
ZETA FUNCTIONS FOR GRADIENTS OF CLOSED 1-FORMS
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Abstract. Given a cohomology class ξ ∈ H1(M ; R) on the closed connected
smooth manifold M we look at vector fields v which are gradient-like with

respect to ξ, i.e. they admit a Lyapunov form ω, a closed 1-form representing

ξ which evaluates the vector field positively whenever v 6= 0. Assuming that
the set of zeros of v is not too complicated and v does not admit homoclinic

cycles, we define a zeta function of v, an algebraic object carrying information

about the closed orbit structure of v. We show that this zeta function depends
continuously on v in a reasonable sense and discuss relations to chain homotopy

equivalences between Novikov complexes.

1. Introduction

Let M be a closed connected smooth manifold. By a gradient-like vector field with
respect to a cohomology class ξ ∈ H1(M ; R) we mean a vector field v such that there
exists a closed 1-form ω representing ξ with ω = 0 if and only if v = 0 and ω(v) > 0
if v 6= 0. This is for example the case if v is dual to ω with respect to a Riemannian
metric on M . The condition that ω(v) > 0 has interesting consequences for closed
orbits of v: integrating ω along a closed orbit gives a positive number. Now ξ
represents a homomorphism π1(M) → R which can be described by integrating ω
along smooth representatives of elements in the fundamental group. This means
that closed orbits represent loops which have positive image under ξ. To be precise
closed orbits do not represent elements of π1(M), but only conjugacy classes for
which ξ is defined as well. Furthermore one expects closed orbits of longer period to
have asymptotically a larger image under ξ. This is certainly the case if ω is nonzero
everywhere. Fried [3] used this property to collect information on the closed orbit
structure in a power series, the zeta function of the vector field, and showed that
it agreed with a certain Reidemeister torsion, thus showing that the zeta function
is determined by the topology of M in that case.
That the definition of a zeta function still makes sense for singular flows was first
shown by Hutchings and Lee [8] and Pajitnov [11]. They considered the case where
v is gradient to a circle valued Morse function. The case of gradients of Morse closed
1-forms was also considered by Hutchings [7]. To get a well defined zeta function,
they require a generic transversality condition on v. In this case the topology of M
does not determine the zeta function. A correction term coming from the so called
Novikov complex enters the picture. This is a chain complex generated by the zeros
of ω whose boundary is determined by the trajectories of v between zeros.
It turns out that the main reason for the well definedness of the zeta function comes
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from the nonexistence of homoclinic cycles in the case of transverse gradients. This
is the point of view of the present paper. We show that we can define zeta functions
for gradient-like vector fields without homoclinic cycles provided their singularities
are not too pathological. In particular we allow certain degeneracies. The main
theorem we obtain is

Theorem 1.1. Let ξ : G → R be a homomorphism where G is the fundamental
group of the closed connected smooth manifold M . Then ζ : G(ξ) → ĤH1(ZG)ξ

sending v to ζ(−v) is continuous.

Here G(ξ) is the space of gradient-like vector fields for which we define zeta func-
tions with the C0-topology. The object ĤH1(ZG)ξ is a completion of HH1(ZG),
the first Hochschild homology group of the group ring, and as such it carries a nat-
ural topology. Here G is the fundamental group of M and ζ(−v) the zeta function
of −v. The reason that we look at −v comes from the relation to the Novikov
complex. In our general situation the Novikov complex of ω and v need not be
defined, but we can use Theorem 1.1 for an approximation result, see Theorem 4.7
for details.
The definition of a noncommutative zeta function is algebraically more involved
than that of a commutative zeta function (here commutative means that we con-
sider closed orbits as defining homology classes instead of conjugacy classes of the
fundamental group). Geoghegan and Nicas [6] were the first to attack this prob-
lem using Hochschild homology. Later Pajitnov [13] defined a noncommutative eta
function for gradients of circle valued Morse functions which generalized the log-
arithm of the commutative zeta function. In [15] we introduced the zeta function
which is also used here based on [6] and showed that it maps to the eta function of
[13]. It was left open in [15] whether the zeta function can carry more information
than the eta function. We show in Section 5 that they carry the same information.
I would like to thank Ross Geoghegan for helpful comments and the Max-Planck-
Institut für Mathematik in Bonn for hospitality.

2. Preliminaries

Let M be a closed connected smooth manifold and ξ ∈ H1(M ; R). By the universal
coefficient theorem ξ is in 1-1 correspondence with homomorphisms ξ : π1(M) → R.
Furthermore every such homomorphism is represented by closed 1-forms ω on M .
If ω is a closed 1-form, denote by [ω] the cohomology class.

Definition 2.1. Let M and ξ be as above.
(1) A smooth vector field v is called gradient-like with respect to ξ, if there

exists a closed 1-form ω such that [ω] = ξ, ωx(v(x)) > 0 if ωx 6= 0 and
v(x) = 0 if ωx = 0 for all x ∈ M . In this case ω is called a Lyapunov form
of v.

(2) The gradient-like vector field v is called nice, if there is a neighborhood U
of v−1(0) in M with finitely many components so that i∗ξ = 0 ∈ H1(U ; R)
and the inclusion v−1(0) ⊂ U induces an isomorphism on π0.

(3) A homoclinic cycle of a nice gradient-like vector field v is a sequence of
nontrivial trajectories γ1, . . ., γk of v such that there exist components
A1, . . ., Ak = A0 of v−1(0), so that for all i ∈ {1, . . ., k} we have γi(t) → Ai

for t →∞ and γi(t) → Ai−1 for t → −∞.
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In the case where the homoclinic cycle only consists of one trajectory we also call
it a homoclinic orbit.
Given a homoclinic cycle γ of a nice gradient-like vector field v of ξ notice that∫

γi
ω is a positive real number and we define the length of γ by

l(γ) =
k∑

i=1

∫
γi

ω > 0.

This does not depend on the Lyapunov form ω. To see this let U be the neighbor-
hood of v−1(0) as in the definition of a nice gradient-like vector field. For every γi

choose ai < 0 and bi > 0 such that γi(t) ∈ U for all t < ai and t > bi. Now connect
γi(bi) with γi+1(ai+1) by a path in U . Using these paths and the trajectories from
γi(ai) to γi(bi) we get a loop γ′ and it is easy to see that ξ([γ′]) does not depend
on the choices and equals l(γ).
We denote by GL(ξ) the set of gradient-like vector fields v with respect to ξ and
we define a subset

G(ξ) = {v ∈ GL(ξ) | v is nice and has no homoclinic cycles}.

This is the set of vector fields for which we want to define zeta functions. We will
often talk of gradient-like vector fields without specifying ξ if no confusion can arise.

Algebraic constructions.

Definition 2.2. Let G be a group and ξ : G → R a homomorphism. We denote
by ZG the abelian group of all functions G → Z.

(1) For λ ∈ ZG let suppλ = {g ∈ G |λ(g) 6= 0}.
(2) The Novikov ring is defined to be ẐGξ = {λ ∈ ZG | ∀ r ∈ R supp λ ∩

ξ−1([r,∞)) is finite}. The multiplication is given as in the group ring ZG ⊂
ẐGξ.

Instead of Z we can also use a different ring like Q or R in the above definition.

Definition 2.3. The norm of λ ∈ ẐGξ is defined to be

‖λ‖ = ‖λ‖ξ = inf{t ∈ (0,∞) | suppλ ⊂ ξ−1((−∞, log t])}.

Note that ẐGξ is a completion of ZG with respect to the metric induced by this
norm.
Let Γ be the set of conjugacy classes of G. Then ξ induces a well defined function
Γ → R which we also denote by ξ. In analogy to above we define ẐΓξ, but since
there is no well defined multiplication in Γ, this object is just an abelian group.
Augmentation defines an epimorphism ε : ẐGξ → ẐΓξ of abelian groups.

Let W ⊂ ẐGξ be elements of the form 1− a with ‖a‖ < 1. Then W is a subgroup
of the group of units in ẐGξ and ‖ · ‖ turns it into a topological group. Let
V = ker(W → K1(ẐGξ)). It is shown in [14, §3] that L : W → Q̂Γξ defined by

L(1−a) = −
∞∑

k=1

ε(ak)
k is a continuous homomorphism which vanishes on V . Denote

the induced map by L : W/V → Q̂Γξ.
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Let HH∗(ZG) denote the Hochschild homology of the group ring. It is shown in
Geoghegan and Nicas [5] that

HH∗(ZG) ∼=
⊕
γ∈Γ

H∗(C(gγ)),

where gγ is a representative of γ ∈ Γ and C(gγ) is the centralizer of gγ . If x ∈∏
γ∈Γ

Hk(C(gγ)), then denote x(γ) ∈ Hk(C(gγ)) the projection. Define suppx =

{γ ∈ Γ |x(γ) 6= 0} and

ĤHk(ZG)ξ = {x ∈
∏
γ∈Γ

Hk(C(gγ)) | ∀ r ∈ R suppx ∩ ξ−1([r,∞)) is finite}.

Then ĤH∗(ZG)ξ is a completion of HH∗(ZG) and in [15] natural homomorphisms
θ : HH∗(ẐGξ) → ĤH∗(ZG)ξ and l : ĤH1(ZG)ξ → R̂Γξ are constructed such that
l ◦ θ ◦DT (x) = L(x) for x ∈ W/V , where DT is the Dennis trace homomorphism
K1(ẐGξ) → HH1(ẐGξ). Denote the homomorphism θ ◦ DT by DT : W/V →
ĤH1(ZG)ξ.

3. The zeta function of a gradient-like vector field

Let v be a smooth vector field on M and Φ : M × R → M be the corresponding
flow. Assume we have x ∈ M and p > 0 such that Φ(x, p) = x. If v(x) = 0 we
get Φ(x, p) = x for all p ∈ R. If v(x) 6= 0 we define the set π = {(Φ(x, t), p) ∈
M × (0,∞) | t ∈ R} to be a closed orbit of v with period p. We will sometimes
identify π with the restriction Φ|{x}×[0,p] and write π : [0, p] → M . This way a
closed orbit defines a conjugacy class {π} of the fundamental group of M and also
a homology class [π] ∈ H1(M). Let us denote G = π1(M) and Γ the conjugacy
classes of G.
Now let ξ : G → R be a homomorphism and π a closed orbit of −v, where v is a
gradient-like vector field with respect to ξ. Then

ξ({π}) =
∫

π

ω =
∫ p

0

ω(π′(t)) dt = −
∫ p

0

ω(v(π(t))) dt < 0.

For positive integers k define

Ok(−v) = {π : [0, p] → M |π is a closed orbit of − v and p ≥ k}
and

Ck(−v) = sup{c ∈ R | − ξ({π}) ≥ c for all π ∈ Ok(−v)} ∈ [0,∞].
Since Ok(−v) ⊃ Ok+1(−v) we get Ck(−v) → C(−v) ∈ [0,∞].

Lemma 3.1. If v ∈ G(ξ) then C(−v) = ∞.

Proof. The proof is analogous to [15, Lm.5.7]. Assume that C(−v) < ∞. Then
there is a sequence πk ∈ Ok(−v) with −ξ({πk}) ∈ [0, C(−v)] for all k.
Let ω be a Lyapunov form of v. For every component X of v−1(0) choose open
sets UX , VX with X ⊂ UX ⊂ UX ⊂ VX and V X ∩ V Y = ∅ for X 6= Y . Since v is
nice we can assume that ω is exact on VX . Whenever a flowline of −v leaves VX it
takes a positive time t0 > 0 to get back into UY for a component Y of v−1(0). If π
is a closed orbit, let Nπ be the number of times the orbit enters UX and leaves VX .
Note that if a closed orbit enters UX , it will leave VX since ω is exact on VX and so
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−v cannot have closed orbits inside VX . Now Nπk
is bounded because t0 > 0 and

there is an ε > 0 such that ωx(v(x)) ≥ ε for x /∈ UX . So if Nπk
were not bounded,

we would get −ξ({πk}) → ∞. By passing to a subsequence we can assume that
Nπk

is constant to N . Choose a point xk,1 /∈ VX in the image of πk, then follow
the flowline until it enters UX and leaves VX for the first time. Choose a point
xk,2 /∈ VX in the image of πk before the flowline enters UX again. Continuing this
way we get points xk,j /∈ VX on πk for j = 1, . . ., N such that between xk,j and
xk,j+1 for j = 1, . . ., N − 1 and xk,N and xk,1 the flowline enters UX and leaves VX

exactly once. Denote by tk,j the time it takes from xk,j to xk,j+1. By passing to a
subsequence of the πk we can assume that the xk,j converge to xj ∈ M and the tk,j

converge to tj ∈ [0,∞]. Notice that
∑N

j=1 tk,j = p(πk), the period of πk. If tj < ∞
the continuity of the flow implies the existence of a flowline between xj and xj+1.
If tj = ∞ there is a broken flowline from xj to xj+1 through a component of zeros
of v. At least one of the tj has to be ∞ because p(πk) →∞. Therefore there exists
a homoclinic cycle contradicting v ∈ G(ξ). �

Corollary 3.2. Let v ∈ G(ξ). For every c < 0 there is a k > 0 such that π ∈
Ok(−v) implies ξ({π}) < c.

Let Fk : M × [0, k] → M be the restriction of Φ. Geoghegan and Nicas [5] define
the one-parameter trace

R(Fk) ∈ HH1(ZG) ∼=
⊕
γ∈Γ

C(gγ)ab.

We actually define R(Fk) as in [15] which uses a different sign convention as [5].
The one-parameter trace has the property that R(Fk)(γ) 6= 0 implies the existence
of a closed orbit π with {π} = γ, compare [15, §5].

Definition 3.3. Let v ∈ G(ξ). Then the noncommutative zeta function of −v is
defined as

ζ(−v) = lim
k→∞

R(Fk) ∈ ĤH1(ZG)ξ.

By Corollary 3.2 and [15, Lm.5.4] we get that R(Fk) is a Cauchy sequence so it
converges in ĤH1(ZG)ξ.
Let us show that ζ(−v) contains some recognizable information. If γ ∈ Γ, let
Cγ ⊂ M × (0,∞) be the union of closed orbits π with {π} = γ. By Corollary 3.2
and Fuller [4, Th.3] the Fuller index i(Cγ) is well defined.

Definition 3.4. Let v ∈ ξ. Then the noncommutative eta function η(−v) ∈ Q̂Γξ

is defined by η(−v)(γ) = i(Cγ).

Using Geoghegan and Nicas [6, Th.2.7] it follows as in [15, §5] that

l(ζ(−v)) = η(−v).

The noncommutative eta function first appeared in Pajitnov [13] while a noncom-
mutative zeta function based on Hochschild homology classes already appeared in
Geoghegan and Nicas [6]. Our zeta function draws a connection between these
objects in that it detects both objects. Note that the eta function is detected by
the zeta function and there is no obvious map Q̂Γξ → ĤH1(ZG)ξ which sends the
eta function to the zeta function. Nevertheless we show in Section 5 that the eta
function carries the same information as the zeta function.
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Let us discuss the commutative case which predates the noncommutative one. For
δ ∈ H1(M) = Gab let Cδ be the union of closed orbits π with [π] = δ. Then the
commutative eta function η̄(−v) ∈ Q̂Gabξ is defined by η̄(−v)(δ) = i(Cδ). No-
tice that ‖η̄(−v)‖ < 1. Thus ζ̄(−v) = exp η̄(−v) is well defined, where exp is the
usual power series, and we call ζ̄(−v) the commutative zeta function. This formula
already appeared in Fried [3] for nonsingular gradient-like vector fields. Clearly
ε(η(−v)) = η̄(−v) for the augmentation ε : Q̂Γξ → Q̂Gabξ, so exp ◦ε ◦ l(ζ(−v)) =
ζ̄(−v).

4. Properties of the zeta function

We want to start by showing that ζ(−v) depends continuously on the vector field.
This was shown in [15, §8] for gradients of a fixed Morse closed 1-form ω, but the
methods carry over to the more general case. We equip GL(ξ) and G(ξ) with the
C0-topology. This turns out to be sufficient since by [1, §4,Th.3] trajectories of
smooth vector fields depend continuously on the vector fields in the C0-topology.

Definition 4.1. Let v be a gradient-like vector field with respect to ξ.
(1) An exact cover of v is an open set U containing v−1(0) such that there is a

Lyapunov form ω for v which is exact on U .
(2) A U -cycle of an exact cover U is a finite sequence of trajectories γj :

[aj , bj ] → M , j = 1, . . ., k which start and end in U and such that [γj(bj)] =
[γj+1(aj+1)] for j = 1, . . ., k − 1 and [γk(bk)] = [γ1(a1)]. Here [x] denotes
component of x in U . We write γ = (γj)k

j=1.

Remark 4.2. (1) Every nice gradient-like vector field admits an exact cover
U . Furthermore every homoclinic cycle gives rise to a U -cycle.

(2) If v admits an exact cover U , every gradient-like vector field w C0-close
enough to v admits the same exact cover U .

As with the homoclinic cycles we can define the length of a U -cycle γ. To do this
we need to connect γj(bj) with γj+1(aj+1) within U to get a cycle. Since ω is
exact on U the image of this cycle under ξ is well defined and we denote it by l(γ).
Unlike in the case of a homoclinic cycle it is possible that l(γ) ≤ 0, for example
this happens for a small trajectory that never leaves U . The existence of U -cycles
γ with l(γ) < 0 can be avoided for nice gradient-like vector fields by choosing the
cover U small enough. A U -cycle γ is called nondegenerate, if it does not contain
any sub-U -cycles of length ≤ 0.

Definition 4.3. Let U ⊂ M be open.
(1) If v is a gradient-like vector field such that U is an exact cover of v, then

bU
ξ (−v) = sup{−l(γ) ∈ (−∞, 0) | γ is a nondegenerate U -cycle}.

(2) Let r ∈ (−∞, 0) and (vt)t∈[0,1] be a smoothly varying one parameter family
of gradient-like vector fields such that U is an exact cover for vt for every
t ∈ [0.1]. We say (vt) is (R,U)-controlled, if bU

ξ (−vt) < R for all t ∈ [0, 1].

Note that bU
ξ (v) = −∞ if and only if there are no nondegenerate U -cycles.

Proposition 4.4. Let R ∈ (−∞, 0), U ⊂ M open and (vt)t∈[0,1] be an (R,U)-
controlled one parameter family of gradient-like vector fields such that v0, v1 ∈ G(ξ).
Then ζ(−v0)(γ) = ζ(−v1)(γ) ∈ C(gγ)ab for every γ ∈ Γ with ξ(γ)R.
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Proof. The proof is a generalization of the proof of [15, Prop.8.2] just as Lemma
3.1 generalized [15, Lm.5.7]. �

Lemma 4.5. Let v ∈ G(ξ) and R ∈ (−∞, 0). Then there exists an exact cover U
of v and a neighborhood V of v in GL(ξ) such that bU

ξ (−w) < R for all w ∈ V.

Proof. Since v is a nice gradient-like vector field, there exists an exact cover U of
v with finitely many components. By possibly shrinking U we can assume that
bU
ξ (−v) < R, for if not an argument as in Lemma 3.1 detects a homoclinic cycle.

As mentioned before every gradient-like vector field near v has U as an exact cover.
Let U1, . . ., Uk be the components of U . By a U -path from Ui to Uj we mean finitely
many trajectories γl : [al, bl] → M of −v for l = 1, . . .,m such that γ1(a1) ∈ Ui,
γm+1(bm+1) ∈ Uj and γl(bl) and γl+1(al+1) are in the same component of U for all
l. We write γ for such a U -path. We can connect each γl(bl) and γl+1(al+1) within
U and then get

∫
γ

ω to be a well defined number. For i, j ∈ {1, . . ., k} with i 6= j

let Pij(v, U) = {γ = (γ1, . . ., γm) | γ is a U -path of − v with γ(a1) ∈ Ui, γ(bm) ∈
Uj}. Also define Pii(v, U) analogously with the extra assumption that γ defines a
nondegenerate U -cycle. Now let mij(v, U) = sup{

∫
γ

ω ∈ (−∞, 0) | γ ∈ Pij(v, U)}
where ω is a Lyapunov form of v. Note that ω can be used as a Lyapunov form
outside of U for vector fields close enough to v. We have mij(v, U) < 0 and
mii(v, U) < R.
Choose a metric d on M and let C = v−1({0}). Let ε > 0 be so small that
d(x, y) > 3ε holds for all x ∈ C and y ∈ M −U . Now let Uε = {x ∈ U | there is y ∈
C such that d(x, y) < ε}. Then C ⊂ Uε ⊂ U2ε ⊂ U . We can assume that the ε is
chosen so small that Uε and U2ε both have k components given by Uε,j = Uε ∩ Uj

and U2ε,j = U2ε ∩ Uj for j = 1, . . ., k.
For t ≥ 0 and x ∈ M let γx,t : [0, t] → M be the restriction of the trajectory of −v
starting at x.
We claim there is a T > 0 such that for every x ∈ M we either have

∫
γx,T

ω ≤ R−1
or there is a t with 0 ≤ t ≤ T such that γx,T (t) ∈ Uε. To see this note that there
is a δ > 0 such that ωx(v(x)) ≥ δ for all x ∈ M − Uε. Now it is easy to see that
T = −R+1

δ works.
Since trajectories of smooth vector fields depend continuously on the vector field
in the C0-topology and M × [0, T ] is compact, we can find a neighborhood V
of v such that for every w ∈ V we have ωx(w(x)) > 0 for x ∈ M − Uε and
d(γx,T (t), γ′x,T (t)) < ε for t ∈ [0, T ]. Here γ′x,T is the trajectory of −w. It is easy to
see that we can find a Lyapunov form for every w ∈ V which agrees with ω outside
Uε and so that U2ε is an exact cover of w.
We claim that mij(w,U2ε) ≤ max{R,mij(v, U)}.
Let γ ∈ Pij(w,U2ε) with

∫
γ

ωR. We want to show there is a γ′ ∈ Pij(v, U) with∫
γ′ ω ≥

∫
γ

ω.

Let γ = (γ1, . . ., γl) with γm : [am, bm] → M having the property that γm([am, bm])∩
U2ε ⊂ U2ε,s ∪ U2ε,t for s, t ∈ {1, . . ., k} so that γm(am) ∈ U2ε,s and γm(bm) ∈ U2ε,t.
Notice that if γ does not have this property we can find a U2ε-path γ̄ with this
property and with

∫
γ

ω ≥
∫

γ̄
ω by splitting γm into two or more trajectories.

Look at γm : [am, bm] → M . Let t0 = sup{t ∈ [am, bm] | γm(t) ∈ Ū2ε,s} and
t1 = inf{t ∈ [am, bm] | γm(t) ∈ Ū2ε,t}. We can assume that t0 = 0. If t1 > T , we
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get d(γm(t), γv(t)) < ε for 0 ≤ t ≤ T , where γv is the trajectory of −v having the
property that γv(0) = γm(0). Since γm does not enter U2ε between 0 and T , we get
that γv does not enter Uε. By the choice of T we get

∫
γv|[0,T ]

ω < R − 1 and then∫
γ

ω < R contrary to the choice of γ.

Therefore we can assume that t1 ≤ T . But now d(γm(t), γv(t)) < ε for 0 ≤ t ≤ t1
and in particular γv(t1) ∈ U . Therefore we get a U -path γ′ which stays close to
the U2ε-path γ. It follows that

∫
γ′ ω ≥

∫
γ

ω and the claim follows.

But from mij(U2ε, w) < max{R,mij(v, U)} it follows easily that bU2ε

ξ (−w) < R
and the lemma is proven. �

Theorem 4.6. Let ξ : G → R be a homomorphism where G is the fundamental
group of the closed connected smooth manifold M . Then ζ : G(ξ) → ĤH1(ZG)ξ

sending v to ζ(−v) is continuous.

Proof. Let v ∈ G(ξ) and R ∈ (−∞, 0). By Proposition 4.4 it is enough to find an
open set U such that every gradient-like vector field w near v can be connected to
v by an (R,U)-controlled one parameter family. We get U from Lemma 4.5.
It remains to connect v and w by a one parameter family of gradient-like vector
fields within V. Recall the Lyapunov form ω of v. Let v′ be a vector field which
is dual to ω with respect to a Riemannian metric g in an exact cover U ′ ⊂ U and
agrees with v outside of U . Then tv + (1 − t)v′ has Lyapunov form ω for every
t ∈ [0, 1]. Do the same with w to get w′ dual to an ω′ on U ′ with respect to the
same Riemannian metric. For every t ∈ [0, 1] tω + (1 − t)ω′ is a closed 1-form
cohomologous to ω. On U ′ the gradient of this form can be used to define a path
between v′ and a vector field v′′ which agrees with w′ on U ′ and with v′ outside of
U . Now use tv′′+(1−t)w′. These paths can be combined to define a one parameter
family between v and w which is (R,U)-connected for v and w close enough. By
Proposition 4.4 the result follows. �

Relations to the Novikov complex. Let ω be a closed 1-form which has only
nondegenerate zeros. We call such forms Morse forms. If v is a vector field that
is dual to ω with respect to a Riemannian metric, then the stable and unstable
manifolds W s(p, v) and Wu(p, v) are injectively immersed submanifolds of M for
every p ∈ M with ωp = 0. The stable manifolds are of dimension ind p and the
unstable ones of dimension dim M − ind p. If all of these stable and unstable
manifolds intersect transversely, we can define the Novikov complex C∗(M̃, ω, v),
see for example [10, 14]. This is a free ẐGξ complex generated by the zeros of ω and
graded by the index which is chain homotopy equivalent to ẐGξ ⊗ZG C∆

∗ (M̃), the
latter being the simplicial chain complex of the universal cover of M coming from
a smooth triangulation of M . Relations between the Novikov complex and zeta
functions have appeared already in Hutchings and Lee [8], Hutchings [7], Pajitnov
[11, 13] and the author [14, 15]. In [14, 15] a natural chain homotopy equivalence
ϕv : ẐGξ ⊗ZG C∆

∗ (M̃) → C∗(M̃, ω, v) is constructed such that its torsion τ(ϕv) ∈
W/V and

(1) DT(τ(ϕv)) = ζ(−v).

In the situation where v ∈ G(ξ), we do not have a Novikov complex in general, but
we can combine (1) and Theorem 4.6 to an approximation result.
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Let GT (ξ) ⊂ GL(ξ) be the set of vector fields v which are dual to a Morse form and
such that all stable and unstable manifolds intersect transversely. Then we get in
fact GT (ξ) ⊂ G(ξ), since trajectories of −v between critical points have to decrease
the index by the transversality condition. Combining a version of the Kupka-Smale
theorem, see Pajitnov [12, Lm.5.1] for a convenient formulation, with density results
of Morse forms, see Milnor [9, §2], we get that GT (ξ) is dense in GL(ξ). So given
v ∈ G(ξ) we can find a sequence vn ∈ GT (ξ) with vn → v and hence

lim
n→∞

DT(τ(ϕv)) = ζ(−v).

Let us write down a similar approximation result.

Theorem 4.7. Let v ∈ G(ξ), R ∈ (−∞, 0) and U an exact cover with bU
ξ (−v) <

R. Then there exists a w ∈ GT (ξ) with w|M−U = v|M−U and DT(τ(ϕw))(γ) =
ζ(−v)(γ) for γ ∈ Γ with ξ(γ) ≥ R.

Proof. Let ω be a Lyapunov form of v and V an exact cover of v with V ⊂ U . The
techniques of Milnor [9, §2] give a Morse form ω′ that agrees with ω on M −V . On
M − V we have ω(v) ≥ ε for some ε > 0. Therefore we can find local coordinates
such that ω looks locally like the differential of f(x1, . . ., xn) = x1. Now it is easy
to find a Riemannian metric for these coordinates such that v is dual to ω on these
coordinates. By glueing them together we get a Riemannian metric on M −V such
that v is dual to ω. Extend the Riemannian metric to M using U and let v′ be dual
to ω′. We have v′ = v on M −U . This v′ does not have to satisfy the transversality
condition, but we can find w ∈ GT (ξ) with w|M−U = v′|M−U = v|M−U . We now
get ζ(−w)(γ) = ζ(−v)(γ) for γ ∈ Γ with ξ(γ) ≥ R as before and the result follows
by (1). �

Note that given v ∈ G(ξ) and R < 0 we can always find an exact cover U such that
bU
ξ (−v) < R by Lemma 4.5.

5. Comparing the zeta and eta functions

In the commutative case the zeta and eta functions carry the same information
since we have ζ̄(−v) = exp η̄(−v) and η̄(−v) = log ζ̄(−v). In the noncommutative
case we have l(ζ(−v)) = η(−v) but it is not clear how to define a homomorphism
e : Q̂Γξ → ĤH1(ZG)ξ with e(η(−v)) = ζ(−v). In [15, §11] a rational zeta function
ζQ(−v) ∈ ĤH1(QG)ξ and a homomorphism e : Q̂Γξ → ĤH1(QG)ξ are defined such
that e(η(−v)) = ζQ(−v). Here ĤH1(QG)ξ is a completion of Q ⊗ HH1(ZG) and
there is a natural map ı̂ : ĤH1(ZG)ξ → ĤH1(QG)ξ with ı̂(ζ(−v)) = ζQ(−v). The
problem whether ζ(−v) carries more information than ζQ(−v) or η(−v) was left
open in [15]. Now we will show that ζ(−v) does not carry more information. The
arguments are in fact quite similar to Pajitnov [13, §3].

Recall the groups W and V from Section 2. The homomorphism L : W → Q̂Γξ

defined by L(1 − a) = −
∑ ε(an)

n vanishes on V . Since L is continuous, it also
vanishes on V , the closure of V in the topological group W . Denote the resulting
map by L : W/V → Q̂Γξ. Let τ : W → W/V and τ : W → W/V denote the
quotient maps.

Theorem 5.1. L : W/V → Q̂Γξ is injective.
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The main step to prove the theorem will be the next lemma.

Lemma 5.2. Let 1−a ∈ W and R ∈ (0, 1) a real number such that ‖L(1−a)‖ < R.
Then there is a 1− a′ ∈ W with τ(1− a′) = τ(1− a) and ‖a′‖ ≤ R.

Proof. Since a ∈ ẐGξ there is a finite sequence of numbers R1, . . ., Rk with R <
R1 < . . . < Rk < 1 so that we can write a = a0 + a1 + . . . + ak with ‖a0‖ ≤ R and
supp ai ⊂ ξ−1({log Ri}) for i = 1, . . ., k. We can assume that for every i, j with
RiRj > R there is an l ∈ {1, . . ., k} with Rl = RiRj . Of course we then have to
allow that ai = 0 for some i.
We have L(1 − a) = −ε(ak) + x with ‖x‖ ≤ Rk−1. Note that R2

k ≤ Rk−1 by
assumption. Since ‖L(1− a)‖ < R we get ε(ak) = 0. Therefore there exist nij ∈ Z,
gj , hij ∈ G with ak =

∑
i,j nijh

−1
ij gjhij with

∑
i nij = 0 and ξ(gj) = log Rk.

A straightforward calculation shows that∏
i,j

(1− h−1
ij gjhij)nij = 1− ak − y

with supp y ⊂ ξ−1({Rl
k| l ≥ 2}) ⊂ ξ−1((−∞, R] ∪ {R1, . . ., Rk−1}). Since W/V is a

subgroup of K1(ẐGξ) we get

τ

∏
i,j

(1− h−1
ij gjhij)nij

 = τ

∏
i,j

(1− gj)nij

 = τ

∏
j

(1− gj)
P

i nij

 = 0.

Now
1− a = (1− a)(1− ak − y)−1(1− ak − y) = (1− z)(1− ak − y)

with supp z ⊂ ξ−1((−∞, R] ∪ {R1, . . ., Rk−1}). Note that the support condition
follows from the fact that either RiRj < R or RiRj = Rl for some l ∈ {1, . . ., k−1}.
In particular we get τ(1− a) = τ(1− z) and ‖z‖ ≤ Rk−1. Induction on k gives the
result. �

Proof of Theorem 5.1. As mentioned above V ⊂ ker L. It remains to show that
ker L ⊂ V . So let 1 − a ∈ W satisfy L(1 − a) = 0. By Lemma 5.2 there is a
sequence 1 − an ∈ W with τ(1 − an) = τ(1 − a) and ‖an‖ < 1

n . Now W/V is a
Hausdorff space, so

0 = τ(1) = lim
n→∞

τ(1− an) = τ(1− a),

so 1− a ∈ V . �

Corollary 5.3. The natural map l : ĤH1(ZG)ξ → R̂Γξ restricts to an injective
map l| : im DT → Q̂Γξ.

Proof. Since DT◦τ : W → ĤH1(ZG)ξ is continuous and vanishes on V , it vanishes
on V . Let DT be the induced map W/V → ĤH1(ZG)ξ. Then l ◦ DT = L and
im DT = im DT. �

In particular DT : W/V → ĤH1(ZG)ξ is also injective.

Corollary 5.4. im DT is closed in ĤH1(ZG)ξ.
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Proof. Let (xn)n∈N be a sequence in im DT which converges to x ∈ ĤH1(ZG)ξ.
Then there are 1− an ∈ W with xn = DT(τ(1− an)). Define a sequence 1− bn by
1− b1 = 1− a1, bi = (1− xi)(1− bi−1) for i ≥ 2 where τ(1− xi) = τ((1− ai)(1−
ai−1)−1) and ‖xi‖ < ‖L((1− ai)(1− ai−1)−1)‖+ 1

i . Such xi exist by Lemma 5.2.
By induction we see that τ(1− bi) = τ(1− ai). Let k be a positive integer, then

‖1− (1− bi) · (1− bi+k)−1‖ = ‖1−
k∏

j=1

(1− xi+j)−1‖

≤ max{‖L((1− ai+j)(1− ai+j−1)−1)‖+
1
i
}.

Since (L(1 − an))n∈N is a Cauchy sequence, it follows that (1 − bn)n∈N is also a
Cauchy sequence. But W is complete, so we get a 1− b ∈ W with DT(τ(1− b)) =
x. �

It follows that the noncommutative eta function carries the same information as
the noncommutative zeta function. By combining Theorem 4.7 with Corollary 5.4
we also see that ζ(−v) ∈ im DT for v ∈ G(ξ).

6. Concluding Remarks

If the homomorphism ξ : G → R satisfies certain nice group theoretic condi-
tions, for example ker ξ being finitely presented, we get that ζ(G(ξ)) is dense in
im DT ⊂ ĤH1(ZG)ξ. This follows from [16, Th.1.3].
It might be possible to define zeta functions for gradient-like vector fields which are
not nice, but the condition that there are no homoclinic cycles cannot be dropped,
at least if the zeta function should depend continuously on the vector fields. Using
[14, Ex.5.3] and [14, Rm.5.4] it is easy to construct a gradient-like vector field v on
the surface of genus 2 with a homoclinic cycle such that ζ does not extend contin-
uously to v, even if we use the C∞-topology.
Finally let us discuss the existence of gradient-like vector fields which have no ho-
moclinic cycles. If we just look at gradient-like vector fields which are gradient to
a Morse form ω with respect to some Riemannian metric, the condition that there
are no homoclinic cycles is in fact a generic condition. The reason is that the un-
stable and stable manifolds are actually injectively immersed submanifolds and by
the techniques of the Kupka-Smale theorem these manifolds intersect transversely
for a generic set of vector fields. But if the vector field is allowed to have nondegen-
erate zeros these techniques no longer apply. Furthermore Farber [2] has defined a
Lusternik-Schnirelman theory for finite CW-complexes X and ξ ∈ H1(X; R) which
assigns the pair (X, ξ) a nonnegative integer cat(X, ξ) which is a homotopy invari-
ant. He shows that every gradient-like vector field with respect to ξ on the closed
connected smooth manifold M which has less than cat(M, ξ) zeros has to have a
homoclinic cycle. He also shows that for ξ ∈ H1(X; Z) there is a closed 1-form ω
with at most one zero. So if cat(M, ξ) ≥ 2, every gradient-like vector field with
such a Lyapunov form has a homoclinic cycle.
This raises the question what the minimal number of zeros of a closed 1-form ω
with [ω] = ξ is such that it admits gradient-like vector fields without homoclinic cy-
cles. In [17] we investigate this question and show how to construct many examples
of gradient-like vector fields with degenerate zeros and no homoclinic cycles. The
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basic idea is to take a Morse form ω and push different zeros into one degenerate
zero using the techniques of Takens [18]. Under certain conditions it is possible to
do this without introducing homoclinic cycles.
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