
HOMOLOGY OF PLANAR POLYGON SPACES

M. FARBER AND D. SCHÜTZ

Abstract. In this paper we study topology of the variety of closed pla-
nar n-gons with given side lengths l1, . . . , ln. The moduli space M` where
` = (l1, . . . , ln), encodes the shapes of all such n-gons. We describe the
Betti numbers of the moduli spaces M` as functions of the length vector
` = (l1, . . . , ln). We also find sharp upper bounds on the sum of Betti
numbers of M` depending only on the number of links n. Our method
is based on an observation of a remarkable interaction between Morse
functions and involutions under the condition that the fixed points of
the involution coincide with the critical points of the Morse function.

1. Introduction and statement of the result

Given a string ` = (l1, . . . , ln) of n positive real numbers li > 0 one
considers the moduli space M` of closed planar polygonal curves having
side lengths li. Points of M` parametrize different shapes of such polygons.
Formally M` is defined as the factor space

M` = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0 ∈ C} /SO(2).

Here ui ∈ S1 ⊂ C denote the unit vectors in the directions of the sides of a
polygon; the group of rotations SO(2) acts diagonally on (u1, . . . , un).

Viewed differently, M` is the configuration space of a planar linkage, a
planar mechanism consisting of n bars of length l1, . . . , ln connected by re-
volving joints. Such mechanisms play an important role in robotics where
they describe closed kinematic chains and are used widely as elementary
parts of more complicated mechanisms. Knowing the topology of M` (for
different vectors `) can be used in designing control programmes and motion
planning algorithms for mechanisms.

The length vector ` is called generic if
n∑

i=1
liεi 6= 0 for any choice εi = ±1.

It is known that for a generic length vector ` the space M` is a closed smooth
manifold of dimension n− 3. If the length vector ` is not generic then M` is
a compact (n− 3)-dimensional manifold with finitely many singular points.
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The moduli spaces M` of planar polygonal linkages were studied exten-
sively by many mathematicians; we will mention W. Thurston and J. Weeks
[12], K. Walker [14], A. A. Klyachko [8], M. Kapovich and J. Millson [6],
J.-Cl. Hausmann and A. Knutson [2] and others.

Our goal in this paper is to give a general formula for the Betti numbers
of the moduli space M` as functions of the length vector `. Our results cover
both generic and non-generic vectors `. In the case of generic ` the Betti
numbers of M` can easily be extracted from the results of the unpublished
thesis of K. Walker [14].

Formulae for Betti numbers of polygon spaces in three-dimensional space
are known (see papers of A.A. Klyachko [8] and J.-Cl. Hausmann and A.
Knutson [2]). Also, J.-Cl. Hausmann and A. Knutson describe cohomology
with Z2 coefficients of the factor M̄` of M` with respect to the natural
involution, see [2], Theorem 9.1.

A. Klyachko in his beautiful work [8] uses a remarkable symplectic struc-
ture on the moduli space of linkages in R3 in an essential way. His technique
is based on properties of Hamiltonian circle actions (the perfectness of the
Hamiltonian viewed as a Morse function). The subsequent important paper
of J.-Cl. Hausmann and A. Knutson employs methods of symplectic topol-
ogy as well: they apply the method of symplectic reduction. Note that J.-Cl.
Hausmann and A. Knutson go one step further and compute the multiplica-
tive structure on cohomology, however their description is not very explicit
as it uses the language of generators and relations. Symplectic methods play
also a central role in the work of M. Kapovich and J. Millson [7].

The moduli spaces of planar linkages M` do not carry symplectic struc-
tures in general. Therefore methods of symplectic topology are not applica-
ble in this problem.

The proof of our main result (see Theorem 1 below) is obtained in a very
simple manner, it uses a remarkable interaction between Morse functions and
involutions under the condition that fixed points of the involution coincide
with the critical points of the Morse function.

To state our main theorem we need the following definitions. A subset
J ⊂ {1, . . . , n} is called short if

∑

i∈J

li <
∑

i/∈J

li.

The complement of a short subset is called long. A subset J ⊂ {1, . . . , n} is
called median if ∑

i∈J

li =
∑

i/∈J

li.

Clearly, median subsets exist only if the length vector ` is not generic. Note
the following simple observation: any two subsets J, J ′ ⊂ {1, . . . , n} have a
nonempty intersection J ∩ J ′ 6= ∅ provided that one of the subsets is long
and the other is either long or median.



HOMOLOGY OF PLANAR POLYGON SPACES 3

Theorem 1. Fix a link of the maximal length li, i.e. such that li ≥ lj
for any j = 1, 2, . . . , n. For every k = 0, 1, . . . , n − 3 denote by ak and
bk correspondingly the number of short and median subsets of {1, . . . , n} of
cardinality k + 1 containing i. Then the homology group Hk(M`;Z) is free
abelian of rank

ak + bk + an−3−k,(1)

for any k = 0, 1, . . . , n− 3.

By Theorem 1 the Poincaré polynomial

p(t) =
n−3∑

k=0

dimHk(M`;Q) · tk

of M` can be written in the form

q(t) + tn−3q(t−1) + r(t)(2)

where

q(t) =
n−3∑

k=0

akt
k, r(t) =

n−3∑

k=0

bkt
k;(3)

the numbers ak and bk are described in the statement of Theorem 1.
A proof of Theorem 1 is given below in §5. In the rest of this introduction

we illustrate the statement of Theorem 1 by several examples.

Example 1. Suppose that n = 5 and l1 = 3, l2 = 2, l3 = 2, l4 = 1, l5 = 1.
Then l1 = 3 is the longest link and short subsets of {1, . . . , 5} containing
1 are {1}, {1, 4} and {1, 5}. Hence a0 = 1, a1 = 2 and by Theorem 1 the
Poincaŕe polynomial of M` equals 1 + 4t + t2. We conclude that M` is a
closed orientable surface of genus 2.

Example 2. Consider the zero-dimensional Betti number

a0 + b0 + an−3

of M` as given by Theorem 1. We want to show that this number can take
values 0, 1, 2; the first possibility is clearly equivalent to M` = ∅. Without
loss of generality we may assume that l1 ≤ l2 ≤ · · · ≤ ln. If {n} is short
then a0 = 1 and b0 = 0. If {n} is median then a0 = 0 and b0 = 1; in this
case clearly M` is a single point. If {n} is long then ak = 0 = bk for any k
and hence M` = ∅. We obtain that M` = ∅ if and only if there are no long
one-element subsets of {1, . . . , n} – a result first established by Kapovich
and Millson in [6].

Let us show that the number an−3 equals 0 or 1. Clearly, an−3 coincides
with the number of long two-element subsets {r, s} ⊂ {1, . . . , n− 1}. There
may exist at most one such pair: if {r′, s′} is another long pair with r 6= r′,
r 6= s′, then {r, n} and {r′, s′} would be two disjoint long subsets which is
impossible. We obtain that an−3 = 1 if and only if the pair {n− 2, n− 1} is
long and an−3 = 0 otherwise.
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We see that the moduli space M` has two connected components if and
only if the set {n−2, n−1} is long. In this case the length vector ` must be
generic and short subsets J ⊂ {1, . . . , n} containing n are exactly the subsets
containing neither n− 2 nor n− 1. We see that the Poincaré polynomial of
M` in this case equals 2(1 + t)n−3. M. Kapovich and J. Millson [6] showed
that if M` is disconnected then it is diffeomorphic to the disjoint union of
two copies of the torus Tn−3.

Example 3. As another example consider the equilateral case when lj = 1
for all j. Assume first that n = 2r + 1 is odd and hence ` is generic. The
short subsets in this case are subsets of {1, . . . , n} of cardinality ≤ r. We
may fix the index {n} as representing the longest link. Hence we find that
bk = 0 vanishes and ak equals

ak =





(
n− 1

k

)
for k ≤ r − 1,

0, for k ≥ r.

(4)

By Theorem 1 the Betti numbers of M` are given by

bk(M`) =





(
n− 1

k

)
for k < r − 1,

2 ·
(

n− 1
r − 1

)
for k = r − 1,

(
n− 1
k + 2

)
for k > r − 1.

(5)

Note that the sum of Betti numbers in this example equals

n−3∑

k=0

bk(M`) = 2n−1 −
(

n− 1
r

)
, where n = 2r + 1.(6)

Example 4. Consider now the equilateral case lj = 1 with n is even, n =
2r+2. The length vector is now not generic. The short subsets are all subsets
of cardinality ≤ r and the median subsets are all subsets of cardinality r+1.
Hence we find that bk = 0 for k 6= r and

br =
(

2r + 1
r

)
(7)
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and the numbers ak are given by formula (4). Applying Theorem 1 we find

bk(M`) =





(
n− 1

k

)
for k ≤ r − 1,

(
n
r

)
for k = r,

(
n− 1
k + 2

)
for r + 1 ≤ k ≤ n− 3.

(8)

The sum of Betti numbers in this example is
n−3∑

k=0

bk(M`) = 2n−1 −
(

n− 1
r

)
, where n = 2r + 2.(9)

The results described in Examples 3 and 4 were obtained earlier in [4], [5]
by different methods.

In the next section we shall see that Examples 3 and 4 give moduli spaces
M` with the maximal possible total Betti number for all length vectors `
having the given number of links n.

We are pleased to have the opportunity to thank the anonymous referee
for his helpful comments.

2. Maximum of the total Betti number of M`

It is well known that the moduli space of pentagons M` with a generic
length vector ` = (l1, . . . , l5) is a compact orientable surface of genus not
exceeding 4, see [9]. In the equilateral case, i.e. if ` = (1, 1, 1, 1, 1), M` is
indeed an orientable surface of genus 4 (it is a special case of (6)) and hence
the above upper bound for pentagons is sharp. In this section we state a
theorem generalizing this result for arbitrary n. Namely, we prove that for
any length vector ` = (l1, . . . , ln) the sum of the Betti numbers

n−3∑

i=0

bi(M`)(10)

is less or equal than the sum of Betti numbers of the moduli space of the
equilateral linkage with the same number of sides n.

Theorem 2. Let ` = (l1, . . . , ln) be a length vector, li > 0. Denote by r the
number [n−1

2 ]. Then the sum of Betti numbers of the moduli space M` does
not exceed

Bn = 2n−1 −
(

n− 1
r

)
.(11)

This estimate is sharp: Bn equals the sum of Betti numbers of the moduli
space of planar equilateral n-gons, see (6), (9).
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Note that for n even the equilateral linkage with n sides is not generic
and hence Theorem 2 does not answer the question about the maximum of
the total Betti number on the set of all generic length vectors with n even.

Theorem 3. Assume that n is even and ` = (l1, . . . , ln) is a generic length
vector. Then the sum of Betti numbers of M` does not exceed

B′
n = 2 ·Bn−1,(12)

where Bk is defined by (11). This upper bound is achieved on the length
vector ` = (1, 1, . . . , 1, ε) where 0 < ε < 1 and the number of ones is n− 1.

Note that M(1,...,1,ε) is diffeomorphic to the product M(1,...,1) × S1 (the
number of ones in both cases equals 2r + 1), see Prop. 6.1 of [3]. Hence
the sum of Betti numbers of M(1,...,1,ε) is twice the sum of Betti numbers of
M(1,...,1).

Proofs of Theorems 2 and 3 are given below in section §6.
The asymptotic behavior of Bn (given by (11)) can be recovered using

available information about Catalan numbers

Cr =
1

r + 1
·
(

2r
r

)
∼ 22r

√
πr3/2

,

see [13]. One obtains the following asymptotic formula

Bn ∼ 2n−1 ·
(

1−
√

2
nπ

)
(13)

which is valid for even and odd n.
From the discussion of Example 2 we know that in the case when M` is

disconnected the sum of Betti numbers of M` equals 2n−2 which is approx-
imately half of Bn, see (13).

3. Morse theory on manifolds with involutions

Our main tool in computing the Betti numbers of the moduli space of
planar polygons M` is Morse theory of manifolds with involution.

Theorem 4. Let M be a smooth compact manifold with boundary. Assume
that M is equipped with a Morse function f : M → [0, 1] and with a smooth
involution τ : M →M satisfying the following properties:

(1) f is τ -invariant, i.e. f(τx) = f(x) for any x ∈M ;
(2) The critical points of f coincide with the fixed points of the involu-

tion;
(3) f−1(1) = ∂M and 1 ∈ [0, 1] is a regular value of f .

Then each homology group Hi(M ;Z) is free abelian of rank equal the number
of critical points of f having Morse index i. Moreover, the induced map

τ∗ : Hi(M ;Z)→ Hi(M ;Z)

coincides with multiplication by (−1)i for any i.
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Figure 1. Surface in R3

As an illustration for Theorem 4 consider a surface is R3 (see Figure
1) which is symmetric with respect to the z-axis. The function f is the
orthogonal projection onto the z-axis, the involution τ : M → M is given
by τ(x, y, z) = (−x,−y, z).

The critical points of f are exactly the intersection points of M with the
z-axis.

Proof of Theorem 4. Choose a Riemannian metric on M which is invariant
with respect to τ .

Let p ∈ M be a critical point of f . By our assumption, p must be a
fixed point of τ , i.e. τ(p) = p. We claim that the differential of τ at p is
multiplication by −1, i.e.

dτp(v) = −v, for any v ∈ TpM.(14)

Firstly, since τ is an involution, dτp must have eigenvalues ±1. Assume
that there exists a vector v ∈ TpM with dτp(v) = v. Then the geodesic
curve starting from p in the direction of v is invariant with respect to τ
implying that p is not isolated in the fixed point set of τ . This contradicts
our assumption and hence dτp must have eigenvalue −1 only. This proves
(14).

Consider the gradient vector field v of f with respect to the Riemannian
metric. We will assume that v satisfies the transversality condition, i.e. all
stable and unstable manifolds of the critical points intersect transversally.
To show that such a vector field exists, one may start with an arbitrary
τ -invariant vector field and apply the technique of Milnor [11]. In the proof
of Theorem 5.2 from [11] the vector field is only changed in a cylindrical
neighborhood of a codimension 1 submanifold. In our situation τ acts freely
on such a neighborhood; hence applying the argument to the quotient space,
one obtains a τ -invariant vector field satisfying the transversality condition.

The vector field v is τ -invariant which means that

vτ(x) = dτx(vx), x ∈M.(15)
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The Morse - Smale chain complex (C∗(f), ∂) of f has the critical points
of f as its basis and the differential is given by

∂(p) =
∑

q

[p : q] q(16)

where in the sum q runs over the critical points q with Morse index ind(q) =
ind(p)− 1. The incidence numbers [p : q] ∈ Z are defined as follows

[p : q] =
∑

γ

ε(γ), ε(γ) = ±1,(17)

where γ : (−∞,∞) → M are trajectories of the negative gradient flow
γ′(t) = −vγ(t) satisfying the boundary conditions γ(t)→ p as t→ −∞ and
γ(t)→ q as t→ +∞.

Observe that if γ is a trajectory as above then τ ◦ γ is another such
trajectory. Indeed, using (15) we find (τ ◦ γ)′ = dτ(γ′) = −dτ(vγ(t)) =
−vτ(γ(t)).

Theorem 4 would follow once we show that

ε(γ) + ε(τ ◦ γ) = 0,(18)

i.e. the total contribution into (17) of a pair of symmetric trajectories is
zero. Hence all incidence coefficients vanish [p : q] = 0 and the differentials
of the Morse - Smale complex are trivial.

Figure 2. Two symmetric trajectories of the negative gra-
dient flow

To prove (18) we first recall the definition of the sign ε(γ) ∈ {1,−1}, see
[11]. For a critical point p of f we denote by W u(p) and W s(p) the unstable
and stable manifolds of p. Recall that W u(p) is the union of the trajectories
γ : (−∞,∞) → M satisfying the differential equation γ′(t) = −vγ(t) and
the boundary condition γ(t)→ p as t→ −∞. The stable manifold W s(p) is
defined similarly but the boundary condition in this case becomes γ(t)→ p
as t→ +∞.

Fix an orientation of the stable manifold W s(p) for every critical point p ∈
M . Since W s(p) and W u(p) are of complementary dimension and intersect
transversally at p, the orientation of W s(p) determines a coorientation of
the unstable manifold W u(p), for every p.
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If ind(p) − ind(q) = 1 then W u(p) and W s(q) intersect transversally
along finitely many connecting orbits γ(t) and the structure near each of
the connecting orbits looks as shown on Figure 3. Note that the normal

Figure 3. The stable and unstable manifolds along γ(t)

bundle to W u(p) along γ coincides with the normal bundle to γ in W s(q).
Hence, the coorientation of W u(p) together with the natural orientation of
the curve γ(t) determine an orientation of W s(q) along γ. We set ε(γ) = 1 iff
this orientation coincides with the prescribed orientation of W s(q); otherwise
we set ε(γ) = −1.

To compare ε(γ) with ε(τ ◦ γ) we first observe that the involution τ pre-
serves the stable and unstable manifolds W s(p) and W u(p) and for every
critical point p the degrees of the restriction of τ on these submanifolds equal

deg(τ |W u(p)) = (−1)ind(p), deg(τ |W s(p)) = (−1)n−ind(p),(19)

as follows from (14). Hence, applying the involution τ to the picture shown
on Figure 3, we have to multiply the coorientation of W u(p) by (−1)n−i−1

and multiply the orientation of W s(q) by (−1)n−i. As the result the total
sign will be multiplied by (−1)n−i−1 · (−1)n−i = −1. This proves (18)
and completes the proof of the first statement of the theorem. The second
statement of the Theorem follows from the first one combined with (19). ¤

Theorem 5. Let M be a smooth compact connected manifold with boundary.
Suppose that M is equipped with a Morse function f : M → [0, 1] and with
a smooth involution τ : M → M satisfying the properties of Theorem 4.
Assume that for any critical point p ∈ M of the function f we are given a
smooth closed connected submanifold

Xp ⊂M

with the following properties:
(1) Xp is τ -invariant, i.e. τ(Xp) = Xp;
(2) p ∈ Xp and for any x ∈ Xp − {p}, one has f(x) < f(p);
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(3) the function f |Xp is Morse and the critical points of the restriction
f |Xp coincide with the fixed points of τ lying in Xp. In particular,
dimXp = ind(p).

(4) For any fixed point q ∈ Xp of τ the Morse indexes of f and of f |Xp

at q coincide.
Then each submanifold Xp is orientable and the set of homology classes
realized by {Xp}p∈Fix(τ) forms a free basis of the integral homology group
H∗(M ;Z). In other words, we claim that the inclusion induces an isomor-
phism ⊕

ind(p)=i

Hi(Xp;Z) → Hi(M ;Z)(20)

for any i.

Proof of Theorem 5. First we note that each submanifold Xp is orientable.
Indeed, Theorem 4 applied to the restriction f |Xp implies that f |Xp has
a unique maximum and unique minimum and the top homology group
Hi(Xp;Z) = Z is infinite cyclic where i = dimXp = ind(p).

For a regular value a ∈ R of f we denote by Ma ⊂ M the preimage
f−1(−∞, a]. It is a compact manifold with boundary. It follows from Theo-
rem 4 that f has a unique local minimum and therefore Ma is either empty
or connected. For a slightly above the minimum value f(p0) = min f(M)
the manifold Ma is a disc and the homology of Ma is obviously realized by
the submanifold Xp0 ⊂Ma.

We proceed by induction on a. Our inductive statement is that the homol-
ogy of Ma is freely generated by the homology classes of the submanifolds
Xp where p runs over all critical points of f satisfying f(p) ≤ a.

Suppose that the statement is true for a and the interval [a, b] contains
a single critical value c. Let p1, . . . , pr be the critical points of f lying in
f−1(c). Denote

X =
r∐

i=1

Xpi

(the disjoint union). Then f induces a Morse function f̄ : X → R and we
set

Xa = f̄−1(−∞, a].
Consider the Morse - Smale complexes C∗(Ma), C∗(M b), C∗(X) and C∗(Xa);
the first two are constructed using the function f and the latter two are con-
structed using the function f̄ . We have the following Mayer-Vietoris-type
short exact sequence of chain complexes

0→ C∗(Xa)→ C∗(X)⊕ C∗(Ma) Φ→ C∗(M b)→ 0(21)

which (by the arguments indicated in the proof of Theorem 4) have trivial
differentials and hence the sequence

0→ Hi(Xa)→ Hi(X)⊕Hi(Ma) Φ→ Hi(M b)→ 0(22)
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is exact (all homology groups have coefficients Z). It follows from Lemma
6 below and the construction of the Morse - Smale complex (compare [11],
§7) that the homomorphism Φ (which appears in (21) and (22)) coincides
with the sum of the chain maps induced by the inclusions X → M b and
Ma →M b.

For i < dimX we have Hi(Xa)→ Hi(X) is an isomorphism (by Theorem
4) and hence (22) implies that Hi(Ma) → Hi(M b) is an isomorphism. For
i ≥ dimX we have Hi(Xa) = 0 and therefore Φ : Hi(X) ⊕ Hi(Ma) →
Hi(M b) is an isomorphism. This completes the step of induction. ¤

Here is a minor variation of the Morse lemma which has been used in the
proof.

Lemma 6. Let f : Rn → R be a smooth function having 0 ∈ Rn as a
nondegenerate critical point and suppose that for some k ≤ n the restriction
f |Rk×{0} : Rk ×{0} → R also has a nondegenerate critical point at 0 ∈ Rk.
Then there exists a neighborhood U ⊂ Rn of 0 and a local coordinate system
x : U → Rn such that x(Rk × {0} ∩ U) ⊂ Rk × {0} and

f(x1, . . . , xn) = ±x2
1 + · · ·+±x2

n + f(0).(23)

Proof. One simply checks that the coordinate changes in the standard proof
of the Morse lemma (compare [10], §2) can be chosen so that the subspace
Rk × {0} is mapped to itself. ¤

4. The robot arm distance map

A robot arm is a simple mechanism consisting of n bars (links) of fixed
length (l1, . . . , ln) connected by revolving joints, see Figure 4. The initial
point of the robot arm is fixed on the plane. The moduli space of a robot

Figure 4. Robot arm.

arm (i.e. the space of its possible shapes) is

W = {(u1, . . . , un) ∈ S1 × · · · × S1}/SO(2).(24)
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Clearly, W is diffeomorphic to a torus Tn−1 of dimension n − 1. A dif-
feomorphism can be specified, for example, by assigning to a configuration
(u1, . . . , un) the point (1, u2u

−1
1 , u3u

−1
1 , . . . , un−1u

−1
1 ) ∈ Tn−1 (measuring

angles between the directions of the first and the other links).
Consider the moduli space of polygons M` (where ` = (l1, . . . , ln)) which

is naturally embedded into W .
We define a function on W as follows:

f` : W → R, f`(u1, . . . , un) = −
∣∣∣∣∣

n∑

i=1

liui

∣∣∣∣∣
2

.(25)

Geometrically the value of f` equals the negative of the squared distance
between the initial point of the robot arm to the end of the arm shown by
the dotted line on Figure 4. Note that the maximum of f` is achieved on
the moduli space of planar linkages M` ⊂W .

An important role play the collinear configurations, i.e. such that ui =
±uj for all i, j, see Figure 5. We will label such configurations by long and
median subsets J ⊂ {1, . . . , n} assigning to any such subset J the configura-
tion pJ ∈W given by pJ = (u1, . . . , un) where ui = 1 for i ∈ J and ui = −1
for i /∈ J . Note that pJ lies in M` ⊂W if and only if the subset J is median.

Figure 5. A collinear configuration pJ of the robot arm.

Lemma 7. The critical points of f` : W → R lying in W−M` are exactly the
collinear configurations pJ corresponding to long subsets J ⊂ {1, 2, . . . , n}.
Each pJ , viewed as a critical point of f`, is nondegenerate in the sense of
Morse and its Morse index equals n− |J |.

This lemma is well-known. It can be found as Proposition 3.3 in [14]
and as combination of Theorems 3.1 and 3.2 in [1]; in both these references
slightly different notations were used.

5. Proof of Theorem 1.

Consider the moduli space W of the robot arm (defined by (24)) with the
function f` : W → R (defined by (25)). There is an involution

τ : W →W(26)

given by

τ(u1, . . . , un) = (ū1, . . . , ūn).(27)
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Here the bar denotes complex conjugation, i.e. the reflection with respect
to the real axis. It is obvious that formula (27) maps SO(2)-orbits into
SO(2)-orbits and hence defines an involution on W . The fixed points of τ
are the collinear configurations of the robot arm, i.e. the critical points of
f` in W −M`, see Lemma 7. Our plan it to apply Theorems 4 and 5 to the
sublevel sets

W a = f−1
` (−∞, a](28)

of f`. Recall that the values of f` are nonpositive and the maximum is
achieved on the submanifold M` ⊂ W . From Lemma 7 we know that the
critical points of f` are the collinear configurations pJ . The latter are labelled
by long subsets J ⊂ {1, . . . , n} and pJ = (u1, . . . , un) where ui = 1 for i ∈ J
and ui = −1 for i /∈ J . One has

f`(pJ) = −(LJ)2.(29)

Here LJ =
∑n

i=1 liui with pJ = (u1, . . . , un).
The number a which appears in (28) will be chosen so that

−(LJ)2 < a < 0(30)

for any long subset J such that the manifold W a contains all the critical
points pJ . The situation is shown schematically on Figure 6.

Figure 6. Function f` : W → R and the manifold W a.

For each subset J ⊂ {1, . . . , n} we denote by `J the length vector obtained
from ` = (l1, . . . , ln) by integrating all links li with i ∈ J into one link. For
example, if J = {1, 2} then `J = (l1 + l2, l3, . . . , ln). We denote by WJ

the moduli space of the robot arm with the length vector `J . It is obvious
that WJ is diffeomorphic to a torus Tn−|J |. We view WJ as being naturally
embedded into W . Note that the submanifold WJ ⊂ W is disjoint from
M` (in other words, WJ contains no closed configurations) if and only if the
subset J ⊂ {1, . . . , n} is long.

Lemma 8. Let J ⊂ {1, . . . , } be a long subset. The submanifold WJ ⊂ W
has the following properties:

(1) WJ is invariant with respect to the involution τ : W →W ;
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(2) the restriction of f` onto WJ is a Morse function having as its critical
points the collinear configurations pI where I runs over all subsets
I ⊂ {1, . . . , n} containing J .

(3) for any such pI the Morse indexes of f` and of f`|WJ
at pI coincide.

(4) in particular, f |WJ
achieves its maximum at pJ ∈WJ .

Proof. (1) is obvious. Statements (2) and (3) follow from Lemma 7 applied
to the restriction of f` onto WJ . Here we use the assumption that J is long.
Under this assumption the long subset for the integrated length vector `J are
in one-to-one correspondence with the long subsets I ⊂ {1, . . . , n} containing
J . Statement (4) follows from (3) as the Morse index of f`|WJ

at point pJ

equals n− |J | = dim WJ . ¤
Applying Theorems 4 and 5 and taking into account Lemma 8 we obtain:

Corollary 9. One has:
(1) If a satisfies (30) then the manifold W a (see (28)) contains all sub-

manifolds WJ where J ⊂ {1, . . . , n} is an arbitrary long subset.
(2) The homology classes of the submanifolds WJ form a free basis of

the integral homology group H∗(W a;Z).

Next we examine the homomorphism

φ∗ : Hi(W a;Z)→ Hi(W ;Z)(31)

induced by the inclusion φ : W a →W .
Below we will assume that l1 ≥ lj for all j ∈ {1, . . . , n}, i.e. l1 is the

longest link. This may always be achieved by relabelling.
We describe a specific basis of the homology H∗(W ;Z). For any subset

J ⊂ {1, 2, . . . , n} we denote by WJ the moduli space of configurations of the
robot arm with length vector `J where all links li with i ∈ J are integrated
into a single link. Note that WJ is naturally embedded into W and

WJ ∩M` = ∅
if and only if the set J is long. Since W is homeomorphic to the torus Tn−1,
it is easy to see that a basis of the homology group H∗(W ;Z) is formed by
the homology classes of the submanifolds WJ where J ⊂ {1, . . . , n} runs
over all subsets containing 1. We will denote the homology class of WJ by

[WJ ] ∈ Hn−|J |(W ;Z).(32)

Assuming that J, J ′ ⊂ {1, . . . , n} are two subsets with |J | + |J ′| = n + 1
the classes [WJ ] and [WJ ′ ] have complementary dimensions in W and their
intersection number is given by

[WJ ] · [WJ ′ ] =




±1, if |J ∩ J ′| = 1,

0, if |J ∩ J ′| > 1.
(33)

Indeed, if J ∩ J ′ = {i0} then WJ ∩WJ ′ consists of a single point {p}, the
moduli space of a robot arm with all links integrated into one link. Let us
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show that the intersection WJ ∩WJ ′ is transversal. A tangent vector to W
at p = (u1, . . . , un) can be labelled by a vector w = (λ1, . . . , λn) ∈ Rn (an
element of the Lie algebra of the torus Tn) viewed up to adding vectors of
the form (λ, λ, . . . , λ). Such a tangent vector w is tangent to the submanifold
WJ iff λi = λj for all i, j ∈ J . Given w as above it can be written as

w = w′ + w′′ + (λi0 , . . . , λi0)

where w′ has coordinates 0 on places i ∈ J and coordinates λi−λi0 on places
i 6∈ J ; coordinates of w′′ vanish on places i /∈ J and are λi − λi0 on places
i ∈ J . Hence every tangent vector to W is a sum of a tangent vector to WJ

and a tangent vector to WJ ′ .
Now suppose that |J ∩ J ′| > 1. We will show that then the submanifold

WJ ′ can be continuously deformed inside W to a submanifold W ′
J ′ such that

WJ ∩W ′
J ′ = ∅. This would prove the second claim in (33). Let us assume

that {1, 2} ⊂ J ∩ J ′. Define gt : WJ ′ →W by

gt(u1, . . . , un) = (eiθtu1, u2, . . . , un), t ∈ [0, 1].

Here θ satisfies 0 < θ < π. Then W ′
J ′ = g1(WJ ′) is clearly disjoint from WJ ;

indeed, the links l1 and l2 are parallel in WJ and make an angle θ in W ′
J ′ .

It follows that the intersection form in the basis [WJ ], [WJ ′ ] ∈ H∗(W ;Z),
where J 3 1, J ′ 3 1, has a very simple form:

[WJ ] · [WJ ′ ] =




±1, if J ∩ J ′ = {1},

0, if |J ∩ J ′| > 1.
(34)

In particular, given [WJ ] with 1 ∈ J , its “dual” homology class ∈ H∗(W ;Z)
(in the sense of the homological intersection form) equals [WK ] where K =
CJ ∪ {1}; here CJ denotes the complement of J in {1, . . . , n}.

Denote by A∗ ⊂ H∗(W a;Z) (correspondingly, B∗ ⊂ H∗(W a;Z)) the sub-
group generated by the homology classes [WJ ] where J ⊂ {1, . . . , n} is long
and contains 1 (correspondingly, J is long and 1 /∈ J). Then

Hi(W a;Z) = Ai ⊕Bi.(35)

Similarly, one has

Hi(W ;Z) = Ai ⊕ Ci ⊕Di,(36)

where:
• A∗ is as above;
• C∗ ⊂ H∗(W ;Z) is the subgroup generated by the homology classes

[WJ ] with J ⊂ {1, . . . , n} short and 1 ∈ J ;
• D∗ is the subgroup generated by the classes [WJ ] ∈ H∗(W ;Z) where

J is median and contains 1.
It is clear that φ∗ (see (31)) is identical when restricted to Ai, compare

(35) and (36). We claim that the image φ∗(Bi) is contained in Ai. This
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would follow once we show that

[WJ ] · [WK ] = 0(37)

assuming that [WJ ] ∈ Bi and [WK ] is the dual of a class [WJ ′ ] ∈ Ci or
[WJ ′ ] ∈ Di, see (34). We have

(1) J is long and 1 /∈ J ,
(2) J ′ is short or median and 1 ∈ J ′,
(3) |J | = |J ′|,
(4) K = CJ ′ ∪ {1}.

Here CJ ′ denotes the complement of J ′ in {1, . . . , n}. By (33), to prove
(37) we have to show that under the above conditions one has |J ∩K| > 1.
Indeed, suppose that |J ∩K| = 1, i.e. J ∩K = {j}, a single element subset.
Then J ′ is obtained from J by removing the index j and adding the index
1 which leads to a contradiction: indeed, J is long, lj ≤ l1 and J ′ is either
short or median.

Corollary 10. The kernel of the homomorphism

φi : Hi(W a;Z)→ Hi(W ;Z)

has rank equal1 to rkBi and the cokernel has rank rk Ci + rk Di.

Below we skip the coefficient group Z from the notations.
One has

Hj(W,W a) ' Hj(N, ∂N) ' Hn−1−j(N) ' Hn−1−j(M`).(38)

Here N denotes the preimage f−1
` ([a, 0]). Note that M` is a deformation

retract of N . Indeed, consider M` ⊂ N ′′ ⊂ N ′ ⊂ N where N ′ is a regular
neighborhood of M` in N and N ′′ is a sublevel set N ′′ = f−1

` ([a′, 0]) and
a < a′ < 0 is such that N ′′ is contained in N ′. Since M` ⊂ N ′ and N ′′ ⊂ N
are deformation retracts, we have the following diagram

M`
r′← N ′

i ↓ ↗ j ↓ k

N ′′ r← N

where i, j, k are inclusions and r′ji = 1M`
, jir′ ' 1N ′ , rkj = 1N ′′ , kjr ' 1N .

It follows that g = r′jr : N →M` is a deformation retraction.
Hence we obtain the following short exact sequence

0→ coker(φn−1−j)→ Hj(M`)→ kerφn−2−j → 0(39)

which splits since the kernel of φn−2−j is isomorphic to Bn−2−j (see above)
and hence it is free abelian.

This proves that the cohomology H∗(M`) has no torsion and therefore
the homology H∗(M`) is free as well (by the Universal Coefficient Theorem).

1Note that the kernel of φi (viewed as a subgroup) is distinct from Bi in general.
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The cokernel of φn−1−j is isomorphic to Cn−1−j ⊕Dn−1−j as we established
earlier. We find that the rank of cokerφn−1−j equals the number of subsets
J ⊂ {1, . . . , n} which are short or median and have cardinality |J | = j + 1.
In other words,

rk(cokerφn−1−j) = aj + bj ,(40)

where we use the notation introduced in the statement of Theorem 1.
The rank of the kernel of φn−2−j equals the rank of Bn−2−j , i.e. the

number of long subsets J ⊂ {2, . . . , n} of cardinality |J | = j + 2. Passing to
the complements, we find

rk(kerφn−2−j) = an−3−j(41)

i.e. the number of short subsets containing 1 with |J | = n− 2− j.
Combining (40), (41) with the exact sequence (39) we finally obtain

rkHj(M`) = rkHj(M`) = aj + bj + an−3−j .

This completes the proof, compare (1).

6. Proofs of Theorems 2 and 3

The proofs are based on Theorem 1 and are purely combinatorial. Let
` = (l1, . . . , ln) be a length vector. Without loss of generality we may assume
that l1 ≤ l2 ≤ · · · ≤ ln. By Theorem 1 the sum of Betti numbers of M`

equals twice the number of short subsets plus the number of median subsets
of {1, . . . , n}, containing n. We show that the number of such subsets is
bounded above by Bn (given by (11)); moreover, we show that it is bounded
above by B′

n = 2 · Bn−1 (see (12)) assuming additionally that ` is generic
and n is even.

We will treat simultaneously both cases n even and n odd. Denote r =
[(n− 1)/2] so that n = 2r + 2 for n even and n = 2r + 1 for n odd.

For 1 ≤ i ≤ n we denote by Si(`) (respectively, Mi(`)) the number of
short (respectively, median) subsets of {1, . . . , n} containing the subset {n−
i + 1, n − i + 2, . . . , n}. Clearly, Sr+1(`) = Mr+1(`) = 0 for n odd and
Sr+1(`) = 0, Mr+1(`) ≤ 1 for n even.

We claim that

2 · Si(`) + Mi(`) ≤ 2n−i −
r∑

j=r−i+1

(
n− i

j

)
(42)

for all 1 ≤ i ≤ r + 1. For i = 1 inequality (42) gives

2 · S1(`) + M1(`) ≤ 2n−1 −
(

n− 1
r

)
= Bn

which is equivalent to our goal (11). We will prove (42) by induction on n
and by descending induction on i.

For n odd and i = r + 1 inequality (42) gives 2 · Sr+1(`) + Mr+1(`) ≤ 0,
which follows from our remark above. Similarly, for n even and i = r + 1
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inequality (42) states 2 ·Sr+1(`) + Mr+1(`) ≤ 1, which is obviously true, see
above. These two remarks serve as the initial step of induction.

Assume now that inequality (42) is true (a) for i + 1 and (b) for all i and
all length vectors `′ = (l′1, . . . , l

′
m) with m < n.

One can write

Si(`) = Si+1(`) + S′i(`), Mi(`) = Mi+1(`) + M ′
i(`)(43)

where S′i(`) and M ′
i(`) denote the numbers of short and median subsets

of {1, . . . , n} containing {n − i + 1, . . . , n} and not containing n − i. One
observes that

S′i(`) ≤ Si−1(˜̀), and S′i(`) + M ′
i(`) ≤ Si−1(˜̀) + Mi−1(˜̀),(44)

where
˜̀= (l1, l2, . . . , ln−i−1, ln−i+2, . . . , ln).(45)

Hence, using (43) and (44), we obtain

2Si(`) + Mi(`) ≤ [2Si+1(`) + Mi+1(`)] +
[
2Si−1(˜̀) + Mi−1(˜̀)

]
.(46)

By our inductive hypothesis,

2 · Si+1(`) + Mi+1(`) ≤ 2n−i−1 −
r∑

j=r−i

(
n− i− 1

j

)

= 2n−i−1 −
r−1∑

j=r−i+1

(
n− i− 1

j − 1

)
+

(
n− i

r

)

and

2Si−1(˜̀) + Mi−1(˜̀) ≤ 2n−i−1 −
r−1∑

j=r−i+1

(
n− i− 1

j

)

Adding the last two inequalities and taking into account (46) we obtain

2Si(`) + Mi(`) ≤ 2n−i −
r−1∑

j=r−i+1

[(
n− i− 1

j

)
+

(
n− i− 1

j − 1

)]

+
(

n− i
r

)
= 2n−i −

r∑

j=r−i+1

(
n− i

j

)
.

This completes the proof of Theorem 2.
To prove Theorem 3 we assume that n is even, n = 2r + 2, and ` =

(l1, . . . , ln) is a generic length vector where l1 ≤ l2 ≤ · · · ≤ ln. We replace
the inductive hypothesis (42) by

2 · Si(`) ≤ 2n−i − 2 ·
r∑

j=r−i+1

(
n− i− 1

j

)
(47)
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for 1 ≤ i ≤ r + 1. For i = 1 inequality (47) gives the desired inequality

2 · S1(`) ≤ 2n−1 − 2 ·
(

2r
r

)
= B′

n,

compare (12). For i = r + 1 inequality (47) states Sr+1(`) ≤ 0 which is
obviously correct; this statement will be the base of induction. To perform
the step of induction we use inequalities (43) and (44) which are valid in the
case of n even as well. We find

2 · Si+1(`) ≤ 2n−i−1 − 2 ·
r∑

j=r−i

(
n− i− 2

j

)

and

2 · S′i(`) ≤ 2n−i−1 − 2 ·
r−1∑

j=r−i+1

(
n− i− 2

j

)

(both by the induction hypothesis) and adding the last two inequalities, us-
ing (43), and performing transformations similar to the odd case, we obtain
(47).

This completes the proof of Theorem 3.
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