ϕξc) −
vξ(c) ≥ 2r for all c ∈ C. Furthermore, there is an open neighborhood Uξ of
ξ in S(G,N) such that

vη(ϕξc)− vη(c) ≥ r

for all η ∈ Uξ and c ∈ Cl, l ≤ n.
As S(G,N) is compact, finitely many of the Uξ suffice to cover S(G,N), so
let (Ui, ϕi, H i) for i = 1, . . . , k be triples where Ui cover S(G,N), ϕi : C → C
chain map with

vη(ϕic)− vη(c) ≥ r

for all η ∈ Ui and all c ∈ Cl, l ≤ n, and H i : 1 ' ϕi a chain homotopy.
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As we deal only with finitely many chain homotopies, there is a M ≥ 0 such
that

vη(c)− vη(H ic) ≤ M

for all η ∈ Ui and all c ∈ Cl, l ≤ n. Furthermore, by replacing the chain
homotopy H i by H i − ϕiH i : 1 ' (ϕi)2 we can increase r > 0 without
increasing M > 0. Therefore we can assume that

r > 3Mn(3)

Finally, there exists an L > 0 with

diam(x, x) ≤ L

diam(x, ϕix) ≤ L

diam(x,H ix) ≤ L

for all i = 1, . . . , k and all x ∈ Xl, l ≤ n, as there are only finitely many
such conditions.
Notice that C is a free ZN chain complex, and a basis is given by TXi =
{tx | t ∈ T, x ∈ Xi}, where T ⊂ G is a subset such that π|T induces a
bijection from T to Q.

Lemma 16. If S(G,N) ⊂ Σn(C), there exist constants r > 0, M > 0,
A > 0, a ZN -chain map ψ : C → C and a ZN -chain homotopy K : 1 ' ψ
such that for m ≤ n we have ψm(z) = z if ‖z‖ ≤ A, and for tx ∈ TXm with
‖tx‖ > A we get

‖ψm(tx)‖ ≤ ‖tx‖ − r.
Furthermore ‖Km(z)‖ ≤ ‖z‖+M for all z ∈ Cm.

Proof. In order to define ψ and K, we define them on TXm. Let r > 0 and
M > 0 be as above Lemma 16.

Lemma 17. Let tx ∈ TXm with ‖tx‖ ≥ max{3
4r + L2

r ,
L2

M }. Let i be such
that ξt/‖ξt‖ ∈ Ui, where ξt(g) = 〈π(g), π(t)〉 for g ∈ G. Then

‖ϕi(tx)‖ ≤ ‖tx‖ − 1
2
r

‖H i(tx)‖ ≤ ‖tx‖+
3
2
M.

Proof. Let g ∈ supp tx satisfy ‖π(g)‖ = ‖tx‖. As diam(tx, ϕitx) ≤ L, we
get for h ∈ suppϕi(tx)

‖π(h)‖2 ≤ (‖π(g)‖ − r)2 + L2

= ‖π(g)‖2 − 2r‖π(g)‖+ r2 + L2

≤ ‖π(g)‖2 − r‖π(g)‖ − 3
4
r2 − L2 + r2 + L2

= (‖π(g)‖ − r

2
)2
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So ‖ϕi(tx)‖ ≤ ‖tx‖ − r
2 . Similarly, using ‖π(g)‖ ≥ L2

M , we get H i(tx)‖ ≤
‖tx‖+ 3

2M . �

If ‖tx‖ > L, then π(supp tx) ⊂ QR−{0}. Denote p : QR−{0} → S(G,N) the
standard retraction. Using the Lebesgue number of the covering U1∪. . .∪Uk,
we can find a constant A′ > 0 with ‖tx‖ > A′ implying

p(π(suppBL′(tx))) ⊂ Ui(4)

for some i, where L′ = max{3
4r + L2

r ,
L2

M }+ (2n+ 1)L. Let A = A′ + L′.
Define K0 : C0 → C1 by K0(tx) = 0 if ‖tx‖ ≤ A, and K0(tx) = H i

0(tx)
if ‖tx‖ > A, where i is the smallest number with (4) satisfied. Also define
ψ0 : C0 → C0 by

ψ0(tx) =
{

tx if ‖tx‖ ≤ A
ϕi(tx) if ‖tx‖ > A

where i is again the smallest number such that (4) holds. It follows that
∂K0 = 1− ψ0. By Lemma 17 we get

‖ψ0(tx)‖ ≤ ‖tx‖ − r

2

‖K0(tx)‖ ≤ ‖tx‖+
3
2
M

for ‖tx‖ > A. Also

diam(ψ0(tx), tx) ≤ L

diam(K0(tx), tx) ≤ L

for all basis elements tx.
Assume now by induction that we have Kj : Cj → Cj+1, ψj : Cj → Cj with

∂Kj +Kj−1∂ = 1− ψj
and

‖ψj(tx)‖ ≤ ‖tx‖ − r

2
+ j

3
2
M(5)

‖Kj(tx)‖ ≤ ‖tx‖+
3
2
M(j + 1)(6)

for ‖tx‖ > A and

diam(ψj(tx), tx) ≤ (2j + 1)L(7)
diam(Kj(tx), tx) ≤ (2j + 1)L(8)

for all basis elements tx, for all j ≤ m− 1 with m ≤ n.
Then define Km : Cm → Cm+1 by Km(tx) = 0 if ‖tx‖ ≤ A and

Km(tx) = H i
m(tx)−H i

mKm−1∂(tx)

for ‖tx‖ > A, where i satisfies (4). It is straightforward to check that

(∂Km +Km−1∂)(tx) = tx− ϕim(tx) + ϕim(Km−1∂tx)−H i
m−1ψm−1∂tx
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for ‖tx‖ > A. So define ψm : Cm → Cm by ψm(tx) = tx for ‖tx‖ ≤ A and

ψm(tx) = ϕim(tx)− ϕim(Km−1∂tx) +H i
m−1ψm−1∂tx

if ‖tx‖ > A. It follows that ∂Km +Km−1∂ = 1− ψm. As

‖ϕim(tx)− ϕim(Km−1∂tx) +H i
m−1ψm−1∂tx‖ ≤

max{‖ϕim(tx)‖, ‖ϕim(Km−1∂tx)‖, ‖H i
m−1ψm−1∂tx‖}

it is easy to see that (5) also holds for j = m. Here we use that
diam(Km−1∂tx, tx) ≤ (2m− 1)L+ L, so that Lemma 17 still applies to all
basis elements occuring in Km−1∂tx by the choice of A.
Similarly, (6), (7) and (8) hold for j = m. For m > n we set Km = 0 and
define ψm such that

∂Km +Km−1∂ = 1− ψm.
As the identity is a chain map, we get that ψ is a chain map. Replacing r
by r

2 −
3
2nM and M by 3

2M(n + 1) we get Lemma 16. Note that the new
r > 0 by (3). �

Lemma 18. If S(G,N) ⊂ Σn(C), then there exists a free ZN chain complex
D with Di finitely generated for i ≤ n, and ZN -chain maps a : D → C,
b : C → D with ab chain homotopic to the identity on C. Also, a : Di → Ci
can be assumed to be inclusion for i ≤ n, and Di = Ci for i > n.

Proof. Let r,M,A > 0, ψ and K as provided by Lemma 16. If l is a positive
integer, B ≥ 0 and z ∈ Cm with m ≤ n, we have

(9) ‖ψl(z)‖ ≤ A+B if ‖z‖ ≤ A+ l · r +B

We define a ZN -chain homotopy Φ : C → C+1 as follows. For s ≤ n, set

Φs(tx) =
l∑

j=0

Ksψ
jtx−Ksψ

jΦs−1∂tx

where l is an integer such that ‖tx‖ ∈ (A + l · r,A + (l + 1)r], and for
s > n we simply set Φs = 0. We get a ZN -chain map ζ : C → C by
setting ζ = 1 − ∂Φ − Φ∂, in particular, ζ is chain homotopy equivalent to
the identity.
Using induction, we see that

‖Φs(tx)‖ ≤ ‖tx‖+ (s+ 1)M

for s ≤ n− 1. It follows that

‖Φs(z)‖ ≤ ‖z‖+ (s+ 1)M

for all z ∈ Cs.
We claim that for s ≤ n we get

‖ζ(z)‖ ≤ A+ s ·M(10)

for all z ∈ Cs.
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This holds for s = 0 by (9), as ζ(tx) = ψl+1(tx) if ‖tx‖ ∈ (A+l·r,A+(l+1)r].
Now notice that

(∂Φs + Φs−1∂)(tx) =
l∑

j=0

(Ksψ
jtx−Ksψ

jΦs−1∂tx) + Φs−1∂(tx)

=
l∑

j=0

((∂Ksψ
j +Ks−1∂ψ

j)(tx)

−
l∑

j=0

(∂Ksψ
jΦs−1 +Ks−1∂ψ

jΦs−1)(∂tx)

+
l∑

j=0

(Ks−1ψ
j∂Φs−1∂tx−Ks−1∂ψ

jtx) + Φs−1∂tx

= tx− ψl+1tx− Φs−1∂tx+ ψl+1Φs−1∂tx

−
l∑

j=0

Ks−1∂ψ
jtx+ Φs−1∂tx

+
l∑

j=0

(Ks−1ψ
j∂tx−Ks−1ψ

jζ∂tx)

= tx− ψl+1tx+ ψl+1Φs−1∂tx−
l∑

j=0

Ks−1ψ
jζ∂tx

It follows that

ζs(tx) = ψl+1tx− ψl+1Φs−1∂tx+
l∑

j=0

Ks−1ψ
jζs−1∂tx

Using induction, we see again by (9), that (10) holds.
Define a chain complex D by

Ds = {z ∈ Cs | ‖z‖ ≤ A+ nM}

for s ≤ n. For s > n we let Ds = Cs. The boundary map ∂D : Dn+1 → Dn

is given by ∂D = ζ ◦ ∂C . We can define a chain map b : C → D by using ζ
for s ≤ n and the identity for s > n and a chain map a : D → C by using
inclusion for s ≤ n and ζ for s > n. Then ab = ζ : C → C is chain homotopic
to the identity. As only finitely many q ∈ Q satisfy ‖q‖ ≤ A + nM , we get
that Ds is finitely generated free over ZN , compare [6, 5.4]. This finishes
the proof of Lemma 18. �

To finish the proof of Theorem 8, note that by Lemma 18 the chain complex
C is dominated over ZN by a chain complex D with Di finitely generated
free for i ≤ n. By a standard construction, compare Ranicki [26, §3] or Wall
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[32], there exists a ZN chain complex E chain homotopy equivalent to C
with Ei finitely generated free for i ≤ n. �

Corollary 19. Let C be a finitely generated free ZG-chain complex with
Ci = 0 for i > n. Then C is ZN -chain homotopy equivalent to a finitely
generated projective ZN -chain complex D with Di = 0 for i > n if and only
if S(G,N) ⊂ Σn(C).

Proof. If C is ZN -chain homotopy equivalent to a finitely generated pro-
jective ZN -complex, it is, by definition, of finite n-type over ZN , hence
S(G,N) ⊂ Σn(C) by Theorem 8.
If S(G,N) ⊂ Σn(C), then by Lemma 18 there is a chain complex D′, finitely
generated free over ZN with D′i = 0 for i > n which dominates C. By [26,
Prop.3.1], the required chain complex D exists. �

8. Movability of homology classes

Recall from Proposition 7 that the vanishing and non-vanishing of Novikov-
Sikorav homology groups in the universal cover case determine Σk(X,Z).
We now want to take a closer look at the homology of other coverings, in
particular coverings with abelian covering transformation group.
In this section, R is a ring, although we have mainly the cases R = Z and
R = k a field in mind.
Let p : X → X be a regular cover, where X is again a finite connected
CW-complex. Denote G = π1(X)/π1(X). Recall that S(X,X) consists of
those ξ ∈ S(X) with p∗ξ = 0. For such ξ we can define a height function
h : X → R and neighborhoods N ⊂ X of infinity with respect to ξ as in the
case of the universal covering.

Definition 14. A homology class z ∈ Hq(X;R) is said to be movable to
infinity in X with respect to ξ ∈ S(X,X), if z can be realized by a singular
cycle in any neighborhood N of infinity with respect to ξ.

In other words, z ∈ Hq(X;R) is movable to infinity with respect to ξ, if z is
an element of ⋂

N

Im(Hq(N ;R)→ Hq(X;R))

where the intersection is taken over all neighborhoods of infinity with respect
to ξ.
Note that we have an inverse system of R-modules given by {Hq(X,N ;R)←
Hq(X,N ′;R)} which runs over neighborhoods N ′ ⊂ N of infinity with re-
spect to ξ. So z is movable to infinity with respect to ξ if and only if

z ∈ Ker(Hq(X;R)→ lim
←
Hq(X,N ;R)).

Just as with integer coefficients, we can define a Novikov-Sikorav ring R̂Gξ
with coefficients in an arbitrary ring R. As this ring can be expressed as an
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inverse limit, standard methods give the following exact sequence, see [14]
or [18] for details.

(11) 0→ lim
←

1Hq+1(X,N ;R)→ Hq(X; R̂G−ξ)→ lim
←
Hq(X,N ;R)→ 0

Let us give a simple criterion for z ∈ Hi(X;R) to be movable to infinity.

Definition 15. An element ∆ ∈ RG is said to have ξ-lowest coefficient 1,
if ∆ = 1 − y, with y =

∑
ajgj ∈ RG and such that each gj ∈ G satisfies

ξ(gj) > 0.

Such a ∆ is invertible over R̂G−ξ. So if ∆ · z = 0 ∈ Hq(X;R), we get that
the image of z in Hq(X; R̂G−ξ) is zero, and by (11), z is movable to infinity.
Under certain conditions, this is in fact necessary for movability to infinity.
The following theorem is taken from [14, 16].

Theorem 9. Let X be a finite connected CW-complex and p : X → X
a regular covering with covering transformation group G ∼= Zr. Let ξ ∈
S(X,X) induce an injective homomorphism G→ R. Let R be either Z or a
field. For z ∈ Hq(X;R), the following are equivalent:

(1) z is movable to infinity with respect to ξ.
(2) i∗(z) = 0 ∈ Hq(X; R̂G−ξ), where i∗ : Hq(X;R) ∼= Hq(X;RG) →

Hq(X; R̂G−ξ) is change of coefficients.
(3) There is ∆ ∈ RG with ξ-lowest coefficient 1 such that ∆ · z = 0.

In the case that R is a field, condition (3) is equivalent to the existence of
a non-zero ∆ ∈ RG with ∆ · z = 0 ∈ Hq(X;R), as we can find r ∈ R and
g ∈ G such that ∆ · rg has ξ-lowest coefficient 1.
Notice that ∆ ∈ RG having ξ-lowest coefficient 1 is an open condition in
ξ ∈ S(X,X); in particular, if z is movable to infinity with respect to ξ, it is
also movable to infinity with respect to nearby ξ′, under the conditions of
Theorem 9.
The equivalence of (1) and (2) is obtained by showing that the lim

←
1-term in

(11) vanishes. This is done in [14, 16] under the conditions of Theorem 9.
Using Usher [30, Thm.1.3] one can see that the lim

←
1 term in (11) vanishes

in fact for any abelian covering and any Noetherian ring R.
Theorem 9 is an important ingredient in obtaining lower bounds for cat(X, ξ)
and cat1(X, ξ) via cup-lengths. We refer the reader to [15, 16] for details.

9. Function spaces of paths to infinity

If γ : [0,∞)→ X is a map, we can lift it to a map γ̃ : [0,∞)→ X̃ into the
universal cover. We want to look at those maps, which lift to paths to ∞
with respect to a given ξ, compare Definition 7. This does not depend on
the particular lift of γ.
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We set

Cξ(X) = {γ : [0,∞)→ X | γ̃ is a path to infinity with respect to ξ}.

It is equipped with the following topology: For a, b ∈ [0,∞) and U open in
X let

W (a, b;U) = {γ ∈ Cξ(X) | γ([a, b]) ⊂ U}

and for a,A ∈ [0,∞) let

W (a,A) = {γ ∈ Cξ(X) | ∀t ≥ a hξγ̃(t)− hξγ̃(0) > A}.

These sets form a subbasis for the topology of Cξ(X). Notice that the
sets W (a, b;U) provide the compact-open topology on Cξ(X) while the sets
W (a,A) give a ”control at infinity”.
The evaluation e : Cξ(X) → X given by e(γ) = γ(0) is a fibration and for
x0 ∈ X we have the fiber

Mξ = {γ ∈ Cξ(X) | γ(0) = x0},

compare [20].

Remark 4. If we considerMξ with the compact-open topology, we get that
Mξ is contractible. To see this, choose a γ∞ ∈ Mξ. For any γ ∈ Mξ and
t ∈ [0,∞), let γt ∈Mξ be given by

γt(s) =

 γ∞(s) 0 ≤ s ≤ t
γ∞(2t− s) t ≤ s ≤ 2t
γ(s− 2t) 2t ≤ s

It is easy to see that H : Mξ × [0,∞] → Mξ given by H(γ, t) = γt is
continuous in the compact-open topology, and hence defines a contraction.
Of course H is no longer continuous with the W (a,A) open in Mξ.

Remark 5. Let us give another interpretation of the topology onMξ. Let
X̃∞ = X̃ ∪ {∞}, that is, we add a point ∞ to X̃; the topology on X̃∞ is
generated by the open sets of X̃ and sets N ∪ {∞}, where N is an open
neighborhood of ∞ with respect to ξ (in the sense of Section 2).
Write

P(X̃∞) = {γ : [0,∞]→ X̃∞ | γ(∞) =∞},

which we topologize with the compact open topology. This is a usual path
space with∞ as the basepoint. The space Cξ of paths to infinity with respect
to ξ can be identified with the subspace of P(X̃∞) consisting of those γ

with γ([0,∞)) ⊂ X̃. Similarly, Mξ can be identified with a subspace of
Ω(X̃∞) = e−1({x̃0}), where x̃0 ∈ p−1({x0}) ⊂ X̃ and e : P(X̃∞) → X̃∞
the usual fibration. Note that Cξ is a covering space of Cξ(X) with covering
group π1(X).
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Given γ0 ∈ Mξ, we want to examine the homotopy groups πk(Mξ, γ0) for
k ≥ 0. For this let g : (Sk, ∗) → (Mξ, γ0) be a map. It gives rise to a
map φg : Sk × [0,∞) → X by φg(x, t) = g(x)(t) and since φg(x, 0) = x0,
a map Φg : Rk+1 → X such that Φg(x · t) = φ(x, t) for x ∈ Sk ⊂ Rk+1.
If we assume that ∗ ∈ Sk corresponds to (1, 0, . . . , 0) ∈ Rk+1, we have
Φg(t, 0, . . . , 0) = γ0(t). Furthermore, if we lift Φg to a map Φ̃g : Rk+1 →
X̃, we get that hξ ◦ Φ̃(x) → ∞, as |x| → ∞. A homotopy between two
maps g0, g1 : (Sk, ∗) → (Mξ, γ0) relative to the basepoint corresponds to a
homotopy Φ : Rk+1×[0, 1]→ X between Φg0 and Φg1 relative to [0,∞)×{0}
and such that hξ ◦ Φ̃(x, s) → ∞ as |x| → ∞ uniformly in s ∈ [0, 1], for a
lifting φ̃.
Now assume we have a sequence (Ni)i≥0 of neighborhoods of∞ with respect
to ξ such that Ni ⊂ Ni−1 for all i and

⋂
i≥0Ni = ∅. Let x̃0 ∈ X̃ be a lifting

of x0 ∈ X. Also, let γ̃0 : [0,∞) → X̃ be the lifting of γ0 with γ̃0(0) = x̃0.
Pick a sequence ti > 0 such that ti+1 > ti for all i ≥ 0 such that γ̃0(t) ∈ Ni

for all t ≥ ti. This sequence exists by the definition of γ0 ∈Mξ. We let

yi = γ̃0(ti) ∈ Ni

be the sequence of basepoints of Ni for all i ≥ 0. We get a natural homo-
morphism χi : πk(X̃,Ni+1, yi+1)→ πk(X̃,Ni, yi) induced by inclusion where
the change of basepoint is done using the path γ̃0|[ti, ti+1]. This gives rise to
an inverse system (χi : πk(X̃,Ni+1, yi+1) → πk(X̃,Ni, yi)) for every k ≥ 0.
Note that this is an inverse system of pointed sets for k ≤ 1.
For every i ≥ 0 and k ≥ 0 define ϕi : πk(Mξ, γ0) → πk+1(X̃,Ni, yi) in the
following way. Given g : (Sk, ∗)→ (Mξ, γ0), we define ϕg : (Dk+1, Sk, ∗)→
(X̃,Ni, yi) by ϕg(x · t) = Φ̃g(λ(x) · x · t) for x ∈ Sk and t ∈ [0, 1], where
λ : Sk → (0,∞) is a map such that λ(∗) = ti, and for every x ∈ Sk we have
g(x)(t) ∈ Ni for all t ≥ λ(x). It is clear that the homotopy class of ϕg does
not depend on the particular choice of λ. Basically we use the map Φ̃g and
restrict it to a large enough ball in Rk+1.
This induces the map ϕi : πk(Mξ, γ0)→ πk+1(X̃,Ni, yi) and we clearly have
χiϕi+1 = ϕi. Thus we get an induced map

ϕ : πk(Mξ, γ0) −→ lim
←

πk+1(X̃,Ni, yi)

which is a group homomorphism for k ≥ 1 and a map of pointed sets for
k = 0.
Next we define a map ψ′ :

∏
i≥0 πk+2(X̃,Ni, yi) → πk(Mξ, γ0), so let ai ∈

πk+2(X̃,Ni, yi). Represent ai by a map gi : (Dk+2, Sk+1, ∗) → (X̃,Ni, yi).
Furthermore, let G′ : Rk+1 → X̃ be given by G′(x · t) = γ̃0(t) for x ∈ Sk and
t ∈ [0,∞). Let B(ti) be a small disc with center at (−ti, 0) ∈ Rk+1 such that
the B(ti) are pairwise disjoint. We use (−ti, 0) as the center since we want
to change G′ on the B(ti) without changing it on [0,∞) × {0} ⊂ Rk+1. So
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homotop G′ to a map G relative to Rk+1−
⋃
B′(ti) such that G is constant

to γ̃0(ti) on B(ti) for all i ≥ 0. Here B′(ti) is a slightly bigger disc such that
they are still pairwise disjoint.
If we restrict the map gi to Sk+1, we can think of this map as a map
g̃i : (Dk+1, Sk) → (Ni, yi). Now we can replace G by a map G̃ : Rk+1 → X̃

such that G̃|B(ti) ≡ g̃i and G̃ agrees with G everywhere else. Clearly G̃
induces a map g : (Sk, ∗)→ (Mξ, γ0) and this defines a map

ψ′ :
∏
i≥0

πk+2(X̃,Ni, yi) −→ πk(Mξ, γ0).

Note here that if g′i : (Dk+2, Sk+1, ∗) → (X̃,Ni, yi) also represents ai for
every i ≥ 0, we get that gi|Sk+1 is homotopic to g′i|Sk+1 within Ni, so the
resulting maps g and g′ represent the same element in πk(Mξ, γ0). It is
worth pointing out that G̃ is homotopic to G relative to [0,∞) × {0}, but
the resulting function H : Sk × [0, 1] → Mξ need not be continuous, since
the maps gi are only null homotopic in X̃, but not necessarily with control.
Let us recall the definition of the derived limit for our inverse system. Two
sequences (ai), (bi) ∈

∏
i≥0 πk+2(X̃,Ni, yi) are called equivalent, if there

exists a sequence (ci) ∈
∏
i≥0 πk+2(X̃,Ni, yi) such that bi = ci · ai · χi(ci+1)

for all i ≥ 0. Then lim
←

1 πk+2(X̃,Ni, yi) is the set of equivalence classes. For
k ≥ 1 this has the structure of an abelian group, but for k = 0 we only get
a pointed set.
It is easy to see that ψ′ induces a map

ψ : lim
←

1 πk+2(X̃,Ni, yi) −→ πk(Mξ, γ0)

which is a homomorphism for k ≥ 1 and a map of pointed sets for k = 0.

Proposition 20. With the above notation there is a short exact sequence

1→ lim
←

1 πk+2(X̃,Ni, yi)
ψ−→ πk(Mξ, γ0)

ϕ−→ lim
←

πk+1(X̃,Ni, yi)→ 1

which is a short exact sequence of groups in the case k ≥ 1 and of pointed
sets in the case k = 0. If k = 0, ψ is also injective.

The proof is standard and will be omitted, see also [18]. Notice the similarity
between this sequence and (11).
We can use this to give another equivalent definition for ξ ∈ Σk(X).

Proposition 21. Let X be a finite connected CW-complex, ξ ∈ H1(X; R) be
nonzero and k ≥ 1. Then ξ ∈ Σk(X) if and only if Mξ is (k−1)-connected.

Proof. If Mξ is (k − 1)-connected, then by Proposition 20 we get that the
inverse system {πl(X̃,N)} is pro-trivial for l ≤ k which gives ξ ∈ Σk(X) by
Proposition 2.
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To get the other direction, we have to worry about lim
←

1 πk+1(X̃,Ni). But

by the next lemma {πk+1(X̃,N)} is semi-stable, so the lim
←

1-term vanishes.

It follows from Proposition 20 that Mξ is (k − 1)-connected. �

Lemma 22. Let X be a finite connected CW-complex, ξ ∈ H1(X; R) be
nonzero and hξ : X̃ → R a height function. If ξ ∈ Σk(X), then {πk+1(X̃,N)}
is semi-stable.

Proof. Use the homotopy from Proposition 2(4) to push any k-sphere in N
arbitrarily far away, this gives semi-stability as the pushing may be done in
N ′ slightly bigger than N (depends on H only). �

Appendix A. Sigma invariants of chain complexes

In this appendix we show how Σk(C) is related to criteria involving chain
homotopies on C.
If the chain complex C consists of flat R-modules, we have the following
criterion.

Proposition 23. Let C be a chain complex of flat R-modules and n a non-
negative integer. Then the following are equivalent.

(1) C is of finite n-type.
(2) For every index set J , the natural map Hk(C,

∏
J R) →

∏
J Hk(C)

is an isomorphism for k < n and an epimorphism for k = n.

This is basically [7, Thm.2], but we allow C to be flat and not necessarily
projective so we only have a homology criterion. The proof goes through for
flat modules.
By a filtration of C we mean a family {Cα}α∈A of sub-chain complexes
where A is a directed set, Cα ⊂ Cβ for α ≤ β and C =

⋃
Cα.

Given a filtration, we define Dα = C/Cα.
The analogue of [9, Thm.2.2] is

Theorem 10. Let C be an R-chain complex with a filtration {Cα}α∈A of
finite n-type complexes Cα of flat R-modules. Then C is of finite n-type if
and only if the direct system {Hi(Dα)} is essentially trivial for i ≤ n.

Proof. The proof is similar to the proof of [9, Thm.2.2], but one has to use
Proposition 23. We omit the details. �

Let G be a finitely generated group and ξ : G → R a non-zero homomor-
phism. Let C be a free ZG-chain complex which is finitely generated in every
degree. Given a valuation on C extending ξ, we can define a subcomplex

Cξ = {x ∈ C | v(x) ≥ 0}
Valuations are determined by their value on basis elements, so it is easy to
see that Cξ is a finitely generated free chain complex over ZGξ, compare [6,
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Lemma 3.1]. Given g ∈ G, we can also look at the subcomplex gCξ ⊂ C
which is isomorphic to Cξ. Denote Dg = C/gCξ.
We use Theorem 10 to get

Proposition 24. Let C be a free ZG-chain complex which is finitely gener-
ated in every degree, v a valuation extending ξ and n a non-negative integer.
Then the following are equivalent.

(1) ξ ∈ Σn(C).
(2) The direct system {Hi(Dg)} is essentially trivial for i ≤ n.
(3) There exists a chain map ϕ : C → C chain homotopic to the identity

such that v(ϕ(x)) > v(x) for all non-zero x ∈ Ci with i ≤ n. �
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