FINITE DOMINATION, NOVIKOV HOMOLOGY AND NONSINGULAR CLOSED 1-FORMS

DIRK SCHÜTZ

Abstract

Let X be a finite connected CW-complex and $\rho: \bar{X} \rightarrow X$ a regular covering space with free abelian covering transformation group. For $\xi \in H^{1}(X ; \mathbb{R})$ we define the notion of ξ-contractibility of X. This notion is closely related to the vanishing of the Novikov homology of the pair (X, ξ). We show that finite domination of \bar{X} is equivalent to X being ξ-contractible for every nonzero ξ with $\rho^{*} \xi=0 \in H^{1}(\bar{X} ; \mathbb{R})$. If M is a closed connected smooth manifold the condition that M is ξ-contractible is necessary for the existence of a nonsingular closed 1 -form representing ξ. Also ξ-contractibility guarantees the definition of the Latour obstruction $\tau_{L}(M, \xi)$ whose vanishing is then sufficient for the existence of a nonsingular closed 1-form provided $\operatorname{dim} M \geq 6$. Now if $\rho: \bar{M} \rightarrow M$ is a finitely dominated regular \mathbb{Z}^{k}-covering space we get that $\tau_{L}(M, \xi)$ is defined for every nonzero ξ with $\rho^{*} \xi=0$ and the vanishing of one such obstruction implies the vanishing of all such $\tau_{L}(M, \xi)$.

1. Introduction

Given an element $\xi \in H^{1}(M ; \mathbb{R})$ where M is a closed connected smooth manifold, it can be represented by a closed 1 -form on M. Provided that $\operatorname{dim} M \geq 6$ Latour [8] gave necessary and sufficient conditions for the existence of a nonsingular closed 1 -form representing ξ. In the case that ξ is actually an integer valued cohomology class the existence of a nonsingular closed 1-form representing ξ is equivalent to the existence of a smooth fibre bundle map $f: M \rightarrow S^{1}$ which represents ξ. Necessary and sufficient conditions for the existence of such a smooth fibre bundle map were already given by Farrell [4, 5], see also Siebenmann [17].

Theorem 1.1 (Farrell [5]). Let M be a closed connected smooth manifold with $\operatorname{dim} M \geq 6$ and let $f: M \rightarrow S^{1}$ represent a nonzero cohomology class in $H^{1}(M ; \mathbb{Z})$ $\cong\left[M, S^{1}\right]$. Then f is homotopic to a smooth fibre bundle map if and only if \bar{M} is finitely dominated and $\tau_{F}(M, f)=0 \in \mathrm{~Wh}\left(\pi_{1}(M)\right)$.

Here \bar{M} is the infinite cyclic covering space corresponding to $\operatorname{ker}\left(f_{\#}: \pi_{1}(M) \rightarrow\right.$ $\pi_{1}\left(S^{1}\right)$) and $\tau_{F}(M, f)$ is a naturally defined obstruction whose definition is given in Section 5. On the other hand, Latour's theorem is given by

Theorem 1.2 (Latour [8]). Let M be a closed connected smooth manifold with $\operatorname{dim} M \geq 6$ and let $\xi \in H^{1}(M ; \mathbb{R})$ be nonzero. Then ξ can be represented by a nonsingular closed 1-form if and only if M is $(\pm \xi)$-contractible and $\tau_{L}(M, \xi)=0 \in$ $\mathrm{Wh}\left(\pi_{1}(M) ; \xi\right)$.

The condition that M is $(\pm \xi)$-contractible is given in Definition 2.2. Latour actually uses a different, but equivalent condition, see Remark 2.3 for details. Again $\tau_{L}(M, \xi)$ is a naturally defined obstruction, but in a group which depends on ξ. Indeed the
group $\mathrm{Wh}\left(\pi_{1}(M) ; \xi\right)$ is an algebraic K-group of a completion of the group ring $\mathbb{Z} \pi_{1}(M)$ and there is a natural homomorphism $i_{*}: \mathrm{Wh}\left(\pi_{1}(M)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(M) ; \xi\right)$.
Ranicki [13] has shown that for $\xi \in H^{1}(M ; \mathbb{Z})$ finite domination of the infinite cyclic covering space \bar{M} is equivalent to M being $(\pm \xi)$-contractible. Furthermore he showed in $[14, \S 15]$ that $i_{*} \tau_{F}(M, f)=\tau_{L}\left(M, f_{\#}\right)$ so Theorem 1.2 is indeed a generalization of Theorem 1.1. But for $\xi \in H^{1}(M ; \mathbb{R})$ which do not come from circle valued maps there is the problem that the groups $\mathrm{Wh}\left(\pi_{1}(M) ; \xi\right)$ are not very well understood. It is also not clear whether an obstruction can be defined in $\mathrm{Wh}\left(\pi_{1}(M)\right)$. One aim of this paper is to give conditions under which the obstruction $\tau_{L}(M, \xi)$ actually does come from $\mathrm{Wh}\left(\pi_{1}(M)\right)$.
Notice that $H^{1}(M ; \mathbb{R}) \cong \operatorname{Hom}\left(\pi_{1}(M), \mathbb{R}\right)$ so we can think of the cohomology class ξ as a homomorphism $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$. Denote \bar{M} the covering space of M corresponding to $\operatorname{ker} \xi$. It is easy to see that there is a nonnegative integer k such that $\bar{M} \rightarrow M$ is a \mathbb{Z}^{k}-covering. We already remarked that in the case $k=1 M$ being $(\pm \xi)$-contractible is equivalent to \bar{M} being finitely dominated. In general it is easy to give examples where M is $(\pm \xi)$-contractible, but \bar{M} is not finitely dominated. On the other hand we do get that M is $(\pm \xi)$-contractible if \bar{M} is finitely dominated, but we also get ξ^{\prime}-contractibility for many other homomorphisms. More precisely we get the following result.

Theorem 1.3. Let X be a finite connected $C W$-complex and $N \leq \pi_{1}(X)$ a normal subgroup such that $\pi_{1}(X) / N \cong \mathbb{Z}^{k}$ for some $k \geq 0$. Denote \bar{X} the regular covering space corresponding to N. Then \bar{X} is finitely dominated if and only if X is ξ contractible for all nonzero homomorphisms $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$.

The case $k=1$ is proven in Ranicki [13]. If X is aspherical it also follows from the work of Bieri and Renz [1, §5] in which case finite domination can be replaced by homotopy finite. In general finite domination cannot be replaced by homotopy finite, compare Example 5.11.
The proof that finite domination implies ξ-contractibility is an induction argument based on the proof in Ranicki [13]. The other direction is more complicated and is based on arguments used by Bieri and Renz [1, §5]. In the case $k=1$ Ranicki [13] has a more elegant argument but we do not know how to generalize it.
An unpublished result of Farrell states that if two maps $f, g: M \rightarrow S^{1}$ represent linearly independent elements of $H^{1}(M ; \mathbb{Z})$ and the \mathbb{Z}^{2}-covering space \bar{M} corresponding to $\operatorname{ker} f_{\#} \cap \operatorname{ker} g_{\#}$ is finitely dominated, then $\tau_{F}(M, f)=\tau_{F}(M, g)$. So f is homotopic to a fibre bundle map if and only if the same holds for g. Because of Theorem 1.3 we know that finite domination of \bar{M} is equivalent to the ξ-contractibility of M for every nonzero $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ which vanishes on ker $f_{\#} \cap \operatorname{ker} g_{\#}$. Thus we expect an impact on the obstructions $\tau_{L}(M, \xi)$ for such ξ as well. Indeed it turns out that in this situation $\tau_{F}(M, f)$ determines every such $\tau_{L}(M, \xi)$ via $i_{*}: \mathrm{Wh}\left(\pi_{1}(M)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(M) ; \xi\right)$. Combining this with Theorem 1.2 we get

Theorem 1.4. Let M be a closed connected smooth manifold with $\operatorname{dim} M \geq 6$, $N \leq \pi_{1}(M)$ a normal subgroup such that $\pi_{1}(M) / N \cong \mathbb{Z}^{k}$ for some $k \geq 1$ and such that the covering space corresponding to N is finitely dominated. Then the following are equivalent.
(1) There is a nonzero $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ which can be represented by a nonsingular closed 1-form.
(2) Every nonzero $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ can be represented by a nonsingular closed 1-form.

So in the situation of Theorem 1.4 we either get that all nonzero homomorphisms vanishing on N can be represented by a nonsingular closed 1-form or none of them. I would like to thank Thomas Farrell, Ross Geoghegan and Andrew Ranicki for valuable discussions. This research was supported by the SFB 478 "Geometrische Strukturen in der Mathematik" at the University Münster.

2. BASIC DEFINITIONS

Definition 2.1. A topological space X is called finitely dominated if there exists a finite CW-complex K and maps $a: K \rightarrow X, b: X \rightarrow K$ such that $a b \simeq \operatorname{id}_{X}: X \rightarrow$ X. The space X is called homotopy finite if it is homotopy equivalent to a finite CW-complex.

Obviously a homotopy finite space is finitely dominated. Conversely for a finitely dominated space X Wall [19] defined a finiteness obstruction $[X] \in \tilde{K}_{0}\left(\mathbb{Z} \pi_{1}(X)\right)$ such that X is homotopy finite if and only if $[X]=0$.
We will be interested in the finite domination properties of \mathbb{Z}^{k}-covers of a finite CW-complex X for integers $k \geq 1$. The case $k=1$ was studied by Ranicki [13]. To do this we will study homomorphisms $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ which give rise in a natural way to \mathbb{Z}^{k}-covering spaces of X.
Let X be a connected finite CW-complex. We denote the universal covering space of X by \tilde{X}. Since $H^{1}(X ; \mathbb{R}) \cong \operatorname{Hom}\left(\pi_{1}(X), \mathbb{R}\right)$ we think of elements $\xi \in H^{1}(X ; \mathbb{R})$ as homomorphisms $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$. We do not have to worry about basepoints as \mathbb{R} is commutative. Now given a homomorphism $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ there is a nonnegative integer k such that $\pi_{1}(X) / \operatorname{ker} \xi \cong \mathbb{Z}^{k}$ since X is a finite complex. More generally if $N \leq \pi_{1}(X)$ is a normal subgroup, we denote $X_{N}=\tilde{X} / N$, a regular covering space of X. In particular for $N=\operatorname{ker} \xi$ we get that X_{N} is a \mathbb{Z}^{k}-covering of X. Given a covering space $\rho: \bar{X} \rightarrow X$, we denote the group of covering transformations by $\Delta(\bar{X}: X)$.
Notice that $\pi_{1}(X)$ acts on \tilde{X} by covering transformations and on \mathbb{R} by $g \cdot x=x+\xi(g)$ for $g \in \pi_{1}(X)$ and $x \in \mathbb{R}$. Since \mathbb{R} is contractible we can find an equivariant map $h: \tilde{X} \rightarrow \mathbb{R}$, that is a map with $h(g x)=h(x)+\xi(g)$. Such an equivariant map h will be called a control function for ξ.
Definition 2.2. Let $\varepsilon>0$ and $h: \tilde{X} \rightarrow \mathbb{R}$ a control function for ξ. We say that X is ξ-contractible if there is an equivariant homotopy $H: \tilde{X} \times[0,1] \rightarrow \tilde{X}$ with $H_{0}=\mathrm{id}_{\tilde{X}}$ and

$$
h H_{1}(x)-h(x) \leq-\varepsilon
$$

for all $x \in \tilde{X}$.
It is easy to see that this definition does not depend on ε or h. In fact we can easily increase the $\varepsilon>0$ by iterating the homotopy. Then the condition does not depend on h because X is a finite complex. Also the control function h factors through X_{N} with $N=\operatorname{ker} \xi$ so the condition of X being ξ-contractible can also be tested
using X_{N}. We will write X is $(\pm \xi)$-contractible if X is both ξ-contractible and $(-\xi)$-contractible.
Remark 2.3. The condition that X is ξ-contractible is equivalent to other conditions which have appeared in the literature. In $[8, \S 1]$ Latour defines the space $\mathcal{C}_{\xi}(X)$ to be the set of maps $\gamma:[0, \infty) \rightarrow X$ with the property that they lift to a $\operatorname{map} \tilde{\gamma}:[0, \infty) \rightarrow \tilde{X}$ such that $\lim _{t \rightarrow \infty} h \tilde{\gamma}(t)=-\infty$. Equipped with an appropriate topology the evaluation map $e: \mathcal{C}_{\xi}(X) \rightarrow X$ defined by $e(\gamma)=\gamma(0)$ is a fibration. Let $\mathcal{M}_{\xi}(X)$ be the fibre of e. It is easy to see that X is ξ-contractible if and only if there is a section $s: X \rightarrow \mathcal{C}_{\xi}(X)$ of e. Now Latour [8, Prop.1.4] shows that the existence of a section is equivalent to $e: \mathcal{C}_{\xi}(X) \rightarrow X$ being a homotopy equivalence and equivalent to $\mathcal{M}_{\xi}(X)$ being contractible.
Farber [3] defines a Lusternik-Schnirelmann category for the pair (X, ξ) where X is a finite CW -complex and $\xi \in H^{1}(X ; \mathbb{R})$, denoted by $\operatorname{cat}(X, \xi)$. This is a nonnegative integer and for a connected X it follows directly from the definitions that $\operatorname{cat}(X, \xi)=0$ if and only if X is ξ-contractible.

Thus we get from Farber [3, Lm.3.6] homotopy invariance.
Lemma 2.4. Let X be a finite connected $C W$-complex, $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ a homomorphism such that X is ξ-contractible. Let Y be a finite connected $C W$-complex and $\varphi: Y \rightarrow X$ a homotopy equivalence. Then Y is $\varphi^{*} \xi$-contractible where $\varphi^{*} \xi=\xi \circ \varphi_{\#}: \pi_{1}(Y) \rightarrow \mathbb{R}$.

Another easy observation is that X being ξ-contractible implies that $\xi \neq 0$ and that X is $c \xi$-contractible for every $c>0$.
We thus define

$$
S\left(\pi_{1}(X)\right)=H^{1}(X ; \mathbb{R})-\{0\} / \sim
$$

where $\xi_{1}, \xi_{2} \in H^{1}(X ; \mathbb{R})-\{0\}$ are equivalent if there is a $c>0$ such that $\xi_{1}=c \xi_{2}$. Clearly $S\left(\pi_{1}(X)\right)$ is an $(r-1)$-sphere, where r is the first Betti number of X. In particular we have a natural topology on $S\left(\pi_{1}(X)\right)$.
By abuse of notation we will write $\xi \in S\left(\pi_{1}(X)\right)$ for a nonzero homomorphism $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$. We also define

$$
\Sigma(X)=\left\{\xi \in S\left(\pi_{1}(X)\right) \mid X \text { is } \xi \text {-contractible }\right\}
$$

Remark 2.5. The notation $\Sigma(X)$ is motivated by Bieri and Renz [1]. In the case that X is aspherical $\Sigma(X)$ coincides with ${ }^{*} \Sigma^{m}\left(\pi_{1}(X)\right)$, where $m=\operatorname{dim} X$, as defined in [1, Rm.6.5].
We can refine the definition of $\Sigma(X)$ to $\Sigma^{k}(X)$ analogously to [1] by requiring the homotopy H in Definition 2.2 to be only defined on the k-skeleton of \tilde{X}. This leads to refinements to some of our results but at the moment we will stick to the absolute case.

We have the following openness result for $\Sigma(X)$.
Proposition 2.6. Let X be a finite connected $C W$-complex. Then $\Sigma(X)$ is an open subset of $S\left(\pi_{1}(X)\right)$.

Proof. Notice that $S\left(\pi_{1}(X)\right)=\operatorname{Hom}\left(\pi_{1}(X), \mathbb{R}\right)-\{0\} / \sim$ and the topology is induced from the compact-open topology where $\pi_{1}(X)$ is considered discrete.

Let $r=b_{1}(X)$, the first Betti number of X. There is an epimorphism $\varepsilon: \pi_{1}(X) \rightarrow$ \mathbb{Z}^{r} and $\pi_{1}(X)$ acts on \mathbb{R}^{r} by translation corresponding to ε. Let $h: \tilde{X} \rightarrow \mathbb{R}^{r}$ be an equivariant map and $S^{r-1} \subset \mathbb{R}^{r}$ the standard sphere. For every $\xi \in S\left(\pi_{1}(X)\right)$ there is a unique $x_{\xi} \in S^{r-1}$ such that $h_{\xi}: \tilde{X} \rightarrow \mathbb{R}$ given by $h_{\xi}(x)=\left\langle x, x_{\xi}\right\rangle$ is a control function for ξ. Here $\langle\cdot, \cdot\rangle$ is the Euclidean inner product.
Now let $\xi \in \sum_{\tilde{X}}(X)$. There exists an $\varepsilon>0$ and an equivariant homotopy H : $\tilde{X} \times[0,1] \rightarrow \tilde{X}$ such that $h_{\xi} H_{1}(x)-h_{\xi}(x) \leq-\varepsilon$ for all $x \in \tilde{X}$. Since H is an equivariant homotopy, we have that $\left|h H_{1}(x)-h(x)\right| \leq S$ for some $S>0$, where $|\cdot|$ is the Euclidean norm. So for $\xi^{\prime} \in S\left(\pi_{1}(X)\right)$ we get

$$
\begin{aligned}
h_{\xi^{\prime}} H_{1}(x)-h_{\xi^{\prime}}(x) & =\left\langle h H_{1}(x)-h(x), x_{\xi^{\prime}}\right\rangle \\
& =\left\langle h H_{1}(x)-h(x), x_{\xi}\right\rangle+\left\langle h H_{1}(x)-h(x), x_{\xi^{\prime}}-x_{\xi}\right\rangle \\
& \leq-\varepsilon+S \cdot\left|x_{\xi^{\prime}}-x_{\xi}\right|
\end{aligned}
$$

So for $\left|x_{\xi^{\prime}}-x_{\xi}\right|<\frac{\varepsilon}{2 S}$ we have that X is ξ^{\prime}-contractible. This shows that $\xi^{\prime} \in \Sigma(X)$ if ξ^{\prime} is close enough to ξ.

Prototypes for ξ-contractible spaces are given by mapping tori.
Definition 2.7. Let X be a topological space and $f: X \rightarrow X$ a map. Then the mapping torus $T_{f}=T(f: X \rightarrow X)$ is defined to be the quotient space $X \times[0,1] / \sim$ with $(x, 0) \sim(f x, 1)$.

If X is a finite CW-complex and f is cellular, then T_{f} has a natural structure as a finite CW-complex. Also there is an obvious map $g: T_{f} \rightarrow S^{1}$ given by $g([x, t])=[t] \in S^{1}=\mathbb{R} / \mathbb{Z}$.
Also T_{f} has a natural infinite cyclic covering space corresponding to g defined by

$$
\bar{T}_{f}=\coprod_{n=-\infty}^{\infty} X \times[0,1] \times\{n\} / \sim
$$

with $(x, 0, n) \sim(f x, 1, n-1)$. A covering transformation generating the covering transformation group is given by $[x, t, n] \mapsto[x, t, n+1]$ and there is a natural control $\operatorname{map} h: \bar{T}_{f} \rightarrow \mathbb{R}$ given by $h([x, t, n])=t+n$.
If $f, g: X \rightarrow X$ are homotopic then T_{f} and T_{g} are homotopy equivalent. Another useful property is the following proposition which goes back to Mather [9].
Proposition 2.8. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps between topological spaces. Then $\varphi_{f}: T_{g f} \rightarrow T_{f g}$ and $\varphi_{g}: T_{f g} \rightarrow T_{g f}$ given by $\varphi_{f}([x, t])=[f x, t]$ and $\varphi_{g}([y, t])=[g y, t]$ are mutually inverse homotopy equivalences.
Moreover, if X and Y are finite $C W$-complexes and f and g are cellular, these equivalences are simple.

Proof. See Hughes and Ranicki [7, Prop.14.2].
The natural projection $g: T_{f} \rightarrow S^{1}$ induces a surjective homomorphism $g_{\#}$: $\pi_{1}\left(T_{f}\right) \rightarrow \mathbb{Z}=\pi_{1}\left(S^{1}\right)$.

Lemma 2.9. If X is a finite connected $C W$-complex and $f: X \rightarrow X$ is cellular, then T_{f} is $g_{\#}$-contractible.

Proof. It is enough to define a \mathbb{Z}-equivariant homotopy $H: \bar{T}_{f} \times[0,1] \rightarrow \bar{T}_{f}$ with the necessary properties. Let

$$
H([x, t, n])=\left\{\begin{aligned}
{[x, t-s, n] } & t-s \geq 0 \\
{[f x, 1+t-s, n-1] } & t-s \leq 0
\end{aligned}\right.
$$

One easily checks that this is well defined and has the desired properties with respect to the natural control map.

Farber [3, Ex.3.4] shows that for a map $f: S^{2} \rightarrow S^{2}$ of degree 2 we get that T_{f} is $g_{\#^{-}}$ contractible, but not $\left(-g_{\#}\right)$-contractible. It would be interesting to have a closed manifold M with the property that M is ξ-contractible but not $(-\xi)$-contractible for some homomorphism $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$.
The following lemma is well known, see Farrell [5] or Ranicki [13].
Lemma 2.10. Let X be a connected $C W$-complex, $\rho: \bar{X} \rightarrow X$ an infinite cyclic covering space and $t: \bar{X} \rightarrow \bar{X}$ a generator of the covering transformation group. Then $\varphi: T(t: \bar{X} \rightarrow \bar{X}) \rightarrow X$ given by $\varphi([x, t])=\rho(x)$ is a homotopy equivalence.
Proof. Observe that $T(t: \bar{X} \rightarrow \bar{X})=\bar{X} \times_{\mathbb{Z}} \mathbb{R}$ and φ is a fibration with fibre \mathbb{R}.
We get the following useful corollary to Lemma 2.10, compare Mather [9].
Corollary 2.11. Let X be a connected $C W$-complex and $\rho: \bar{X} \rightarrow X$ a \mathbb{Z}^{k}-covering space for some $k \geq 1$. Assume that \bar{X} is finitely dominated. Then X is homotopy finite.

Proof. The proof is by induction on k. Let $k=1, K$ a finite CW-complex and $a: K \rightarrow \bar{X}, b: \bar{X} \rightarrow K$ be maps with $a b \simeq \operatorname{id}_{\bar{X}}$. By Lemma 2.10 and Proposition 2.8 we have

$$
X \simeq T(t: \bar{X} \rightarrow \bar{X}) \simeq T(t a b: \bar{X} \rightarrow \bar{X}) \simeq T(b t a: K \rightarrow K)
$$

and the space on the right is a finite CW-complex.
If $k>1$ we can factor $\rho: \bar{X} \rightarrow X$ into $\rho_{1}: \bar{X} \rightarrow X_{1}$ and $\rho_{2}: X_{1} \rightarrow X$ where ρ_{1} is a \mathbb{Z}^{k-1}-covering and ρ_{2} is a \mathbb{Z}-covering. By induction we get that X_{1} is homotopy finite, hence finitely dominated. Again by induction X is homotopy finite.

We now want to examine how mapping tori behave with G-actions. So let G be a group and X, Y be G-spaces. Let $f: X \rightarrow X$ and $h: X \rightarrow Y$ be G-maps. The proof of the following lemma is straightforward.
Lemma 2.12. In the above situation T_{f} is also a G-space with action $g \cdot[x, t]=$ $[g x, t]$. Furthermore if h and $h \circ f$ are equivariantly homotopic, we get a G equivariant map $\varphi: T_{f} \rightarrow Y$ by setting $\varphi([x, t])=H(x, t)$, where $H: X \times[0,1] \rightarrow Y$ is an equivariant homotopy $H: h \circ f \simeq h$.

Notice that in this situation \bar{T}_{f} is a $\mathbb{Z} \times G$-space with the obvious action.
We will also need equivariant versions of Proposition 2.8 and Lemma 2.10, the proofs extend to the equivariant setting.

Proposition 2.13. Let X and Y be G-spaces, $f: X \rightarrow Y$ and $g: Y \rightarrow X G$ equivariant maps. Then $T_{g f}$ and $T_{f g}$ are G-equivariant homotopy equivalent via the maps given in Proposition 2.8.

Lemma 2.14. Let X be a finite connected $C W$-complex, $\rho: \bar{X} \rightarrow X$ a $G \times \mathbb{Z}$ covering space and $X_{1}=\bar{X} / \mathbb{Z}$. Let $t: \bar{X} \rightarrow \bar{X}$ be a covering transformation generating $\Delta\left(\bar{X}: X_{1}\right)$. Then $\varphi: T(t: \bar{X} \rightarrow \bar{X}) \rightarrow X$ given by $\varphi([x, s])=\rho_{1}(x)$ is $a G$-equivariant homotopy equivalence.

Finally we need the following lemma whose proof is easy to see.
Lemma 2.15. Let $\rho: \bar{X} \rightarrow X$ be a G-covering and $h: X \rightarrow X$ a map which is covered by a G-equivariant map $\bar{h}: \bar{X} \rightarrow \bar{X}$. Then the natural map $T_{\bar{h}} \rightarrow T_{h}$ is a G-covering space.

3. Relations between finite domination and ξ-Contractibility

Let N be a subgroup of $\pi_{1}(X)$ which contains the commutator subgroup of $\pi_{1}(X)$. Then N is normal and we have $\pi_{1}(X) / N \cong \mathbb{Z}^{k} \oplus T$ for some finite abelian torsion group T and a nonnegative integer k with $k \leq b_{1}(X)$. If we set

$$
S\left(\pi_{1}(X) ; N\right)=\left\{\xi \in S\left(\pi_{1}(X)\right) \mid N \leq \operatorname{ker} \xi\right\}
$$

we get that $S\left(\pi_{1}(X) ; N\right)$ is a subsphere of $S\left(\pi_{1}(X)\right)$ of dimension $k-1$. We will mainly be interested in the case where $T=0$. This is the case if and only if $N=\operatorname{ker} \xi$ for some $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$.
Example 3.1. Let $E=S^{1} \vee S^{2}$, the one point union of a 1- and a 2-sphere. Furthermore let $X=E \times S^{1}$. Then $\pi_{1}(X) \cong \mathbb{Z}^{2}$ and the universal cover $\tilde{X}=\tilde{E} \times \mathbb{R}$ with $\tilde{E}=\mathbb{R} \cup_{\mathbb{Z}} \bigcup_{n=-\infty}^{\infty} S^{2}$, the real line with a 2 -sphere attached at every integer. \tilde{E} retracts to \mathbb{R} and together with the identity on the other factor this defines a \mathbb{Z}^{2} equivariant map $h: \tilde{X} \rightarrow \mathbb{R}^{2}$. Furthermore we can define an equivariant homotopy $H: \tilde{X} \times \mathbb{R} \rightarrow \tilde{X}$ given by $H(e, t, s)=(e, t+s)$ with $e \in \tilde{E}, t, s \in \mathbb{R}$.
If $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ is a nonzero homomorphism we can find a unique $x_{\xi} \in S^{1}$ such that $h_{\xi}: \tilde{X} \rightarrow \mathbb{R}$ given by $h_{\xi}(x)=\left\langle x_{\xi}, h(x)\right\rangle$ is a control function for ξ. Now H can be used to show that X is ξ-contractible for every ξ such that $x_{\xi} \neq(\pm 1,0)$. This means that we get ξ-contractibility as long as ξ does not vanish on $\{1\} \times \pi_{1}\left(S^{1}\right) \leq$ $\pi_{1}(E) \times \pi_{1}\left(S^{1}\right) \cong \pi_{1}(X)$. Notice that \tilde{X} is not finitely dominated as $H_{2}(\tilde{X})$ is not finitely generated.

Theorem 3.2. Let X be a finite connected $C W$-complex and $N \leq \pi_{1}(X)$ a normal subgroup such that $\pi_{1}(X) / N \cong \mathbb{Z}^{k}$ for some $k \geq 0$. Then X_{N} is finitely dominated if and only if X is ξ-contractible for all nonzero $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$.
Alternatively we can say that X_{N} is finitely dominated if and only if $S\left(\pi_{1}(X) ; N\right) \subset$ $\Sigma(X)$.
Remark 3.3. For $k=1$ this theorem is proven in Ranicki [13] as a corollary of [13, Thm.2] which is a chain complex version of Theorem 3.2. We will also give a chain complex version of Theorem 3.2 in Section 4. The geometric version indeed follows from the chain complex version by the work of Wall [19]. We prefer to give a direct proof now as it is fairly elementary.

Remark 3.4. Provided that X is aspherical we get Theorem 3.2 from the work of Bieri and Renz [1, Thm.5.1] by using again Wall [19]. In fact finite domination can be replaced by homotopy finite in the aspherical case.

Proof of Theorem 3.2. The case $k=0$ is trivial so let us assume that $k \geq 1$.
We start by assuming that X_{N} is finitely dominated and prove that X is ξ contractible for all nonzero $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ by induction.
Assume that $k=1$. Then $\Delta\left(X_{N}: X\right) \cong \mathbb{Z}$ and let $t: X_{N} \rightarrow X_{N}$ be a generator of the covering transformation group. Up to multiplication by a positive real number there exist only two nonzero homomorphisms $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$. One with $\xi(t)=1$ and one with $\xi(t)=-1$. Here we think of ξ as factoring through $\Delta\left(X_{N}: X\right) \cong \pi_{1}(X) / N$. Let ξ be the homomorphism with $\xi(t)=1$ and let $a: K \rightarrow X_{N}, b: X_{N} \rightarrow K$ satisfy $a \circ b \simeq \operatorname{id}_{X_{N}}$ with K a finite CW-complex. We can assume that a and b are cellular. By Lemma 2.10 and Proposition 2.8 we get $X \simeq T(b t a: K \rightarrow K)$ and the homotopy equivalence $\varphi: T_{b t a} \rightarrow X$ is given by $\varphi([x, s])=\rho H(\operatorname{tax}, s)$, where $\rho: X_{N} \rightarrow X$ is the covering projection and H is a homotopy $H: a \circ b \simeq \operatorname{id}_{X_{N}}$. Also φ lifts to a \mathbb{Z}-equivariant homotopy equivalence $\bar{\varphi}: \bar{T}_{b t a} \rightarrow X_{N}$ given by $\varphi([x, t, n])=t^{n} H(t a x, s)$. From this it is easy to see that $\varphi^{*} \xi=g_{\#}$ for the natural projection $g: T_{b t a} \rightarrow S^{1}$. As $T_{b t a}$ is $g_{\# \text {-contractible by }}$ Lemma 2.9 we get that X is ξ-contractible by Lemma 2.4.
To see that X is also $(-\xi)$-contractible replace t by t^{-1}.
Now assume that $k \geq 2$. Let t_{1}, \ldots, t_{k} be covering transformations generating $\Delta\left(X_{N}: X\right) \cong \mathbb{Z}^{k}$ and let $G_{1}=\left\langle t_{1}\right\rangle$ and $G_{2}=\left\langle t_{2}, \ldots, t_{k}\right\rangle$. Furthermore define $X_{1}=X_{N} / G_{1}$ and $X_{2}=X_{N} / G_{2}$. So $X_{N} \rightarrow X_{1}$ is a \mathbb{Z}-covering and $X_{N} \rightarrow X_{2}$ is a \mathbb{Z}^{k-1}-covering. Notice that by Lemma 2.11 both X_{1} and X_{2} are homotopy finite.
Now let $\xi: G \rightarrow \mathbb{R}$ be a nonzero homomorphism with $N \leq \operatorname{ker} \xi$. It induces a homomorphism also denoted $\xi: \mathbb{Z}^{k} \rightarrow \mathbb{R}$. We can assume that ξ embeds \mathbb{Z}^{k} into \mathbb{R} for otherwise we get that X is ξ-contractible by Corollary 2.11 and induction. Let $\xi_{i}: G_{i} \rightarrow \mathbb{R}$ be defined by $\xi_{i}=\left.\xi\right|_{G_{i}}$ for $i=1,2$. Both are injective and they extend to \mathbb{Z}^{k} and hence to G such that $\xi=\xi_{1}+\xi_{2}$. Without loss of generality we assume that $\xi_{1}\left(t_{1}\right)=1$.
Notice that the covering transformation $t_{1}: X_{N} \rightarrow X_{N}$ induces a map $t_{1}: X_{2} \rightarrow X_{2}$ which generates the covering transformation group $\Delta\left(X_{2}: X\right) \cong \mathbb{Z}$. We know that X_{2} is homotopy finite, so let F be a finite CW-complex and $c: F \rightarrow X_{2}, d: X_{2} \rightarrow F$ be cellular, mutually inverse homotopy equivalences. There is a G_{2}-covering $\bar{F} \rightarrow F$ so that \bar{F} is G_{2}-equivariantly homotopy equivalent to X_{N}. Denote $\bar{c}: \bar{F} \rightarrow X_{N}$ and $\bar{d}: X_{N} \rightarrow \bar{F}$ these equivalences. Let $h_{2}: \bar{F} \rightarrow \mathbb{R}$ be G_{2}-equivariant, that is $h_{2}\left(g_{2} x\right)=h_{2}(x)+\xi_{2}\left(g_{2}\right)$ for $x \in \bar{F}$ and $g_{2} \in G_{2}$.
Look at $\bar{d} t_{1} \bar{c}: \bar{F} \rightarrow \bar{F}$. Then there is a $B>0$ such that

$$
\left|h_{2}\left(\bar{d} t_{1} \bar{c}(x)\right)-h_{2}(x)\right| \leq B
$$

for all $x \in \bar{F}$, since G_{2} acts cocompactly on \bar{F}.
Now X_{N} is finitely dominated, so \bar{F} is finitely dominated as well. By induction there exists a G_{2}-equivariant $\operatorname{map} \bar{q}: \bar{F} \rightarrow \bar{F}$ equivariantly homotopic to the identity with

$$
h_{2} \bar{q}(x)-h_{2}(x) \leq-B
$$

for all $x \in \bar{F}$. Therefore

$$
\begin{equation*}
h_{2} \bar{q} \bar{d} t_{1} \bar{c}(x)-h_{2}(x) \leq 0 \tag{1}
\end{equation*}
$$

for all $x \in \bar{F}$.
Now $h_{2} \bar{q} \bar{d} t_{1} \bar{c}, h_{2}: \bar{F} \rightarrow \mathbb{R}$ are equivariantly homotopic by the straight line homotopy
$H: \bar{F} \times[0,1] \rightarrow \mathbb{R}$ with

$$
H(x, t)=t h_{2}(x)+(1-t) h_{2} \bar{q} \bar{d} t_{1} \bar{c}(x) .
$$

By Lemma 2.15 we have that $T\left(\bar{q} \bar{d} t_{1} \bar{c}: \bar{F} \rightarrow \bar{F}\right)$ is a G_{2}-covering space of $T\left(q d t_{1} c\right.$: $F \rightarrow F)$ and we can define a G_{2}-equivariant map $\bar{h}_{2}: T\left(\bar{q} \bar{d} t_{1} \bar{c}: \bar{F} \rightarrow \bar{F}\right) \rightarrow \mathbb{R}$ by $\bar{h}_{2}([x, t])=H(x, t)$, compare Lemma 2.12. It is easy to see that (1) implies

$$
\begin{equation*}
\bar{h}_{2}\left(\left[\bar{q} \bar{d} t_{1} \bar{c}(x), t\right]\right)-\bar{h}_{2}([x, t]) \leq 0 \tag{2}
\end{equation*}
$$

Now $T_{\bar{q} \bar{d} t_{1} \bar{c}} \simeq T_{t_{1} \bar{c} \bar{q} \bar{d}} \simeq T_{t_{1}} \simeq X_{1}$ and all homotopy equivalences are G_{2}-equivariant equivalences by Lemma 2.14 and Proposition 2.13. It follows that $\bar{T}\left(\bar{q} \bar{d} t_{1} \bar{c}: \bar{F} \rightarrow \bar{F}\right)$ is $G_{1} \times G_{2}$-equivariant homotopy equivalent to X_{N}.
Define $\bar{h}: \bar{T}\left(\bar{q} \bar{d} t_{1} \bar{c}: \bar{F} \rightarrow \bar{F}\right) \rightarrow \mathbb{R}$ by $\bar{h}([x, t, n])=\bar{h}_{2}([x, t])+n+t$ to get a $G_{1} \times G_{2}$ equivariant map, that is we have

$$
\begin{aligned}
\bar{h}\left(\left(t_{1}^{m}, g_{2}\right)[x, t, n]\right) & =\bar{h}\left(\left[g_{2} x, t, n+m\right]\right) \\
& =\bar{h}_{2}\left(\left[g_{2} x, t\right]\right)+n+m+t \\
& =\xi_{2}\left(g_{2}\right)+\bar{h}_{2}([x, t])+\xi_{1}\left(t_{1}^{m}\right)+n+t \\
& =\bar{h}([x, t, n])+\xi\left(\left(t_{1}^{m}, g_{2}\right)\right) .
\end{aligned}
$$

Now define as in Lemma $2.9 \mathrm{H}: \bar{T}_{\bar{q} \bar{d} t_{1} \bar{c}} \times[0,1] \rightarrow \bar{T}_{\bar{q} \bar{d} t_{1} \bar{c}}$ by

$$
H([x, t, n])=\left\{\begin{aligned}
{[x, t-s, n] } & t-s \geq 0 \\
{\left[\bar{q} \bar{d} t_{1} \bar{c} x, 1+t-s, n-1\right] } & t-s \leq 0
\end{aligned}\right.
$$

Then

$$
\begin{aligned}
\bar{h} H_{1}([x, t, n])-\bar{h}([x, t, n]) & =\bar{h}\left(\left[\bar{q} \bar{d} t_{1} \bar{c} x, t, n-1\right]\right)-\bar{h}([x, t, n]) \\
& =\bar{h}_{2}\left(\left[\bar{q} \bar{d} t_{1} \bar{c} x, t\right]\right)-\bar{h}_{2}([x, t])-1 \\
& \leq-1
\end{aligned}
$$

by (2). By Lemma 2.4 we get that X is ξ-contractible and one direction of the theorem is shown.
It remains to show that X being ξ-contractible for every nonzero $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ implies that X_{N} is finitely dominated. We will give a sufficient criterion for a CW-complex Y to be finitely dominated and then show that this criterion is satisfied for X_{N}.
Let Y be a CW-complex and $H: Y \rightarrow \mathbb{R}^{k}$ a proper map, that is $H^{-1}(C)$ is compact for every compact set $C \subset \mathbb{R}^{k}$. We denote the Euclidean norm on \mathbb{R}^{k} by $|\cdot|$.
Lemma 3.5. Assume there are $R>0, \varepsilon>0, B>0, C>0$ and a homotopy $K: Y \times[0,1] \rightarrow Y$ with $K_{0}=\mathrm{id}_{Y}$ such that

$$
\begin{equation*}
\varepsilon \leq|H(x)|-\left|H K_{1}(x)\right| \leq C \tag{3}
\end{equation*}
$$

for all $x \in Y$ with $|H(x)| \geq R$ and

$$
\begin{equation*}
-B \leq|H(x)|-|H K(x, t)| \leq C \tag{4}
\end{equation*}
$$

for all $x \in Y$ with $|H(x)| \geq R$ and all $t \in[0,1]$. Then Y is finitely dominated.
Proof. We can assume that $\varepsilon \geq 2 B$. For otherwise we define

$$
\bar{K}(x, t)=\left\{\begin{aligned}
K(x, 2 t) & 0 \leq t \leq \frac{1}{2} \\
K(K(x, 2 t-1), 1) & \frac{1}{2} \leq t \leq 1
\end{aligned}\right.
$$

Then

$$
\begin{aligned}
|H(x)|-\left|H \bar{K}_{1}(x)\right| & =|H(x)|-\left|H K_{1}(x)\right|+\left|H K_{1}(x)\right|-\left|H K_{1}\left(K_{1}(x)\right)\right| \\
& \in[2 \varepsilon, 2 C]
\end{aligned}
$$

for all $x \in Y$ with $|H(x)| \geq R+C$ and

$$
|H(x)|-|H \bar{K}(x, t)|=|H(x)|-|H K(x, 2 t)| \in[-B, C]
$$

or

$$
\begin{aligned}
& =|H(x)|-|H K(x, 2 t-1)|+|H K(x, 2 t-1)|-\left|H K_{1}(K(x, 2 t-1))\right| \\
& \in[-B+\varepsilon, 2 C]
\end{aligned}
$$

for all $x \in Y$ with $|H(x)| \geq R+C$ and $t \in[0,1]$. Therefore we can increase the ε by increasing C and R.
So now assume that

$$
\begin{equation*}
|H(x)|-\left|H K_{1}(x)\right| \geq 2 B \tag{5}
\end{equation*}
$$

for all $x \in Y$ with $|H(x)| \geq R$.
Since $\left\{x \in Y||H(x)| \leq R\}\right.$ is compact, there is an $L \geq R+B$ such that $\left|H K_{1}(x)\right| \leq$ L for all $x \in Y$ with $|H(x)| \leq R$.
Let $\lambda: Y \rightarrow[0,1]$ be a map with $\lambda(x)=0$ for $x \in Y$ with $|H(x)| \leq L$ and $\lambda(x)=1$ for $x \in Y$ with $|H(x)| \geq L+B$. We get the following properties
(i) If $|H(x)| \leq R+(2 n+1) B$ then $\lambda\left(K_{1}^{n}(x)\right)=0$ for all $n \geq 0$.
(ii) If $\lambda\left(K_{1}(x)\right)>0$, then $\lambda(x)=1$.
(iii) If $\lambda(x)<1$, then $\lambda\left(K_{1}(x)\right)=0$.

Therefore the sequence $\left(\lambda\left(K_{1}^{l}(x)\right)\right)_{l=0}^{\infty}$ is monotonely decreasing with at most one term in $(0,1)$ and only finitely many terms bigger than 0 for every $x \in Y$.
We prove (i) by induction: For $n=0$ we get $\lambda(x)=0$ since $L \geq R+B$. So assume $n \geq 1$. If $|H(x)| \in[R+(2 n-1) B, R+(2 n+1) B]$, then $\left|H K_{1}(x)\right| \leq$ $|H(x)|-2 B \leq R+(2 n-1) B$ by (5). Thus $\lambda\left(K_{1}^{n-1}\left(K_{1}(x)\right)\right)=0$ by induction. If $|H(x)| \leq R+(2 n-1) B$, then $\lambda\left(K_{1}^{n-1}(x)\right)=0$ and $\lambda\left(K_{1}^{n}(x)\right)=0$ follows from (iii). To see (iii) note that $\lambda(x)<1$ implies $|H(x)|<L+B$. If $|H(x)| \leq R$, then $\left|H K_{1}(x)\right| \leq L$ by the choice of L. If $|H(x)| \geq R$, then

$$
\left|H K_{1}(x)\right| \leq|H(x)|-2 B<L-B
$$

by (5). In both cases we get $\lambda\left(K_{1}(x)\right)=0$.
To prove (ii) note that $\lambda\left(K_{1}(x)\right)>0$ implies $\left|H K_{1}(x)\right|>L$, so $|H(x)| \geq R$. Now

$$
|H(x)| \geq 2 B+\left|H K_{1}(x)\right|>2 B+L
$$

and therefore $\lambda(x)=1$.
Let us define homotopies $\mathcal{K}^{n}: Y \times[0,1] \rightarrow Y$ by

$$
\begin{aligned}
\mathcal{K}^{0}(x, t) & =K(x, t \cdot \lambda(x)) \\
\mathcal{K}^{n}(x, t) & =K\left(\mathcal{K}^{n-1}(x, 1), t \cdot \lambda\left(K_{1}^{n}(x)\right)\right)
\end{aligned}
$$

Notice that $\mathcal{K}^{n}(x, 0)=\mathcal{K}^{n-1}(x, 1)$ and $\mathcal{K}^{0}(x, 0)=x$. Also for $|H(x)| \leq R+(2 n+$ 1) B we get for $m \geq n$

$$
\mathcal{K}^{m}(x, t)=\mathcal{K}^{n-1}(x, 1)
$$

so the homotopies become eventually constant for fixed $x \in Y$. Therefore they combine to a homotopy $\mathcal{K}: Y \times[0,1] \rightarrow Y$ with $\mathcal{K}(x, 0)=x$ and $\mathcal{K}(x, 1)=$ $\mathcal{K}^{n-1}(x, 1)$ where n is a positive integer with $|H(x)| \leq R+(2 n+1) B$. Also

$$
\begin{aligned}
\mathcal{K}^{n-1}(x, 1) & =K\left(K\left(\ldots K(x, \lambda(x)), \lambda\left(K_{1}(x)\right) \ldots\right), \lambda\left(K_{1}^{n-1}(x)\right)\right) \\
& =K\left(K_{1}^{k_{x}}(x), \lambda\left(K_{1}^{k_{x}}(x)\right)\right)
\end{aligned}
$$

where k_{x} is the minimal nonnegative integer with $\lambda\left(K_{1}^{k_{x}+1}(x)\right)=0$. This means $\left|H K_{1}^{k_{x}+1}(x)\right| \leq L$. If $\left|H K_{1}^{k_{x}}(x)\right| \geq R$ then

$$
\left|H K_{1}^{k_{x}}(x)\right| \leq C+L
$$

and

$$
\left|H K\left(K_{1}^{k_{x}}(x), \lambda\left(K_{1}^{k_{x}}(x)\right)\right)\right| \leq C+L+B
$$

by (4).
If $\left|H K_{1}^{k_{x}}(x)\right| \leq R$, then $\lambda\left(K_{1}^{k_{x}}(x)\right)=0$ (which by the definition of k_{x} implies $k_{x}=0$) and so

$$
\left|H K\left(K_{1}^{k_{x}}(x), \lambda\left(K_{1}^{k_{x}}(x)\right)\right)\right| \leq R .
$$

Therefore the image of \mathcal{K}_{1} is contained in a compact subset of Y and so Y is dominated by a finite subcomplex.

Let us return to the proof of Theorem 3.2. \mathbb{Z}^{k} acts on X_{N} by covering transformations. It also acts on \mathbb{R}^{k} by translation. Since \mathbb{R}^{k} is contractible we define an equivariant map $H: X_{N} \rightarrow \mathbb{R}^{k}$. Since X is a finite CW-complex we get that \mathbb{Z}^{k} acts cocompactly on X_{N} and therefore H is a proper map.
For every $\xi \in S\left(\pi_{1}(X) ; N\right)$ there is a unique $x_{\xi} \in S^{k-1} \subset \mathbb{R}^{k}$ such that

$$
h_{\xi}(x)=\left\langle x_{\xi}, H(x)\right\rangle
$$

is a control function for ξ. We assume that for every $\xi \in S\left(\pi_{1}(X) ; N\right)$ we have that X is ξ-contractible. Hence given an $\varepsilon>0$ there exist equivariant homotopies $H_{\xi}: X_{N} \times[0,1] \rightarrow X_{N}$ with $H_{\xi 0}=\operatorname{id}_{X_{N}}$ and

$$
h_{\xi} H_{\xi}(x, 1)-H_{\xi}(x) \leq-\varepsilon
$$

for all $x \in X_{N}$.
We will now identify $S\left(\pi_{1}(X) ; N\right)$ with $S^{k-1} \subset \mathbb{R}^{k}$ via $\xi \leftrightarrow x_{\xi}$. As in the proof of Proposition 2.6 we get that for every $\xi \in S^{k-1}$ there exists a neighborhood U of ξ in S^{k-1} such that for every $\xi^{\prime} \in U$ we have

$$
h_{\xi^{\prime}} H_{\xi}(x, 1)-h_{\xi^{\prime}}(x) \leq-\frac{\varepsilon}{2}
$$

for all $x \in X_{N}$. In other words we can use the same H_{ξ} for all ξ^{\prime} in a small neighborhood of ξ. By compactness there exist finitely many ξ_{1}, \ldots, ξ_{m} and $R_{1}, \ldots, R_{m}>0$ so that for $i=1, \ldots, m$

$$
U_{i}=\left\{\xi \in S^{k-1}| | \xi-\xi_{i} \mid<R_{i}\right\}
$$

cover S^{k-1} and for all $\xi \in U_{i}$ we get

$$
\begin{equation*}
h_{\xi} H_{\xi_{i}}(x, 1)-h_{\xi}(x) \leq-\frac{\varepsilon}{2} \tag{6}
\end{equation*}
$$

for all $x \in X_{N}$.

Again by compactness there is an $A \geq 0$ such that

$$
\begin{equation*}
h_{\xi} H_{\xi_{i}}(x, t)-h_{\xi}(x) \leq A \tag{7}
\end{equation*}
$$

for all $x \in X_{N}, t \in[0,1]$ and $\xi \in \bar{U}_{i}$, the closure of U_{i}.
By iterating the homotopies $H_{\xi_{i}}$ with themselves we can increase the ε in (6) without increasing the A in (7). Therefore we can assume that

$$
\begin{aligned}
h_{\xi} H_{\xi_{i}}(x, 1)-h_{\xi}(x) & \leq-6(m+1) A \\
h_{\xi} H_{\xi_{i}}(x, t)-h_{\xi}(x) & \leq A
\end{aligned}
$$

for all $x \in X_{N}, t \in[0,1]$ and $\xi \in U_{i}, i=1, \ldots, m$.
Let $B=6(m+1) A$ and

$$
C U_{i}=\left\{x \in \mathbb{R}^{k}-\{0\} \left\lvert\, \frac{x}{|x|} \in U_{i}\right.\right\} .
$$

Then

$$
\bigcup_{i=1}^{m} C U_{i}=\mathbb{R}^{k}-\{0\}
$$

By compactness there is a $C>0$ such that

$$
\left|H(x)-H H_{\xi_{i}}(x, t)\right| \leq C
$$

for all $x \in X_{N}, t \in[0,1]$ and $i=1, \ldots, m$. Notice that necessarily we have $C \geq B$.
Now for $x \in H^{-1}\left(C U_{i}\right)$ let $\xi=\frac{H(x)}{|H(x)|} \in U_{i}$. Then

$$
\begin{aligned}
\left|H H_{\xi_{i}}(x, t)\right|^{2}-|H(x)|^{2} & =\left|H H_{\xi_{i}}(x, t)-H(x)+H(x)\right|^{2}-|H(x)|^{2} \\
& =\left|H H_{\xi_{i}}(x, t)-H(x)\right|^{2}+2\left\langle H H_{\xi_{i}}(x, t)-H(x), H(x)\right\rangle \\
& \leq C^{2}+2|H(x)|\left(h_{\xi}\left(H_{\xi_{i}}(x, t)\right)-h_{\xi}(x)\right)
\end{aligned}
$$

So

$$
\left|H H_{\xi_{i}}(x, t)\right|-|H(x)| \leq \frac{C^{2}+2|H(x)|\left(h_{\xi} H_{\xi_{i}}(x, t)-h_{\xi}(x)\right)}{\left|H H_{\xi_{i}}(x, t)\right|+|H(x)|}
$$

So for arbitrary $t \in[0,1]$ and $|H(x)| \geq \frac{C^{2}}{A}$ we get

$$
\left|H H_{\xi_{i}}(x, t)\right|-|H(x)| \leq 3 A
$$

For $t=1$ we get

$$
\left|H H_{\xi_{i}}(x, 1)\right|-|H(x)| \leq A-\frac{2|H(x)|\left(h_{\xi} H_{\xi_{i}}(x, 1)-h_{\xi}(x)\right)}{\left|H H_{\xi_{i}}(x, 1)\right|+|H(x)|}
$$

Now $\left|H H_{\xi_{i}}(x, 1)\right| \leq C+|H(x)|$ and since $\frac{C^{2}}{A} \geq C$ we get

$$
\left|H H_{\xi_{i}}(x, 1)\right|+|H(x)| \leq 3|H(x)|
$$

and therefore

$$
\left|H H_{\xi_{i}}(x, 1)\right|-|H(x)| \leq A-\frac{2}{3} B=-(4 m+3) A
$$

We know that the U_{i} cover S^{k-1}. Also there is a $\delta>0$ such that if we define $V_{i}=\left\{\xi \in U_{i}| | \xi-\xi_{i} \mid<R_{i}-\delta\right\}$, the V_{i} still cover S^{k-1}. Also let $W_{i}=\{\xi \in$ $\left.S^{k-1}| | \xi-\xi_{i} \mid=R_{i}\right\}$, the boundary of U_{i}.
Now let $\lambda_{i}: \mathbb{R}^{k} \rightarrow[0,1]$ be a map such that $\lambda_{i}(x)=0$ for $x \in \mathbb{R}^{k}-C U_{i}$ and for $|x| \leq \frac{C^{2}}{A}$. Also we want $\lambda_{i}(x)=1$ for $x \in C U_{i}$ with $|x| \geq \frac{C^{2}}{A}+1$ and $|x-y| \geq \delta$
for all $y \in C W_{i}=\left\{x \in \mathbb{R}^{k}-\{0\} \left\lvert\, \frac{x}{|x|} \in W_{i}\right.\right\}$.
Now define $K_{i}: X_{N} \times[0,1] \rightarrow X_{N}$ by

$$
K_{i}(x, t)=H_{\xi_{i}}\left(x, t \cdot \lambda_{i}(H(x))\right)
$$

Then $K_{i}(x, 0)=x$ for all $x \in X_{N}$ and we have

$$
\left|H K_{i}(x, 1)\right|-|H(x)| \leq-(4 m+3) A
$$

for $x \in H^{-1}\left(C U_{i}\right)$ with $|H(x)| \geq \frac{C^{2}}{A}+1$ and $|H(x)-y| \geq \delta$ for all $y \in C W_{i}$. Also

$$
\left|H K_{i}(x, t)\right|-|H(x)| \leq 3 A
$$

for all $x \in X_{N}$.
Since the V_{i} cover S^{k-1} we get that every $x \in X_{N}$ with $|H(x)| \geq \frac{C^{2}}{A}+1$ lies in at least one $H^{-1}\left(C U_{i}\right)$ and satisfies $|H(x)-y| \geq \delta$ for all $y \in C W_{i}$.
Define inductively

$$
\begin{aligned}
\mathcal{K}_{1}(x, t) & =K_{1}(x, t) \\
\mathcal{K}_{i+1}(x, t) & =K_{i+1}\left(\mathcal{K}_{i}(x, 1), t\right)
\end{aligned}
$$

These homotopies combine to a homotopy $\mathcal{K}: X_{N} \times[0, m] \rightarrow X_{N}$ where $\mathcal{K} \mid X_{N} \times$ $[i, i+1]=\mathcal{K}_{i+1}$. We claim that \mathcal{K} has the properties required for Lemma 3.5. Let $x \in X_{N}$ satisfy $|H(x)| \geq \frac{C^{2}}{A}+1+\frac{3 m C}{\delta}$. Then there is an i such that $H(x) \in C V_{i}$ and we have $|H(x)-y| \geq 3 m C$ for all $y \in C W_{i}$. Since $\left|H K_{j}(x, t)-H(x)\right| \leq C$ this implies that $H \mathcal{K}(x, i-1) \in C U_{i}$ and $|H \mathcal{K}(x, i-1)| \geq \frac{C^{2}}{A}+1$. In general we have $\left|H \mathcal{K}_{j}(x, 1)\right|-\left|H \mathcal{K}_{j-1}(x, 1)\right| \leq 3 A$. Therefore

$$
\begin{aligned}
|H \mathcal{K}(x, i)|-|H(x)| & =\left|H \mathcal{K}_{i}(x, 1)\right|-\left|H \mathcal{K}_{i-1}(x, 1)\right|+\left|H \mathcal{K}_{i-1}(x, 1)\right|-|H(x)| \\
& \leq\left|H K_{i}\left(\mathcal{K}_{i-1}(x, 1), 1\right)\right|-\left|H \mathcal{K}_{i-1}(x, 1)\right|+3(i-1) A \\
& \leq(-4 m+3) A+3(i-1) A
\end{aligned}
$$

Also

$$
\left|H \mathcal{K}_{m}(x, 1)\right|-\left|H \mathcal{K}_{i}(x, 1)\right| \leq 3(m-i) A
$$

so

$$
|H \mathcal{K}(x, m)|-|H(x)| \leq-A
$$

and we can choose $\varepsilon=A$. The remaining bounds for Lemma 3.5 are achieved since the K_{i} are built out of the equivariant $H_{\xi_{i}}$ and \mathcal{K} is built from the K_{i} in a finite number of steps. So we get the remaining constants from compactness arguments. Therefore X_{N} is finitely dominated by Lemma 3.5 and this finishes the proof of Theorem 3.2.

4. Relations with Novikov homology

Let R be a ring with unit. We denote by R^{G} the abelian group of all functions $\lambda: G \rightarrow R$. For $\lambda \in R^{G}$ denote supp $\lambda=\{g \in G \mid \lambda(g) \neq 0\}$.
Definition 4.1. Let $\xi: G \rightarrow \mathbb{R}$ be a homomorphism. The Novikov ring $\widehat{R G}_{\xi}$ is defined as

$$
\widehat{R G}_{\xi}=\left\{\lambda \in R^{G} \mid \forall r \in \mathbb{R} \quad \operatorname{supp} \lambda \cap \xi^{-1}([r, \infty)) \text { is finite }\right\}
$$

with $\lambda \cdot \mu(g)=\sum \lambda\left(g_{1}\right) \mu\left(g_{2}\right)$ for $\lambda, \mu \in \widehat{R G}_{\xi}$. The sum is taken over all $g_{1}, g_{2} \in G$ with $g_{1} g_{2}=g$.

For $\lambda \in \widehat{R G}_{\xi}$ let

$$
\|\lambda\|_{\xi}=\inf \left\{t \in(0, \infty) \mid \operatorname{supp} \lambda \subset \xi^{-1}((-\infty, \log t])\right\}
$$

be the norm of λ with respect to ξ. Note that $\widehat{R G}_{\xi}$ is a completion of the group ring $R G$ with respect to the metric induced by this norm. We can extend the definition of the norm to $n \times m$ matrices over $\widehat{R G}_{\xi}$ by setting

$$
\|A\|_{\xi}=\max \left\{\left\|A_{i j}\right\|_{\xi} \mid i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}\right\} .
$$

It is easy to see that

$$
\begin{equation*}
\|A \cdot B\|_{\xi} \leq\|A\|_{\xi} \cdot\|B\|_{\xi} \tag{8}
\end{equation*}
$$

for an $n \times m$ matrix A and an $m \times k$ matrix B.
Now let X be a finite CW-complex and \tilde{X} its universal cover. We set $G=\pi_{1}(X)$. The cellular complex $C_{*}(\tilde{X})$ is a finitely generated free $\mathbb{Z} G$-chain complex and we also denote it by $C_{*}(X ; \mathbb{Z} G)$. Furthermore if $\varepsilon: \mathbb{Z} G \rightarrow R$ is a ring homomorphism, we set

$$
C_{*}(X ; R)=R \otimes_{\mathbb{Z} G} C_{*}(\tilde{X})
$$

The corresponding homology will be denoted by $H_{*}(X ; R)$.
The vanishing of the Novikov homology $H_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)$ is closely related to ξ-contractibility of X for we have
Proposition 4.2. Let X be ξ-contractible, then $H_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)=0$.
Proof. See Latour [8, Prop.1.10].
The converse holds provided that the homomorphism ξ satisfies a stability condition which stems from the work of Bieri and Renz [1], see Latour [8, Cor.5.23]. It was shown by Damian [2] that the vanishing of the Novikov homology alone does not imply ξ-contractibility in general.
If $C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)$ is acyclic we are also interested in its torsion. For this define

$$
\mathrm{Wh}(G ; \xi)=K_{1}\left(\widehat{\mathbb{Z}}_{\xi}\right) /\left\langle\tau(\pm g), \tau(1-a) \mid g \in G,\|a\|_{\xi}<1\right\rangle
$$

An acyclic Novikov complex $C_{*}\left(X ; \widehat{\mathbb{Z}} G_{\xi}\right)$ then defines a well defined torsion

$$
\tau(X, \xi)=\tau\left(C_{*}(X ; \widehat{\mathbb{Z} G})\right) \in \operatorname{Wh}(G ; \xi)
$$

Analogously to $\Sigma(X)$ we define

$$
\begin{aligned}
\Sigma(X ; \mathbb{Z}) & =\left\{\xi \in S(G) \mid H_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)=0\right\} \\
\Sigma_{s}(X ; \mathbb{Z}) & =\{\xi \in \Sigma(X ; \mathbb{Z}) \mid \tau(X, \xi)=0\}
\end{aligned}
$$

The following Proposition is already stated in Latour [8, Prop.1.17], but as is pointed out in Damian [2, §2.3] the proof there is not correct. Damian gives an alternative proof of the statement about $\Sigma(X ; \mathbb{Z})$ in the case that X is homotopy equivalent to a closed manifold.
Proposition 4.3. Let X be a finite $C W$-complex. Then $\Sigma(X ; \mathbb{Z})$ and $\Sigma_{s}(X ; \mathbb{Z})$ are open subsets of $S\left(\pi_{1}(X)\right)$.

Proof. Let $\xi \in \Sigma(X ; \mathbb{Z})$. Since $C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)$ is finitely generated free, there exists a chain contraction $\delta: C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right) \rightarrow C_{*+1}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)$. Choose a basis of $C_{*}(X ; \mathbb{Z} G)$ by choosing liftings and orientations for every cell of X. Then δ is represented by a matrix Δ with entries in $\widehat{\mathbb{Z}}_{\xi}$. The boundary operator can also be represented by a matrix which we denote by ∂. Therefore

$$
\partial \Delta+\Delta \partial=I
$$

Now we define a matrix $\bar{\Delta}$ with entries in $\mathbb{Z} G$ according to the following rule:

$$
\bar{\Delta}_{i j}(g)=\left\{\begin{aligned}
\Delta_{i j}(g) & \text { if } \xi(g) \geq \log \left(\|\partial\|_{\xi}^{-1}\right) \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Then $\|\Delta-\bar{\Delta}\|_{\xi}<\|\partial\|_{\xi}^{-1}$ and we have

$$
\begin{aligned}
\partial \bar{\delta}+\bar{\Delta} \partial & =\partial(\bar{\Delta}-\Delta)+\partial \Delta+(\bar{\Delta}-\Delta) \partial+\Delta \partial \\
& =I+\partial(\bar{\Delta}-\Delta)+(\bar{\Delta}-\Delta) \partial \\
& =I+A
\end{aligned}
$$

where A is a matrix with $\|A\|_{\xi}<1$. Also A is a matrix over $\mathbb{Z} G$ since $I, \partial \bar{\Delta}$ and $\bar{\Delta} \partial$ are matrices over $\mathbb{Z} G$.
Since the topology on $S\left(\pi_{1}(X)\right)$ can be thought of as the compact-open topology we get a neighborhood U of ξ in $S\left(\pi_{1}(X)\right)$ such that $\|A\|_{\xi^{\prime}}<1$ for all $\xi^{\prime} \in U$. In particular $(I+A)^{-1}$ is a well defined matrix over $\widehat{\mathbb{Z}}_{\xi^{\prime}}$ for all $\xi^{\prime} \in U$. But the matrix $\bar{\Delta}(I+A)^{-1}$ defines a chain contraction $\delta_{\xi^{\prime}}: C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi^{\prime}}\right) \rightarrow C_{*+1}\left(X ; \widehat{\mathbb{Z}}_{\xi^{\prime}}\right)$ for all $\xi^{\prime} \in U$ and therefore $\Sigma(X ; \mathbb{Z})$ is open.
To see that $\Sigma_{s}(X ; \mathbb{Z})$ is open let us assume that $\tau(X, \xi)=0 \in \mathrm{~Wh}(G ; \xi)$. By choosing an appropriate basis by liftings of cells we can assume that

$$
\tau(X, \xi)=0 \in K_{1}\left({\widehat{\mathbb{Z}} G_{\xi}}\right) /\left\langle\tau(1-a) \mid\|a\|_{\xi}<1\right\rangle
$$

By the definition of torsion $\tau(X, \xi)$ is represented by the matrix $(\partial+\Delta)$ which represents an isomorphism $\partial+\delta: C_{\text {odd }}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right) \rightarrow C_{\text {even }}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)$ with $C_{\text {odd }}=$ $\bigoplus_{n \in \mathbb{Z}} C_{2 n+1}$ and $C_{\text {even }}=\bigoplus_{n \in \mathbb{Z}} C_{2 n}, \partial$ the boundary operator and δ a chain contraction.
Now as seen in the first part the matrix $\partial+\Delta$ can be chosen to be $\partial+\bar{\Delta}(I+A)^{-1}$ with $\partial, \bar{\Delta}$ and A matrices over $\mathbb{Z} G$. Furthermore there is a neighborhood U of ξ in $S\left(\pi_{1}(X)\right)$ such that $\|A\|_{\xi^{\prime}}<1$ for all $\xi^{\prime} \in U$. By Lemma 4.4 below we get

$$
\left(\begin{array}{cc}
\partial+\bar{\Delta}(I+A)^{-1} & \tag{9}\\
& I
\end{array}\right)=E_{1} \cdots E_{k} \cdot(I-E)
$$

with the E_{j} elementary matrices over $\mathbb{Z} G$ and a matrix E over ${\widehat{\mathbb{Z}} G_{\xi}}^{\text {with }}\|E\|_{\xi}<1$. We recall that an elementary matrix over a ring R with unit is an $n \times n$ matrix $E_{i j}^{x}$ for $i \neq j$ and $x \in R$ which has 1 in every diagonal spot, x in the (i, j) spot and zero everywhere else.
Now (9) gives

$$
\left(E_{1} \cdots E_{k}\right)^{-1}\left(\begin{array}{cc}
\partial(I+A)+\bar{\Delta} & \\
& I
\end{array}\right)=(I-E)\left(\begin{array}{cc}
I+A & \\
& I
\end{array}\right)
$$

The right side is a matrix of the form $I-B$ with $\|B\|_{\xi}<1$ and the entries of B are in $\mathbb{Z} G$ because the left side is a matrix over $\mathbb{Z} G$. Thus there is a small neighborhood
V of ξ so that $\|B\|_{\xi^{\prime}}<1$ for all $\xi^{\prime} \in V$. But then $\|E\|_{\xi^{\prime}}<1$ for all $\xi^{\prime} \in V \cap U$, a neighborhood of ξ. Now $\tau\left(X, \xi^{\prime}\right)=0 \in \mathrm{~Wh}\left(G ; \xi^{\prime}\right)$ for all $\xi^{\prime} \in U \cap V$ because of (9). This finishes the proof modulo Lemma 4.4.
Lemma 4.4. Let A be an invertible $n \times n$ matrix over $\widehat{R G}_{\xi}$ with $\tau(A)=0 \in$ $K_{1}\left(\widehat{R G}_{\xi}\right) /\left\langle\tau(1-a) \mid\|a\|_{\xi}<1\right\rangle$. Then there exist elementary matrices E_{1}, \ldots, E_{k} over $R G$ and a matrix E over $\widehat{R G}_{\xi}$ with $\|E\|_{\xi}<1$ such that for a stabilization of A we get

$$
\left(\begin{array}{cc}
A & \\
& I
\end{array}\right)=E_{1} \cdots E_{k} \cdot(I-E)
$$

Proof. Since $i_{*} \tau(A)=0$ we get $\left(\begin{array}{cc}A & \\ & I\end{array}\right)=F_{1} \cdots F_{l}$ with the F_{i} being either elementary matrices over $\widehat{R G}_{\xi}$ or matrices of the form $I-D$ with $\|D\|_{\xi}<1$. Since the elementary matrices generate the commutator of $\operatorname{GL}(R)$ for any ring R with unit we can assume that $F_{l}=I-D$ with $\|D\|_{\xi}<1$ and the remaining matrices are elementary.
It remains to show that we can replace the elementary matrices over $\widehat{R G}_{\xi}$ by elementary matrices over $R G$. For this we will prove the following:
Given elementary matrices $E_{1}^{\prime}, \ldots, E_{k}^{\prime}$ over $\widehat{R G}_{\xi}$ and $\varepsilon \in(0,1)$, there exist elementary matrices E_{1}, \ldots, E_{k} over $R G$ and a matrix E over $R G$ with $\|E\|_{\xi}<\varepsilon$, such that

$$
\begin{equation*}
E_{1}^{\prime} \cdots E_{k}^{\prime}=E_{1} \cdots E_{k} \cdot(I-E) \tag{10}
\end{equation*}
$$

We prove it by induction on k. The case $k=0$ is trivial. Now assume the statement is true for $k-1$. Then $E_{1}^{\prime} \cdots E_{k}^{\prime}=E_{1}^{\prime} \cdots E_{k-1}^{\prime} \cdot E_{k}^{\prime}$. By induction hypothesis we can find elementary matrices E_{1}, \ldots, E_{k-1} over $R G$ and E^{\prime} with $\left\|E^{\prime}\right\|_{\xi}<\varepsilon \cdot\left\|E_{k}^{\prime}\right\|_{\xi}^{-2}$ such that $E_{1}^{\prime} \cdots E_{k-1}^{\prime}=E_{1} \cdots E_{k-1} \cdot\left(I-E^{\prime}\right)$. Now

$$
\left(I-E^{\prime}\right) \cdot E_{k}^{\prime}=E_{k}^{\prime} \cdot\left(I-\left(E_{k}^{\prime}\right)^{-1} \cdot E^{\prime} \cdot E_{k}^{\prime}\right)
$$

Since we can write $E_{k}^{\prime}=E_{k}-R_{k}=E_{k}\left(I-E_{k}^{-1} R_{k}\right)$ with E_{k} an elementary matrix over $R G$ and $\left\|R_{k}\right\|_{\xi}<\varepsilon \cdot\left\|E_{k}^{\prime}\right\|_{\xi}^{-1}$ we get the claim. Notice that $\left\|E_{k}^{\prime}\right\|_{\xi}^{-1}=\left\|E_{k}\right\|_{\xi}^{-1}=$ $\left\|E_{k}^{-1}\right\|_{\xi}^{-1}$.
This shows (10) and the lemma follows.
As promised in Remark 3.3 we now want to get to a chain complex version of Theorem 3.2. So let R be a ring with unit and $\left(C_{*}, d\right)$ a chain complex over R. We will always assume that $C_{i}=0$ for negative integers i. The chain complex C_{*} is finitely generated, if there is an $n \in \mathbb{Z}$ such that $C_{i}=0$ for $i \geq n$ and every C_{i} is a finitely generated R-module. A chain complex C_{*} is free, respectively projective, if for every $i \in \mathbb{Z} C_{i}$ is a free R-module, respectively a projective R-module.

Definition 4.5. A chain complex C_{*} over R is finitely dominated, if there exist a finitely generated free R-chain complex D_{*}, chain maps $a: D_{*} \rightarrow C_{*}, b: C_{*} \rightarrow D_{*}$ and a chain homotopy $H: C_{*} \rightarrow C_{*+1}$ with $H: a b \simeq \operatorname{id}_{C}$.

Proposition 4.6. An R-chain complex C_{*} is finitely dominated if and only if it is chain homotopy equivalent to a finitely generated projective R-chain complex D_{*}.
Proof. See Ranicki [12, Prop.3.2].

Now let G be a group and $N \leq G$ a normal subgroup such that $G / N \cong \mathbb{Z}^{k}$ for some $k \geq 0$. Inclusion gives a ring homomorphism $i: R N \rightarrow R G$. For a (left) $R N$-module M we get a (left) $R G$-module by $i_{!} M=R G \otimes_{R N} M$. Also if M is an $R G$-module, we denote $i^{!} M$ to be the $R N$-module obtained by restriction. Notice that if M is a finitely generated $R G$-module, $i^{!} M$ will in general not be finitely generated.

Theorem 4.7. Let R be a ring with unit, G a group, $N \leq G$ a normal subgroup such that $G / N \cong \mathbb{Z}^{k}$ for some $k \geq 0$ and C_{*} a finitely generated free $R G$-chain complex. Then the free $R N$-chain complex $i!C_{*}$ is finitely dominated if and only if $\widehat{R G}_{\xi} \otimes_{R G} C_{*}$ is acyclic for all nonzero $\xi: G \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$.
Before we give the proof of Theorem 4.7 let us give a criterion to decide when $\widehat{R G}_{\xi} \otimes_{R G} C_{*}$ is an acyclic chain complex. Choose a basis \mathcal{B} of the finitely generated free $R G$-chain complex C_{*} which is a disjoint union of finite sets \mathcal{B}_{i}, each being a basis for $C_{i}, i \in \mathbb{Z}$. Then every $y \in C_{i}$ can be written as

$$
y=\sum_{x \in \mathcal{B}_{i}} y_{x} x
$$

with $y_{x} \in R G$ and we define

$$
\|y\|_{\xi}=\max \left\{\left\|y_{x}\right\|_{\xi} \in[0, \infty) \mid x \in \mathcal{B}_{i}\right\}
$$

Obviously $\|\cdot\|_{\xi}$ depends on the basis so we will also write $\|\cdot\|_{\xi}^{\mathcal{B}}$ if we want to indicate this.

Lemma 4.8. Let C_{*} be a finitely generated free $R G$-chain complex, \mathcal{B} a basis of C_{*} and $\xi: G \rightarrow \mathbb{R}$ a homomorphism. Then $\widehat{R G}_{\xi} \otimes_{R G} C_{*}$ is acyclic if and only if there is an RG-chain map $a: C_{*} \rightarrow C_{*}$ chain homotopic to the identity such that

$$
\|a(x)\|_{\xi}<1
$$

for every $x \in \mathcal{B}$.
Proof. Assume that $\widehat{R G} \otimes_{R G} C_{*}$ is acyclic. As in the proof of Proposition 4.3 we can define a chain homotopy $H: C_{*} \rightarrow C_{*+1}$ with $\partial H+H \partial=1-a$ so that $\|a(x)\|_{\xi}<1$ for all $x \in \mathcal{B}$ by modifying a chain contraction $\delta: \widehat{R G}_{\xi} \otimes_{R G} C_{*} \rightarrow \widehat{R G}_{\xi} \otimes_{R G} C_{*+1}$. Now a is a chain map and chain homotopic to the identity.
If we assume the existence of the chain map $a: C_{*} \rightarrow C_{*}$ chain homotopic to the identity with $\|a(x)\|_{\xi}<1$ for every $x \in \mathcal{B}$, then $1+a+a^{2}+\ldots: \widehat{R G}_{\xi} \otimes_{R G} C_{*} \rightarrow$ $\widehat{R G}_{\xi} \otimes_{R G} C_{*}$ is a well defined chain map and the inverse of the chain map $1-a$. It follows that $1-a$ induces an isomorphism of the homology $H_{*}\left(\widehat{R G}_{\xi} \otimes_{R G} C_{*}\right)$, but it also induces the zero map on this homology since $1-a$ is chain homotopic to the zero map. Thus $\widehat{R G}_{\xi} \otimes_{R G} C_{*}$ is acyclic.

The proof of Theorem 4.7 is analogous to the proof of Theorem 3.2, we mainly have to show how to carry over the geometric arguments to arguments dealing with chain complexes.

Proof of Theorem 4.7. We need chain complex analogues for the geometric constructions in Section 2 and 3. Let us start again by assuming that $i^{!} C_{*}$ is finitely dominated. We need to show that $\widehat{R G}_{\xi} \otimes_{R G} C_{*}$ is acyclic for all nonzero $\xi: G \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$.

Assume $k=1$. Then G is the semidirect product $G=N \times{ }_{\alpha} \mathbb{Z}$ with $\alpha: N \rightarrow N$ the automorphism induced by conjugation with $t \in G$ so that its projection in $G / N \cong \mathbb{Z}$ is a generator. Up to multiplication by a positive real number there are only two homomorphism we have to consider, namely $\xi: G \rightarrow \mathbb{R}$ such that $\xi(t)=1$ and $-\xi$.
Define $\zeta: i^{!} C_{*} \rightarrow i^{!} C_{*}$ by $\zeta(x)=t x$ with $t \in G$ as above. Then ζ commutes with the boundary, but it is in general not an $R N$ map since $\zeta(h x)=\alpha(h) \zeta(x)$ for $h \in N$. But we get an $R G$-chain map

$$
\begin{aligned}
& 1-t^{-1} \otimes \zeta: i_{i} i!C_{*} \longrightarrow \\
& 1 \otimes x \mapsto \\
& 1 \otimes i!C_{*} \\
& 1 \otimes x-t^{-1} \otimes t x
\end{aligned}
$$

In analogy with Ranicki [13] we define the mapping torus of ζ

$$
T(\zeta)=\mathcal{C}\left(1-t^{-1} \otimes \zeta: i_{!}!C_{*} \rightarrow i_{!}!C_{*}\right)
$$

as the mapping cone of $1-t^{-1} \otimes \zeta$. This mapping torus has the analogues properties of the geometric one: the projection $p: T(\zeta) \rightarrow C_{*}$ given by $p(1 \otimes x, 1 \otimes y)=x$ is a chain homotopy equivalence. Furthermore $T(\zeta)$ is chain homotopy equivalent to $T(b \zeta a)$, where $a: D_{*} \rightarrow i^{!} C_{*}, b: i^{!} C_{*} \rightarrow D_{*}$ are mutually inverse chain homotopy equivalences between $i^{!} C_{*}$ and a finitely generated projective $R N$-chain complex D_{*} which exists since we assumed $i^{!} C_{*}$ to be finitely dominated.
But $\widehat{R G}_{\xi} \otimes_{R G} T(b \zeta a)$ is acyclic for $\xi(t)=1$ since $1-t^{-1} \otimes b \zeta a: \widehat{R G}_{\xi} \otimes_{R G} i_{!} D_{*} \rightarrow$ $\widehat{R G}_{\xi} \otimes_{R G} i_{!} D_{*}$ is an automorphism in every degree, compare also the proof of Theorem 2 in Ranicki [13].
So now assume that $k \geq 2$. Let $H \leq G$ be a subgroup containing N such that $G / H \cong \mathbb{Z}^{l}$ and $H / N \cong \mathbb{Z}^{k-l}$ with $l \geq 1$. Let $j_{1}: R N \rightarrow R H$ and $i_{1}: R H \rightarrow R G$ be the inclusions. As in Corollary 2.11 we get that $i_{1}^{!} C_{*}$ is chain homotopy equivalent to a finitely generated free $R H$-chain complex. Notice that we get that $i_{1}^{!} C_{*} \simeq D_{*}$ with D_{*} a finitely generated projective $R H$-chain complex and D_{*} is a mapping torus. Therefore $\left[D_{*}\right]=0 \in \tilde{K}_{0}(R H)$ and by Ranicki [12] D_{*} is chain homotopy equivalent to a finitely generated free $R H$-chain complex F_{*}.
So now choose H such that $G / H \cong \mathbb{Z}$ and $H / N \cong \mathbb{Z}^{k-1}$. Let $g \in G$ project to a generator of G / H and write $\xi=\xi_{1}+\xi_{2}$, where ξ_{1} vanishes on H, ξ_{2} vanishes on N and $\xi_{2}(g)=0$. We can assume that $G / \operatorname{ker} \xi_{1} \cong \mathbb{Z}$ and $G / \operatorname{ker} \xi_{2} \cong \mathbb{Z}^{k-1}$ for otherwise we get that $\widehat{R G} \otimes_{\xi G} C_{*}$ is acyclic by induction.
Now $j_{1}^{!} F_{*} \simeq j_{i}^{!} i_{1}^{!} C_{*}=i^{!} C_{*}$ is a finitely dominated $R N$-chain complex. Let $\varepsilon>0$. By induction and Lemma 4.8 there is a chain map $a: F_{*} \rightarrow F_{*}$ chain homotopic to the identity with

$$
\|a(x)\|_{\xi_{2}} \leq \varepsilon \cdot\|x\|_{\xi_{2}}
$$

for every $x \in F_{*}$. Now $C_{*} \simeq T\left(d \zeta c a: i_{1!} F_{*} \rightarrow i_{1!} F_{*}\right)$. By choosing the $\varepsilon>0$ small enough we see that $\widehat{R G} \xi \otimes_{R G} C_{*} \simeq 0$ by the same argument as in the case $k=1$. Now we assume that $\widehat{R G} \otimes_{R G} C_{*}$ is acyclic for every nonzero homomorphism $\xi: G \rightarrow \mathbb{R}$ which vanishes on N. We need to show that $i!C_{*}$ is a finitely dominated $R N$-chain complex. Let \mathcal{B} be an $R G$ basis of C_{*}. Let $g_{1}, \ldots, g_{k} \in G$ be such that their images in $G / N \cong \mathbb{Z}^{k}$ generate G / N. Then

$$
\mathcal{B}_{N}=\left\{g_{1}^{n_{1}} \cdots g_{k}^{n_{k}} x \mid x \in \mathcal{B}, n_{i} \in \mathbb{Z}, i=1, \ldots, k\right\}
$$

is an $R N$ basis of $i^{!} C_{*}$. We want to define a norm on C_{*} which will behave similarly to the map $|H|: X_{N} \rightarrow[0, \infty)$ used in the proof of Theorem 3.2.
For every $y \in C_{*}$ define $\operatorname{supp} y$ as a subset of G inductively by starting in dimension 0 . Every $y \in C_{0}$ can be written uniquely as $y=\sum_{x \in \mathcal{B}_{0}} y_{x} x$ with $y_{x} \in R G$ and we let

$$
\operatorname{supp} y=\bigcup_{x \in \mathcal{B}_{0}} \operatorname{supp} y_{x} .
$$

Now for $y \in C_{i}$ we have $y=\sum_{x \in \mathcal{B}_{i}} y_{x} x$ with $y_{x} \in R G$ and we define

$$
\operatorname{supp} y=\bigcup_{x \in \mathcal{B}_{i}} \operatorname{supp} y_{x} \cup \operatorname{supp} \partial y
$$

Notice that $\operatorname{supp} y$ is a finite subset of G and depends on the basis.
If $g \in G$, we look at the image of g in $G / N \cong \mathbb{Z}^{k}$. This includes into \mathbb{R}^{k} be letting the image of g_{i} correspond to the standard basis $e_{i} \in \mathbb{R}^{k}$. Denote the image of g in \mathbb{R}^{k} by $e(g)$.
Now we define $\|\cdot\|: C_{*} \rightarrow[0, \infty) \cup\{-\infty\}$ by

$$
\|y\|=\left\{\begin{aligned}
-\infty & \text { if } y=0 \\
\max \{|e(g)| \mid g \in \operatorname{supp} y\} & \text { if } y \neq 0
\end{aligned}\right.
$$

Here $|e(g)|$ denotes the Euclidean norm of $e(g) \in \mathbb{R}^{k}$.
The definition of the norm $\|\cdot\|$ is similar to the definition of the norm in Bieri and Renz $[1, \S 5]$. In particular we also get that for every $R>0$ the set $D_{*}^{R}=$ $\left\{y \in i^{!} C_{*} \mid\|y\| \leq R\right\}$ is a finitely generated free $R N$ chain complex generated by the elements $u \in \mathcal{B}_{N}$ which satisfy $\|u\| \leq R$. We prove that $i!C_{*}$ is dominated by D_{*}^{R} provided $R>0$ is large enough.
For this we need an analogue of Lemma 3.5. Assume there exist constants $R>0$, $\varepsilon>0, B>0, C>0$ and a chain homotopy $K: i^{!} C_{*} \rightarrow i^{!} C_{*+1}$ with $K: 1 \simeq a$ such that

$$
\begin{equation*}
\varepsilon \leq\|x\|-\|a(x)\| \leq C \tag{11}
\end{equation*}
$$

ll $x \in i^{!} C_{*}$ with $\|x\| \geq R$ and

$$
\begin{equation*}
-B \leq\|x\|-\|K(x)\| \leq C \tag{12}
\end{equation*}
$$

for all $x \in i^{!} C_{*}$ with $\|x\| \geq R$. We want to show that then $i^{!} C_{*}$ is finitely dominated. The proof proceeds as the proof of Lemma 3.5.
Since $K+K a: 1 \simeq a^{2}$ we can assume that $\varepsilon \geq 2 B$. There is an $L \geq R+B$ such that $\|a(x)\| \leq L$ and $\|K(x)\| \leq L$ for all $x \in D_{*}^{R}$. Define $\lambda: i^{!} C_{*} \rightarrow\{0,1\}$ by $\lambda(x)=0$ if $\|x\| \leq L$ and $\lambda(x)=1$ if $\|x\|>L$. Then for every $x \in i^{!} C_{*}$ the sequence $\left(\lambda\left(a^{l}(x)\right)\right)_{l=0}^{\infty}$ is monotonely decreasing and 1 for only finitely many terms.
We define a chain homotopy $\mathcal{K}: i^{!} C_{*} \rightarrow i^{!} C_{*+1}$ by defining it on basis elements $x \in \mathcal{B}_{N}$ as

$$
\mathcal{K}(x)=\sum_{l=0}^{\infty} \lambda\left(a^{l}(x)\right) K\left(a^{l}(x)\right)
$$

If $x \in\left(\mathcal{B}_{N}\right)_{s}$ there exist $y_{1}, \ldots, y_{u} \in\left(\mathcal{B}_{N}\right)_{s-1}$ and $(\partial x)_{1}, \ldots,(\partial x)_{u} \in R N$ such that

$$
\partial x=\sum_{j=1}^{u}(\partial x)_{j} y_{j}
$$

Then

$$
\begin{aligned}
\partial \mathcal{K}(x)+\mathcal{K} \partial(x) & =\sum_{l=0}^{\infty} \partial\left(\lambda\left(a^{l}(x)\right) K a^{l}(x)\right)+\sum_{j=1}^{u}(\partial x)_{u} \sum_{i=0}^{\infty} \lambda\left(a^{l}\left(y_{j}\right)\right) K a^{l}(y) \\
& \left.=\sum_{i=0}^{\infty}\left(\lambda\left(a^{l}(x)\right) \partial K a^{l}(x)+\sum_{j=1}^{u} \lambda\left(a^{l}(y)\right) K a^{l}(\partial x)_{j} y\right)\right)
\end{aligned}
$$

Let $m \in \mathbb{Z}$ be an integer such that $\lambda\left(a^{l}(x)\right)=0=\lambda\left(a^{l}\left(y_{j}\right)\right)$ for all $j=1, \ldots, u$ and $l>m$. Then there exist $r_{1} \in i^{!} C_{s}$ and $r_{2} \in i^{!} C_{s-1}$ with $\left\|r_{1}\right\|,\left\|r_{2}\right\| \leq L$ such that

$$
\begin{aligned}
\partial \mathcal{K}(x)+\mathcal{K} \partial(x) & =\sum_{l=0}^{m}\left(\partial K a^{l}(x)+K a^{l} \partial(x)\right)+\partial K\left(r_{1}\right)+K\left(r_{2}\right) \\
& =\left(1-a^{m+1}\right)(x)+R(x)
\end{aligned}
$$

with $\|R(x)\| \leq L+C$. Also $\left\|a^{m+1}(x)\right\| \leq L$ since $\lambda\left(a^{m+1}(x)\right)=0$ by the choice of m. It follows that \mathcal{K} is a chain homotopy $\mathcal{K}: 1 \simeq b$ with $b: i^{!} C_{*} \rightarrow i^{!} C_{*}$ a chain map with $\|b(x)\| \leq L+C$ for all $x \in \mathcal{B}_{N}$. Therefore the image of b is contained in D_{*}^{L+C} and $i^{!} C_{*}$ is finitely dominated provided we can find the constants and K as in (11) and (12).
This is done as in the proof of Theorem 3.2. The topological constructions can be transformed into chain complex constructions just as we did above with the constructions from the proof of Lemma 3.5. The details will be left to the reader.

Let us now return to the situation where X is a finite CW-complex. Then $C_{*}(\tilde{X})$ is also a free $\mathbb{Z} N$-complex, but for $k \geq 1$ it is not finitely generated. As a $\mathbb{Z} N$-complex we write it as $C_{*}\left(X_{N} ; \mathbb{Z} N\right)$. By Wall [19], see also Hughes and Ranicki [7, Th.6.8], X_{N} is finitely dominated if and only if N is finitely presented and $C_{*}\left(X_{N} ; \mathbb{Z} N\right)$ is homotopy equivalent to a finitely generated projective $\mathbb{Z} N$-complex D_{*}. This leads to the following extension of Theorem 3.2.
Theorem 4.9. Let X be a finite $C W$-complex and $N \leq \pi_{1}(X)$ a normal subgroup such that $\pi_{1}(X) / N \cong \mathbb{Z}^{k}$ for some $k \geq 0$. Then the following are equivalent.
(1) X_{N} is finitely dominated.
(2) $S\left(\pi_{1}(X) ; N\right) \subset \Sigma(X)$.
(3) $S\left(\pi_{1}(X) ; N\right) \subset \Sigma(X ; \mathbb{Z})$ and N is finitely presented.

Recall that $S\left(\pi_{1}(X) ; N\right)$ are equivalence classes of nonzero homomorphisms ξ : $\pi_{1}(X) \rightarrow \mathbb{R}$ vanishing on N.
Remark 4.10. An alternative proof of $(2) \Leftrightarrow(3)$ can be given as follows: by Latour [8, Cor.5.23] X is ξ-contractible if and only if ξ is stable and $C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)$ is acyclic. See Latour $[8, \S 5]$ for the definition of ξ being stable. But ξ is stable for every $\xi \in S\left(\pi_{1}(X) ; N\right)$ if and only if N is finitely presented by Bieri and Renz [1, Rm.6.5]. Thus we get a proof of Theorem 4.9 independent of Wall [19]. Of course the proof involving Theorem 4.7 is independent of Latour [8, §5].

5. Obstructions for fibering and nonsingular closed 1-Forms

Let X be a finite connected CW-complex and $\xi: \pi_{1}(X) \rightarrow \mathbb{Z}$ a surjective homomorphism. Let \bar{X} be the covering space corresponding to $\operatorname{ker} \xi$. Then ξ factors through $\Delta(\bar{X}: X) \cong \pi_{1}(X) / \operatorname{ker} \xi$ and there is a covering transformation $t: \bar{X} \rightarrow \bar{X}$ with $\xi(t)=1$. Assume that \bar{X} is finitely dominated and let K be a finite CW-complex, $a: K \rightarrow \bar{X}, b: \bar{X} \rightarrow K$ be cellular maps such that $a b \simeq \mathrm{id}_{\bar{X}}$. By combining Lemma 2.10 with Proposition 2.8 we have

$$
X \simeq T(b t a: K \rightarrow K)
$$

and let $h: T_{b t a} \rightarrow X$ be the resulting homotopy equivalence. Both X and $T_{b t a}$ are finite CW-complexes so we have a Whitehead torsion

$$
\tau(h) \in \operatorname{Wh}\left(\pi_{1}(X)\right)
$$

Because of Proposition $2.8 \tau(h)$ does not depend on the choice of the finite domination of \bar{X}. Notice that replacing t by t^{-1} gives another homotopy equivalence $T_{b t^{-1} a} \rightarrow X$. We put this together in the following definition.

Definition 5.1. Let X be a finite connected CW-complex, $\xi: \pi_{1}(X) \rightarrow \mathbb{Z}$ a surjective homomorphism such that the covering space \bar{X} corresponding to $\operatorname{ker} \xi$ is finitely dominated. Then the fibering obstructions $\Phi^{+}(X, \xi)$ and $\Phi^{-}(X, \xi)$ are defined as

$$
\begin{aligned}
& \Phi^{+}(X, \xi)=\tau\left(h^{+}\right) \in \operatorname{Wh}\left(\pi_{1}(X)\right) \\
& \Phi^{-}(X, \xi)=\tau\left(h^{-}\right) \in \operatorname{Wh}\left(\pi_{1}(X)\right)
\end{aligned}
$$

where $h^{+}: T_{b t a} \rightarrow X$ and $h^{-}: T_{b t^{-1} a} \rightarrow X$ are the homotopy equivalences described above.

In the case that M is a closed connected smooth manifold of dimension n we get

$$
\Phi^{+}(M, \xi)=(-1)^{n-1}\left(\Phi^{-}(M, \xi)\right)^{*}
$$

where * $: \mathrm{Wh}\left(\pi_{1}(M)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(M)\right)$ is induced by the orientation involution of $\mathbb{Z} \pi_{1}(M)$, see Hughes and Ranicki [7, Rm.15.12]. In general the vanishing of $\Phi^{+}(X, \xi)$ does not imply the vanishing of $\Phi^{-}(X, \xi)$; see Hughes and Ranicki [7, $\S 15]$ for relations between Φ^{+}and Φ^{-}.
The Farrell obstruction $\tau_{F}(M, f)$ which appears in Theorem 1.1 is given by

$$
\tau_{F}(M, f)=\Phi^{+}\left(M, f_{\#}\right)
$$

This explains the name 'fibering obstruction' in Definition 5.1.
Recall that the infinite cyclic covering space \bar{X} corresponding to the kernel of $\xi: \pi_{1}(X) \rightarrow \mathbb{Z}$ is finitely dominated if and only if X is $(\pm \xi)$-contractible. But if X is ξ-contractible for any $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ we have already defined a torsion given by

$$
\left.\tau(X, \xi)=\tau\left(C_{*}\left(X ; \widehat{\mathbb{Z} \pi_{1}(X}\right)_{\xi}\right)\right) \in \mathrm{Wh}\left(\pi_{1}(X) ; \xi\right)
$$

It turns out that $\Phi^{+}(X, \xi)$ determines $\tau(X, \xi)$.
Proposition 5.2. Let X be a finite connected $C W$-complex, $\xi: \pi_{1}(X) \rightarrow \mathbb{Z} a$ surjective homomorphism such that the covering space corresponding to $\operatorname{ker} \xi$ is finitely dominated. Then

$$
i_{*} \Phi^{+}(X, \xi)=\tau(X, \xi)
$$

where $i_{*}: \mathrm{Wh}\left(\pi_{1}(X)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(X) ; \xi\right)$ is the natural homomorphism induced by the inclusion $\left.\mathbb{Z} \pi_{1}(X) \rightarrow \widehat{\mathbb{Z} \pi_{1}(X}\right)_{\xi}$.

A proof can be found in Ranicki [14, Prop.15.15] which decomposes the various torsions into the components of the Bass-Heller-Swan decomposition, thus obtaining further information about the relation to the finiteness obstruction of Wall. I am indebted to Andrew Ranicki for pointing out the following, more elementary proof of Proposition 5.2 which will remain useful later. First we need a result on the torsion of a mapping torus, compare Geoghegan and Nicas [6, Th.7.6].

Lemma 5.3. Let X be a finite connected $C W$-complex and $f: X \rightarrow X$ a cellular map. Let $g: T_{f} \rightarrow S^{1}$ be the canonical projection. Then

$$
\tau\left(T_{f}, g_{\#}\right)=0 \in \mathrm{~Wh}\left(\pi_{1}\left(T_{f}\right) ; g_{\#}\right)
$$

Proof. Notice that T_{f} is $g_{\#}$-contractible by Lemma 2.9 so $\tau\left(T_{f}, g_{\#}\right)$ is defined. Let $G=\pi_{1}\left(T_{f}\right)$ and \tilde{T}_{f} be the universal covering space of T_{f}. Note that we have covering spaces $\tilde{T}_{f} \rightarrow \bar{T}_{f} \rightarrow T_{f}$ and a natural control map $h: \bar{T} \rightarrow \mathbb{R}$ which gives a natural map $\tilde{h}: \tilde{T} \rightarrow \mathbb{R}$.
Now

$$
C_{*}\left(T_{f} ; \mathbb{Z} G\right)=C_{*}(X ; \mathbb{Z} G) \oplus C_{*-1}(X ; \mathbb{Z} G)
$$

and we can choose a basis of $C_{*}\left(T_{f} ; \mathbb{Z} G\right)$ by choosing lifts of cells of X in $\tilde{h}^{-1}(\{1\})$ and lifts of cells of the form $\sigma \times(0,1)$ in $\tilde{h}([0,1])$. With respect to such a basis the matrix of the boundary operator in degree i looks like

$$
\partial_{i}=\left(\begin{array}{cc}
\partial_{i}^{X} & (-1)^{i-1}\left(I-A_{i} t\right) \\
0 & \partial_{i-1}^{X}
\end{array}\right)
$$

where A_{i} is a matrix over $\mathbb{Z} H$ with $H=\operatorname{ker} g_{\#}$ and $t \in G$ satisfies $g_{\#}(t)=-1$. Thus $C_{*}\left(T_{f} ; \mathbb{Z} G\right)$ can be thought of as the mapping cone $\mathcal{C}(\varphi)$ of a $\mathbb{Z} G$-chain map $\varphi=\mathrm{id}-a t: C_{*}(X ; \mathbb{Z} G) \rightarrow C_{*}(X ; \mathbb{Z} G)$. Notice that a is induced by $f: X \rightarrow X$. Also

$$
\mathrm{id}_{\widehat{\mathbb{Z}} \widehat{\xi}_{\xi}} \otimes \varphi: C_{*}\left(X ; \widehat{\mathbb{Z} G_{\xi}}\right) \rightarrow C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right)
$$

is an automorphism in every degree. Now

$$
C_{*}\left(T_{f} ; \widehat{\mathbb{Z} G}_{\xi}\right)=\mathcal{C}\left(\mathrm{id}_{\widehat{\mathbb{Z}} \widehat{G}_{\xi}} \otimes \varphi\right)
$$

and

$$
\tau(\mathcal{C}(\mathrm{id} \otimes \varphi))=\sum_{i=0}^{\infty}(-1)^{i} \tau\left(I-A_{i} t\right) \in \mathrm{Wh}\left(G ; g_{\#}\right)
$$

by Ranicki [15, Prop.1.7(ii)]. But obviously $\tau\left(I-A_{i} t\right)=0 \in \mathrm{~Wh}\left(G ; g_{\#}\right)$ so the result follows.

Proof of Proposition 5.2. Let $G=\pi_{1}(X)$. The homotopy equivalence $h: T_{b t a} \rightarrow X$ induces a short exact sequence of chain complexes

$$
0 \longrightarrow C_{*}(X ; \mathbb{Z} G) \longrightarrow \mathcal{C}(h) \longrightarrow C_{*-1}\left(T_{b t a} ; \mathbb{Z} G\right) \longrightarrow 0
$$

where only $\mathcal{C}(h)$ is acyclic. After tensoring with $\widehat{\mathbb{Z}}_{\xi}$ we get a short exact sequence of acyclic complexes

$$
0 \longrightarrow C_{*}\left(X ; \widehat{\mathbb{Z}}_{\xi}\right) \longrightarrow \mathcal{C}(\operatorname{id} \otimes h) \longrightarrow C_{*-1}\left(T_{b t a} ; \widehat{\mathbb{Z}}_{\xi}\right) \longrightarrow 0
$$

and so

$$
\tau(\mathrm{id} \otimes h)=\tau(X, \xi)-\tau\left(T_{b t a}, \xi\right)
$$

But $\tau\left(T_{b t a}, \xi\right)=0$ by Lemma 5.3 and obviously $i_{*} \Phi^{+}(X, \xi)=\tau(\mathrm{id} \otimes h)$.
Definition 5.4. A nonzero homomorphism $\xi: G \rightarrow \mathbb{R}$ is called rational, if $\operatorname{im} \xi$ is infinite cyclic. Otherwise it is called irrational.

If $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ is a rational homomorphism such that X is $(\pm \xi)$-contractible, then we have the fibering obstructions $\Phi^{+}(X, \xi), \Phi^{-}(X, \xi) \in \mathrm{Wh}(G)$ such that

$$
\begin{aligned}
& i_{*} \Phi^{+}(X, \xi)=\tau(X, \xi) \in \mathrm{Wh}\left(\pi_{1}(X) ; \xi\right) \\
& i_{*} \Phi^{-}(X, \xi)=\tau(X,-\xi) \in \mathrm{Wh}\left(\pi_{1}(X) ;-\xi\right)
\end{aligned}
$$

For an irrational $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ it is not clear how to define an element $\Phi(X, \xi) \in$ $\mathrm{Wh}\left(\pi_{1}(X)\right)$ such that $i_{*} \Phi(X, \xi)=\tau(X, \xi) \in \mathrm{Wh}\left(\pi_{1}(X) ; \xi\right)$. It is not even known in general whether the natural map $i_{*}: \mathrm{Wh}(G) \rightarrow \mathrm{Wh}(G ; \xi)$ is surjective. In the case of a rational homomorphism this follows easily from Pajitnov and Ranicki [11, Mn.Th.] which also shows that i_{*} need not be injective.
But it turns out that in the case of an \mathbb{Z}^{k}-covering space X_{N} which is finitely dominated with $k \geq 2$ the fibering obstructions are the same for all rational homomorphisms $\xi: \pi_{1}(\bar{X}) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ and that any such obstruction determines $\tau(X, \xi)$ even for irrational $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$.
Proposition 5.5. Let X be a finite connected $C W$-complex, $N \leq \pi_{1}(X)$ a normal subgroup such that $\pi_{1}(X) / N \cong \mathbb{Z}^{k}$ for an integer $k \geq 2$ and X_{N} is finitely dominated. Let $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ be a nonzero rational homomorphism with $N \leq \operatorname{ker} \xi$.
(1) For every nonzero homomorphism $\xi^{\prime}: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi^{\prime}$ we have

$$
i_{*} \Phi^{+}(X, \xi)=\tau\left(X, \xi^{\prime}\right) \in \mathrm{Wh}\left(\pi_{1}(X) ; \xi^{\prime}\right)
$$

(2) For every nonzero rational homomorphism $\xi^{\prime}: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi^{\prime}$ we have

$$
\Phi^{+}(X, \xi)=\Phi^{+}\left(X, \xi^{\prime}\right) \in \mathrm{Wh}\left(\pi_{1}(X)\right)
$$

Remark 5.6. Part (2) is an unpublished result of Farrell. It shows in particular that $\Phi^{-}(X, \xi)=\Phi^{+}(X, \xi)$ in the situation of Proposition 5.5.
Proof of Proposition 5.5. Let us start with the case that $\pi_{1}(X) / N \cong \mathbb{Z}^{2}$. We can assume that ξ is a surjective homomorphism $\xi: \pi_{1}(X) \rightarrow \mathbb{Z}$. Abbreviate $G=\pi_{1}(X)$ and $H=\operatorname{ker} \xi$. We have two infinite cyclic covering spaces

$$
X_{N} \longrightarrow X_{H} \longrightarrow X
$$

Let $t_{2}: X_{N} \rightarrow X_{N}$ be a generator of $\Delta\left(X_{N}: X_{H}\right) \cong \mathbb{Z}$. Notice that t_{2} also represents an element $\Delta\left(X_{N}: X\right)$ and $\xi\left(t_{2}\right)=0$. Also let $t_{1}: X_{H} \rightarrow X_{H}$ be a generator of $\Delta\left(X_{H}: X\right) \cong \mathbb{Z}$ with $\xi\left(t_{1}\right)=1$.
Let K be a finite CW-complex such that cellular maps $a: K \rightarrow X_{N}$ and $b: X_{N} \rightarrow$ K exist with $a b \simeq \operatorname{id}_{X_{N}}$ By Proposition 2.8 and Lemma 2.10 we have

$$
\begin{equation*}
X_{H} \simeq T\left(b t_{2} a: K \rightarrow K\right) \tag{13}
\end{equation*}
$$

Let $c: T_{b t_{2} a} \rightarrow X_{H}$ and $d: X_{H} \rightarrow T_{b t_{2} a}$ denote the homotopy equivalences given by (13).
Now let $\xi_{1}: G \rightarrow \mathbb{R}$ be a nonzero rational homomorphism with $N \leq \operatorname{ker} \xi_{1}$ and
$\xi_{1}\left(t_{2}\right)>0$. Then ξ_{1} restricts to a nonzero rational homomorphism $\xi_{1} \mid: H \rightarrow \mathbb{R}$ and $C_{*}\left(T_{b t_{2} a} ; \widehat{\mathbb{Z}}_{\xi_{1} \mid}\right)$ is acyclic by Lemma 5.3. Again by Proposition 2.8 and Lemma 2.10 we have

$$
X \simeq T\left(d t_{1} c: T_{b t_{2} a} \rightarrow T_{b t_{2} a}\right)
$$

and the torsion of the homotopy equivalence $h: T_{d t_{1} c} \rightarrow X$ represents $\Phi^{+}(X, \xi)$. The chain complex $C_{*}\left(T_{d t_{1} c} ; \mathbb{Z} G\right)$ fits into a short exact sequence of $\mathbb{Z} G$-chain complexes

$$
0 \longrightarrow C_{*}\left(T_{b t_{2} a} ; \mathbb{Z} G\right) \longrightarrow C_{*}\left(T_{d t_{1} c} ; \mathbb{Z} G\right) \longrightarrow C_{*-1}\left(T_{b t_{2} a} ; \mathbb{Z} G\right) \longrightarrow 0
$$

where $C_{*}\left(T_{b t_{2} a} ; \mathbb{Z} G\right)=\mathbb{Z} G \otimes_{\mathbb{Z} H} C_{*}\left(T_{b t_{2} a} ; \mathbb{Z} H\right)$.
We have an inclusion of rings

$$
\widehat{\mathbb{Z}}_{\xi_{1} \mid} \longrightarrow \widehat{\mathbb{Z} G}_{\xi_{1}+C \cdot \xi}
$$

for every $C \in \mathbb{R}$. Write $\xi_{C}=\xi_{1}+C \cdot \xi$. Then we have that

$$
\begin{aligned}
C_{*}\left(T_{b t_{2} a} ; \widehat{\mathbb{Z} G_{\xi_{C}}}\right) & =\widehat{\mathbb{Z} G_{\xi_{C}}} \otimes_{\mathbb{Z} G} \mathbb{Z} G \otimes_{\mathbb{Z} H} C_{*}\left(T_{b t_{2} a} ; \mathbb{Z} H\right) \\
& =\widehat{\mathbb{Z}}_{\xi_{C}} \otimes_{\overparen{\mathbb{Z}} \hat{\xi}_{\xi_{1} \mid}} \widehat{\mathbb{Z H}}_{\xi_{1} \mid} \otimes_{\mathbb{Z} H} C_{*}\left(T_{b t_{2} a} ; \mathbb{Z} H\right)
\end{aligned}
$$

is acyclic for every $C \in \mathbb{R}$.
Therefore we have a short exact sequence of acyclic chain complexes

$$
0 \longrightarrow C_{*}\left(T_{b t_{2} a} ; \widehat{\mathbb{Z}}_{\xi_{C}}\right) \longrightarrow C_{*}\left(T_{d t_{1} c} ; \widehat{\mathbb{Z}}_{\xi_{C}}\right) \longrightarrow C_{*-1}\left(T_{b t_{2} a} ; \widehat{\mathbb{Z}}_{\xi_{C}}\right) \longrightarrow 0
$$

for every $C \in \mathbb{R}$. Therefore

$$
\tau\left(T_{d t_{1} c}, \xi_{C}\right)=0 \in \mathrm{~Wh}\left(G ; \xi_{C}\right)
$$

for every $C \in \mathbb{R}$ and hence

$$
\begin{aligned}
i_{*} \Phi^{+}(X, \xi) & =\tau\left(X, \xi_{C}\right)-\tau\left(T_{d t_{1} c}, \xi_{C}\right) \\
& =\tau\left(X, \xi_{C}\right) \in \operatorname{Wh}\left(G ; \xi_{C}\right)
\end{aligned}
$$

for every $C \in \mathbb{R}$.
Replacing ξ_{1} by $-\xi_{1}$ and t_{2} by t_{2}^{-1} shows that

$$
\begin{equation*}
i_{*} \Phi^{+}(X, \xi)=\tau\left(X, \pm \xi_{C}\right) \in \mathrm{Wh}\left(G ; \pm \xi_{C}\right) \tag{14}
\end{equation*}
$$

for all $C \in \mathbb{R}$. Notice that the definition of $\Phi^{+}(X, \xi)$ does not depend on the choice of finite domination so we can replace $T_{b t_{2} a}$ by $T_{b t_{2}^{-1} a}$.
Furthermore by switching ξ_{1} and ξ we get

$$
\begin{equation*}
i_{*} \Phi^{+}\left(X, \xi_{1}\right)=\tau\left(X, \pm\left(\xi+C \cdot \xi_{2}\right)\right) \in \mathrm{Wh}\left(G ; \pm\left(\xi+C \cdot \xi_{2}\right)\right) \tag{15}
\end{equation*}
$$

for all $C \in \mathbb{R}$. In particular for $C \neq 0$ we get that $\Phi^{+}(X, \xi)-\Phi^{+}\left(X, \xi_{1}\right)$ is in the kernel of

$$
\left(i_{*}, i_{*}\right): \operatorname{Wh}(G) \longrightarrow \mathrm{Wh}\left(G ; \xi+C \cdot \xi_{1}\right) \oplus \mathrm{Wh}\left(G ;-\left(\xi+C \cdot \xi_{1}\right)\right)
$$

By choosing $C \neq 0$ appropriately we can assume that $\xi+C \cdot \xi_{1}$ is rational in which case (i_{*}, i_{*}) is injective by Pajitnov and Ranicki [11, Mn.Th.]. This finishes the proof of (2).
Now let $\xi_{1}: G \rightarrow \mathbb{R}$ be a rational homomorphism with $\xi_{1}\left(t_{1}\right)=0$. Then for any nonzero homomorphism $\xi^{\prime}: G \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi^{\prime}$ we can find $a, b \in \mathbb{R}$ with $\xi^{\prime}=a \cdot \xi+b \cdot \xi_{1}$ and (1) follows in the case $k=2$ either from (14) or from (15).
So now assume that $k>2$. Notice that we only have to show (1) since (2) always
follows from the case $k=2$. To see this note that there is always a \mathbb{Z}^{2}-covering space $X_{H} \rightarrow X$ such that $N \leq H \leq \operatorname{ker} \xi \cap \operatorname{ker} \xi^{\prime}$ and $H / N \cong \mathbb{Z}^{k-2}$. But then X_{H} is homotopy finite by Corollary 2.11 .
To prove (1) we need another Lemma.
Lemma 5.7. Let T be a finite connected $C W$-complex, $N \leq \pi_{1}(T)$ a normal subgroup with $\pi_{1}(T) / N \cong \mathbb{Z}^{k}$ with $k \geq 2$. Assume that T_{N} is finitely dominated. Let $\xi_{1}, \xi_{2}: \pi_{1}(T) \rightarrow \mathbb{Z}$ be the projections to the first two summands in $\pi_{1}(T) / N \cong \mathbb{Z}^{k} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}^{k-2}$. Let $H=\operatorname{ker} \xi_{1}$.
Then there exist finite $C W$-complexes T^{+}, T^{-}homotopy equivalent to T_{H} such that

$$
\left.C_{*}\left(T^{+} ; \widehat{\mathbb{Z} \pi_{1}(T)_{\chi}}\right) \text { and } C_{*}\left(T^{-} ; \widehat{\mathbb{Z} \pi_{1}(T)}\right)_{-\chi}\right)
$$

are acyclic for every homomorphism $\chi=\xi_{2}+\eta: \pi_{1}(T) \rightarrow \mathbb{R}$ where $\eta(g)=0$ for every $g \in N$ and every $g \in \pi_{1}(T)$ with $\xi_{2}(g) \neq 0$.
Proof. The proof is by induction, for $k=2$ this was proven above with $T^{+}=T_{b t_{2} a}$ and $T^{-}=T_{b t_{2}^{-1} a}$.
So assume that $k>2$. By Corollary 2.11 we have that T_{H} is homotopy equivalent to a finite CW-complex Y. Let us identify $\pi_{1}(Y)$ with $\pi_{1}\left(T_{H}\right)$ so that $N \leq \pi_{1}(Y)$ is a normal subgroup with $\pi_{1}(Y) / N \cong \mathbb{Z}^{k-1}$ and $k-1 \geq 2$. Now ξ_{2} restricts to a surjective homomorphism $\xi_{2} \mid \pi_{1}(Y) \rightarrow \mathbb{Z}$. Let $K=\operatorname{ker} \xi_{2} \mid \pi_{1}(Y)$. By induction hypothesis there exist finite CW-complexes F^{+}, F^{-}homotopy equivalent to Y_{K} such that

$$
\left.\left.C_{*}\left(F^{+} ; \widehat{\mathbb{Z} \pi_{1}(Y)}\right)_{\bar{\chi}}\right) \text { and } C_{*}\left(F^{-} ; \widehat{\mathbb{Z} \pi_{1}(Y)}\right)_{-\bar{\chi}}\right)
$$

are acyclic for every homomorphism $\bar{\chi}=\xi_{2} \mid+\eta: \pi_{1}(Y) \rightarrow \mathbb{R}$ where η vanishes on N and $\eta(g)=0$ for every $g \in \pi_{1}(Y)$ with $\xi_{2}(g) \neq 0$.
Now if $\chi: \pi_{1}(T) \rightarrow \mathbb{R}$ is of the form $\chi=\xi_{2}+\eta$ with $\eta \mid N=0$ and $\eta(g)=0$ for every $g \in \pi_{1}(T)$ with $\xi_{2}(g) \neq 0$, we have inclusions of Novikov rings

$$
\begin{aligned}
\left.\widehat{\mathbb{Z} \pi_{1}(Y}\right)_{\xi_{2}|+\eta|} & \left.\longrightarrow \widehat{\mathbb{Z} \pi_{1}(T}\right)_{\xi_{2}+\eta} \\
\left.\widehat{\mathbb{Z} \pi_{1}(Y}\right)_{-\left(\xi_{2}|+\eta|\right)} & \left.\longrightarrow \widehat{\mathbb{Z} \pi_{1}(T}\right)_{-\left(\xi_{2}+\eta\right)}
\end{aligned}
$$

Denote $a^{ \pm}: F^{ \pm} \rightarrow Y_{K}, b^{ \pm}: Y_{K} \rightarrow F^{ \pm}$the homotopy equivalences and $t: Y_{K} \rightarrow Y_{K}$ the covering transformation with $\xi_{2}(t)=1$. Let

$$
\begin{aligned}
& T^{+}=T\left(b^{+} t a^{+}: F^{+} \rightarrow F^{+}\right) \\
& T^{-}=T\left(b^{-} t^{-1} a^{-}: F^{-} \rightarrow F^{-}\right)
\end{aligned}
$$

be finite CW-complexes homotopy equivalent to Y, hence also to T_{H}. There are short exact sequences of chain complexes

$$
\begin{aligned}
& 0 \longrightarrow C_{*}\left(F^{+} ; \mathbb{Z} \pi_{1}(Y)\right) \longrightarrow C_{*}\left(T^{+} ; \mathbb{Z} \pi_{1}(Y)\right) \longrightarrow C_{*-1}\left(F^{+} ; \mathbb{Z} \pi_{1}(Y)\right) \longrightarrow 0 \\
& 0 \longrightarrow C_{*}\left(F^{-} ; \mathbb{Z} \pi_{1}(Y)\right) \longrightarrow C_{*}\left(T^{-} ; \mathbb{Z} \pi_{1}(Y)\right) \longrightarrow C_{*-1}\left(F^{-} ; \mathbb{Z} \pi_{1}(Y)\right) \longrightarrow 0
\end{aligned}
$$

It follows that $\left.C_{*}\left(T^{+} ; \widehat{\mathbb{Z} \pi_{1}(Y}\right)_{\chi \mid}\right)$ and $\left.C_{*}\left(T^{-} ; \widehat{\mathbb{Z} \pi_{1}(Y}\right)_{-\chi \mid}\right)$ are acyclic and therefore the same is true after tensoring with $\widehat{\mathbb{Z} \pi_{1}(T)}{ }_{ \pm \chi}$. This finishes the proof of the lemma.

Let us return to the proof of Proposition 5.5. Recall that we assumed ξ to be a surjective homomorphism $\xi: G \rightarrow \mathbb{Z}$ and it factors as $G \rightarrow G / N \cong \mathbb{Z}^{k} \rightarrow \mathbb{Z}$. So we
can think of ξ as the projection to the first factor of $\mathbb{Z}^{k} \cong G / N$. Let $\xi_{2}: G \rightarrow \mathbb{Z}$ be projection to the second summand. Recall that $H=\operatorname{ker} \xi$. We can apply Lemma 5.7 so there exist $T^{ \pm}$homotopy equivalent to X_{H} with the acyclicity property described there. Let $\xi^{\prime}: G \rightarrow \mathbb{R}$ be any nonzero homomorphism which vanishes on N. Then there exist $a, b \in \mathbb{R}$ and a homomorphism $\eta: G \rightarrow \mathbb{R}$ which vanishes on N and for every $g \in G$ with $\xi_{2}(g) \neq 0$ such that $\xi^{\prime}=a \cdot \xi_{2}+b \cdot \eta$.
If $a=0$, then $G / \operatorname{ker} \xi^{\prime} \cong \mathbb{Z}^{l}$ with $l<k$ and we get $i_{*} \Phi^{+}(X, \xi)=\tau\left(X, \xi^{\prime}\right)$ in the case $l \geq 2$ by induction or in the case $l=1$ by Proposition 5.2 using (2).
So without loss of generality assume $a=1$. Now $X \simeq T\left(b t a: T^{+} \rightarrow T^{+}\right)$where the maps b, t and a are as before. Because of Lemma 5.7 and the usual exact sequence of acyclic complexes we get

$$
\tau\left(C_{*}\left(T_{b t a} ; \widehat{\mathbb{Z}}_{\xi^{\prime}}\right)\right)=0 \in \mathrm{~Wh}\left(G ; \xi^{\prime}\right)
$$

and therefore

$$
i_{*} \Phi^{+}(X, \xi)=\tau\left(X, \xi^{\prime}\right) \in \operatorname{Wh}\left(G ; \xi^{\prime}\right)
$$

which is what we had to show.
Corollary 5.8. Let X be a finite connected $C W$-complex, $N \leq \pi_{1}(X)$ a normal subgroup such that $\pi_{1}(X) / N \cong \mathbb{Z}^{k}$ for an integer $k \geq 2$ and X_{N} is finitely dominated. Then the following are equivalent.
(1) There is a nonzero rational homomorphism $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ with $\Phi^{+}(X, \xi)=0$.
(2) For all nonzero rational homomorphisms $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ we have $\Phi^{+}(X, \xi)=0$.
(3) For all nonzero homomorphisms $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ we have $\tau(X, \xi)=0$.
Remark 5.9. Given a nonzero rational homomorphism $\xi: \pi_{1}(X) \rightarrow \mathbb{R}$ we can find a positive real number c such that $c \cdot \xi: \pi_{1}(X) \rightarrow \mathbb{Z}$ is surjective. Then there exists a map $f: M \rightarrow S^{1}$ such that $f_{\#}: \pi_{1}(X) \rightarrow \pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ is $c \cdot \xi$. Assume that the covering space corresponding to $\operatorname{ker} \xi$ is finitely dominated. By Ranicki [14, Prop.2.7] we have that $\Phi^{+}(X, \xi)=0=\Phi^{-}(X, \xi)$ is equivalent to the existence of a simple homotopy equivalence $h: X \rightarrow T(k: K \rightarrow K)$ to the mapping torus of a simple homotopy equivalence $k: K \rightarrow K$, where K is a finite connected CW-complex, such that $f \simeq g h$. Here $g: T_{k} \rightarrow S^{1}$ is the canonical projection. Furthermore $\Phi^{+}(X, \xi)=0=\Phi^{-}(X, \xi)$ is equivalent to $\tau(X, \xi)=0=\tau(X,-\xi)$. It would be interesting to have a similar geometric condition equivalent to the vanishing of both $\tau(X, \xi)$ and $\tau(X,-\xi)$ for an irrational homomorphism ξ. Of course in the case of a manifold such an interpretation is given by Latour's Theorem.
Let us apply Corollary 5.8 to Latour's Theorem 1.2.
Theorem 5.10. Let M be a closed connected smooth manifold with $\operatorname{dim} M \geq 6$, $N \leq \pi_{1}(M)$ a normal subgroup such that $\pi_{1}(M) / N \cong \mathbb{Z}^{k}$ for some $k \geq 1$ and M_{N} is finitely dominated. Then the following are equivalent.
(1) There is a nonzero $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ which can be represented by a nonsingular closed 1-form.
(2) Every nonzero $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ with $N \leq \operatorname{ker} \xi$ can be represented by a nonsingular closed 1-form.

Proof. If $k=1$, up to multiplication by a positive real number there are only two nonzero homomorphisms which vanish on N. If ω is a nonsingular closed 1form representing one such homomorphism, then $-\omega$ is a nonsingular closed 1 -form representing the other.
If $k \geq 2$ and there is a nonsingular closed 1-form representing some $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$, then $\tau(M, \xi)=0$ by Theorem 1.2. Rational homomorphisms are dense in $S\left(\pi_{1}(M)\right)$ and in $S\left(\pi_{1}(M) ; N\right)$ so by Proposition 4.3 there is a rational homomorphism ξ^{\prime} : $\pi_{1}(M) \rightarrow \mathbb{R}$ near ξ which vanishes on N and we have $\tau\left(M, \xi^{\prime}\right)=0$. This can also be derived directly by the geometric argument of Tischler [18]. Combining Theorems 1.1 and 1.2 we get $\Phi^{+}\left(M, \xi^{\prime}\right)=0$. By Corollary 5.8 we get $\tau\left(M, \xi^{\prime \prime}\right)=0$ for all $\xi^{\prime \prime} \in S\left(\pi_{1}(M) ; N\right)$. Therefore (2) follows from Theorem 1.2.

We want to finish with two examples which show that the finiteness properties of X_{N} do not have an immediate impact on the existence of nonsingular closed 1-forms.

Example 5.11. Let M be a closed connected smooth manifold which has an infinite cyclic covering space \bar{M} corresponding to a rational homomorphism $\xi: \pi_{1}(M) \rightarrow$ \mathbb{R} that is finitely dominated but not homotopy finite. In particular there is no nonsingular closed 1 -form representing ξ. To see that such manifolds exist, let H be a finitely presented group and $x \in \tilde{K}_{0}(\mathbb{Z} H)$. By the Existence Theorem of Siebenmann [16, Thm.8.6] there exists for every $n \geq 5$ a smooth manifold W with $n=\operatorname{dim} W$, compact boundary and one tame end ε such that $\pi_{1}(\varepsilon) \cong H$ and the Siebenmann end obstruction is

$$
\sigma(\varepsilon)=x \in \tilde{K}_{0}(\mathbb{Z} H)
$$

Let us assume that $n \geq 6$. Then by Hughes and Ranicki [7, Thm.19] we can find a closed connected smooth manifold M with $\operatorname{dim} M=n$ such that $\pi_{1}(M) \cong H \times \mathbb{Z}$ and

$$
\Phi^{+}(M, \xi)=x \in \tilde{K}_{0}(\mathbb{Z} H) \leq \mathrm{Wh}(H \times \mathbb{Z})
$$

Here $\xi: H \times \mathbb{Z} \rightarrow \mathbb{Z}$ is projection onto \mathbb{Z}. It follows from Ranicki [14, Prop.15.15] that the Wall finiteness obstruction of \bar{M} is

$$
[\bar{M}]=(-1)^{n} x^{*}-x \in \tilde{K}_{0}(\mathbb{Z} H)
$$

If H is a finite group of odd order, ${ }^{*}: \tilde{K}_{0}(\mathbb{Z} H) \rightarrow \tilde{K}_{0}(\mathbb{Z} H)$ is the standard involution and if $2 x \neq 0 \in \tilde{K}_{0}(\mathbb{Z} H)$ we cannot have that $x^{*}=x$ and $x^{*}=-x$. So if $\tilde{K}_{0}(\mathbb{Z} H)$ has elements of order bigger than 2 we can find M with $\pi_{1}(M) \cong H \times \mathbb{Z}$ such that M has a finitely dominated infinite cyclic covering space which is not homotopy finite. See Milnor [10, App.1] or Siebenmann [16, App.] that H with the required properties exists.
Now let $X=M \times S^{1}$. Then $H \leq \pi_{1}(X)$ with $\pi_{1}(X) / H \cong \mathbb{Z}^{2}$ and $X_{H}=\bar{M} \times \mathbb{R}$ is finitely dominated, but not homotopy finite. If $\xi^{\prime}: \pi_{1}(X) \cong \pi_{1}(M) \times \mathbb{Z} \rightarrow \mathbb{Z}$ is projection to the \mathbb{Z}-factor, it is clear that ξ^{\prime} can be represented by a nonsingular closed 1-form. Hence by Theorem 5.10 every nonzero homomorphism $\xi: \pi_{1}(X) \rightarrow$ \mathbb{R} which vanishes on H can be represented by a nonsingular closed 1-form.
Example 5.12. Let N be a closed connected smooth manifold with $n=\operatorname{dim} N \geq 4$. Let $\left(W ; N \times S^{1} \times S^{1}, M\right)$ be an h-cobordism such that

$$
\tau\left(W, N \times S^{1} \times S^{1}\right)+(-1)^{n-1} \bar{\tau}\left(W, N \times S^{1} \times S^{1}\right) \quad \neq 0 \in \mathrm{~Wh}\left(\pi_{1}(W)\right)
$$

Such h-cobordisms exist, see Milnor [10, §11]. Notice that W gives a homotopy equivalence between closed connected smooth manifolds $h: N \times S^{1} \times S^{1} \rightarrow M$ with

$$
\begin{equation*}
\tau(h)=\tau\left(W, N \times S^{1} \times S^{1}\right)+(-1)^{n-1} \bar{\tau}\left(W, N \times S^{1} \times S^{1}\right) \tag{16}
\end{equation*}
$$

Let H be the image of $\pi_{1}(N) \leq \pi_{1}\left(N \times S^{1} \times S^{1}\right)$ under $h_{\#}: \pi_{1}\left(N \times S^{1} \times S^{1}\right) \rightarrow$ $\pi_{1}(M)$. Obviously H is a normal subgroup of $\pi_{1}(M)$ with $\pi_{1}(M) / H \cong \mathbb{Z}^{2}$. Also M_{H} is homotopically equivalent to N so it is homotopy finite. Let $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ be a nonzero rational homomorphism which vanishes on H. Then $h^{*} \xi: \pi_{1}\left(N \times S^{1} \times\right.$ $\left.S^{1}\right) \rightarrow \mathbb{R}$ is a nonzero rational homomorphism which vanishes on $\pi_{1}(N)$. It follows that both $\Phi^{+}(M, \xi)$ and $\Phi^{+}\left(N \times S^{1} \times S^{1}, h^{*} \xi\right)$ are defined. From the definition of the fibering obstruction we get that

$$
\Phi^{+}(M, \xi)=h_{*} \Phi^{+}\left(N \times S^{1} \times S^{1}, h^{*} \xi\right)+\tau(h) \in \operatorname{Wh}\left(\pi_{1}(M)\right) .
$$

But obviously $\Phi^{+}\left(N \times S^{1} \times S^{1}, h^{*} \xi\right)=0$ and therefore $\Phi^{+}(M, \xi) \neq 0$ by (16). It follows from Theorem 5.10 that no homomorphism $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ which vanishes on H can be represented by a nonsingular closed 1-form. In particular there exists an irrational homomorphism $\xi: \pi_{1}(M) \rightarrow \mathbb{R}$ such that M is $(\pm \xi)$-contractible, but every closed 1 -form representing ξ has singularities.

References

[1] R. Bieri and B. Renz, Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63 (1988), 464-497.
[2] M. Damian, Formes fermées non singulières et propriétés de finitude des groupes, Ann. Sci. École Norm. Sup. (4) 33 (2000), 301-320.
[3] M. Farber, Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory, Topol. Methods Nonlinear Anal. 19 (2002), 123-152.
[4] F.T. Farrell, The obstruction to fibering a manifold over a circle, Yale University Ph.D. thesis, 1967, published in Indiana Univ. Math. J. 21 (1971), 315-346.
[5] F.T. Farrell, The obstruction to fibering a manifold over a circle. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, 69-72, Gauthier-Villars, 1971.
[6] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology 33 (1994), 683-719.
[7] B. Hughes and A. Ranicki, Ends of complexes, Cambridge University Press, Cambridge, 1996.
[8] F. Latour, Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham, Publ. IHES No. 80 (1994), 135-194.
[9] M. Mather, Counting homotopy types of manifolds, Topology 4 (1965), 93-94.
[10] J. Milnor, Whitehead torsion, Bull. A.M.S. 72 (1966), 358-426.
[11] A. Pajitnov and A. Ranicki, The Whitehead group of the Novikov ring, K-Theory 21 (2000), 325-365.
[12] A. Ranicki, The algebraic theory of finiteness obstruction, Math. Scand. 57 (1985), 105-126.
[13] A. Ranicki, Finite domination and Novikov rings, Topology 34 (1995), 619-632.
[14] A. Ranicki, High-dimensional knot theory. Springer Monographs in Mathematics. SpringerVerlag, New York, 1998.
[15] A. Ranicki, The algebraic construction of the Novikov complex of a circle-valued Morse function, Math. Ann. 322 (2002), 745-785.
[16] L.C. Siebenmann, The obstruction to finding the boundary of an open manifold of dimension greater than five, Princeton Ph.D. thesis, 1965.
[17] L.C. Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comment. Math. Helv. 45 (1970), 1-48.
[18] D. Tischler, On fibering certain foliated manifolds over S^{1}, Topology 9 (1970), 153-154.
[19] C.T.C. Wall, Finiteness conditions for CW-complexes, Ann. Math. 81 (1965), 56-69.
Fachbereich Mathematik und Informatik, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
E-mail address: schuetz@math.uni-muenster.de

