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Abstract. In “zero-parameter” or classical Nielsen fixed point theory one

studies Fix(f) := {x ∈ X | f(x) = x} where f : X → X is a map. In case X
is an oriented compact manifold and f is transverse to the identity map, idX ,

Fix(f) is a finite set each of whose elements carries a natural sign, ±1, the
index of that fixed point. The set Fix(f) is partitioned into Nielsen classes.

Adding the indices within a given Nielsen class yields the fixed point index

of that class. The number of classes with nonzero fixed point index is called
the Nielsen number of f . One-parameter fixed point theory is the study of

the fixed point set, Fix(F ) := {(x, t) ∈ X × I | F (x, t) = x}, of a homotopy

F : X × I → X. In the case where X is an oriented compact manifold and
F is transverse to the projection map p : X × I → X, Fix(X) consists of

naturally oriented circles in the interior of X × I and naturally oriented arcs

whose endpoints lie in X ×{0, 1}. We give a summary of one-parameter fixed
point theory, in analogy to the classical theory, as developed by the first two

authors. While classical fixed point theory is a “homotopy invariant” theory,

homotopy invariance in the one-parameter theory is obstructed by “torsion”
type invariants. We discuss this phenomenon and give some new examples.

Introduction

One-parameter fixed point theory is the study of the fixed point set, Fix(F ) :=
{(x, t) ∈ X × I | F (x, t) = x}, of a homotopy F : X × I → X. In the case
where X is an oriented compact manifold and F is transverse to the projection
map p : X × I → X, Fix(X) consists of naturally oriented circles in the interior
of X × I and naturally oriented arcs whose endpoints lie in X × {0, 1} as shown
schematically in Figure 1.
Before organizing the information suggested by Figure 1, we motivate our discussion
by recalling “0-parameter” or classical Nielsen fixed point theory. There one studies
Fix(f) := {x ∈ X | f(x) = x} where f : X → X is a map. In case X is an oriented
compact manifold and f is transverse to the identity map, idX , Fix(f) is a finite set
each of whose elements carries a natural sign, ±1, the index of that fixed point. The
sum of the indices is the Lefschetz number, L(f). A certain equivalence relation (see
§1) on the set Fix(f) partitions it into Nielsen classes. Adding the indices within a
given Nielsen class yields the fixed point index of that class. The number of classes
with nonzero fixed point index is denoted by N(f) and is called the Nielsen number
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of f . Thus L(f), an invariant of the homotopy class of f , decomposes as a sum of
N(f) integers, each of which is also an invariant of the homotopy class of f . The
non-negative integer N(f) is a lower bound for the number of fixed points of maps
homotopic to f . If the information “Nielsen classes and their fixed point indices”
is organized in the correct algebraic setting then it is also homotopy invariant
in another sense: if X ′ is another oriented compact manifold and h : X → X ′

is a homotopy equivalence then the information for f : X → X is the same as
the information for h ◦ f ◦ k : X ′ → X ′ where k is a homotopy inverse for h.
Summarizing, we say Nielsen fixed point theory is a homotopy invariant theory.
The geometric theory just outlined has an algebraic formulation in which the space
X is a finite oriented CW complex, f : X → X is a cellular map, and L(f) =
trace(f∗) where f∗ : C∗(X) → C∗(X) is the morphism induced on cellular chains
(alternating signs built in). For the more refined version involving Nielsen classes,
let G := π1(X, v) and let f and a choice of basepath from v to f(v) induce φ : G→
G. Using cellular chains in the universal cover of X, calculate trace(f̃∗) ∈ ZG. The
equivalence relation of “semiconjugacy” on G (g ∼ hgφ(h−1)) defines a set, Gφ, of
equivalence classes and the image, R(f), of trace(f̃∗) in ZGφ is the Reidemeister
trace of f . This R(f) contains the same information as the Nielsen classes and their
fixed point indices. 1

We return to the one-parameter situation of Figure 1. To keep the geometric
discussion in this Introduction simple we will only discuss the case where there are
no arcs in Figure 1. This is illustrated in Figure 2. (The general case is dealt with
in subsequent sections.)

0

1

X

A complete theory analogous to the classical theory outlined above was presented in
[GN1]. In the geometric theory, the role of L(f) is played by L(F ) ∈ H1(X) ∼= Gab,

1The details of Nielsen fixed point theory can be found in [Br] and [Ki]. Summaries compatible
with the viewpoint of the present paper are found in §1(B) of [GN1] and [Ge].
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where Gab := G/[G : G] is the abelianization of G. This is the projection to X
of the 1–dimensional homology class in X × I indicated in Figure 2. To obtain a
geometric analog of R(f) one partitions the circles in Figure 2 into Nielsen classes
as in the classical case (see §1(B)), and one regards the circles in a single class as
1–cycles in a suitable covering space of X, a different covering space for each class.
So R(F ) lies in

⊕
αH1(X̃α) where the X̃α’s are covering spaces of X associated to

the classes.
For our purposes here, this geometric theory is only mentioned to explain intuitively
what is going on. This paper is about the equivalent algebraic theory. We have
a cellular homotopy F : X × I → X where X is a finite oriented CW complex.
The algebraic version of R(F ) lies in HH1(ZG, (ZG)φ;Gφ(∂F )). Here, (ZG)φ is
the ZG–ZG bimodule with left action h · g := hg and right action g · h := gφ(h);
HH∗(ZG, (ZG)φ) denotes the Hochschild homology of ZG with coefficients in the
bimodule (ZG)φ, and the “relativization” Gφ(∂F ) only occurs in the presence of
arcs in Figure 1, i.e., when Fix(F0) or Fix(F1) is non-empty; so this would be
ordinary Hochschild homology in the situation of Figure 2 (for details see Definition
1.8). This paper concerns the invariance properties of R(F ). If F is homotopic to
F ′ rel X × {0, 1} then it is routine to show that R(F ) = R(F ′) (see Corollary
4.3 of [GN1]). The interesting question is: if X ′ is another finite oriented CW
complex and if h : X → X ′ is some sort of equivalence and if the following diagram
commutes up to homotopy rel X × {0, 1}

X × I
F //

h×id

��

X

h

��

X ′ × I
F ′

// X ′

is it true that h†(R(F )) = R(F ′) where the homomorphism h† between Hochschild
homology groups is induced by h (see §2)? The answer depends on what sort of
equivalence h is:

• If h is a homotopy equivalence, the general answer is NO. R(F ′) is not a
homotopy invariant. This phenomenon was discussed in §7 of [GN1] (also
see Remark 5.8 of [GN1]) and is briefly recalled here in Example 2.9.

• If h is a simple homotopy equivalence, the general answer is still NO: R(F )
is not a simple homotopy invariant. A counterexample is given in §3. How-
ever, simple homotopy invariance holds in a special case: if F and F ′ are
self homotopies of the identity then h†(R(F )) = R(F ′); see Theorem 2.8.

• If h is the identity map from the CW complex X to a subdivision X ′ of
X the answer is YES: We prove R(F ) is a subdivision (i.e., combinatorial)
invariant (Theorem 4.6). Since the identity map X → X ′ is a simple
homotopy equivalence, this is another special case where simple homotopy
invariance is valid.

• If h is a homeomorphism, the answer is unknown.

We note that in Theorem 4.5 of [GN1] it was incorrectly asserted that R(F ) is a
simple homotopy invariant in general; see §3. Lemma 4.8 of [GN1] on which the
proof of Theorem 4.5 of [GN1] depends is not valid in the generality claimed there.
Simple homotopy invariance of R(F ) in the general case was never used in [GN1]
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nor in the subsequent papers 2 [GN2] and [GN3] which build on [GN1]. However,
subdivision invariance, as in (iii) above, was used, and was presented in [GN1] as
a corollary of simple homotopy invariance. It now requires a direct proof, which is
given here in Theorem 4.6.
The case of a homotopy F : X × I → X in which F0 = F1 = idX , where simple
homotopy invariance does hold, is important; it is analogous to the classical fixed
point theory of idX : X → X, i.e., the theory of the Euler characteristic, χ(X).
In this case, R(F ) becomes a “higher Euler characteristic”, a new invariant with
interesting applications to circle actions on manifolds. This is discussed at length
in [GN2]. A proof of simple homotopy invariance in this context, independent of
[GN1], is given in Theorem 2.10 of [GN2]; furthermore, we note that the original
proof in [GN1] is valid in this restricted situation.
What should replace simple homotopy invariance in the general case? Theorem
2.6 shows that the obstruction to homotopy invariance depends only on F0 and
F1 (and their associated basepaths). The results of §2 suggest there may exist an
appropriate notion of an “f -twisted simple homotopy equivalence” but this is an
open problem.
This paper is an addendum to (and a correction of) [GN1]. However we have
tried to make it readable in itself even though [GN1] is a reference for some of the
proofs. For the convenience of the reader we repeat some basic definitions in §1.
We concentrate here on the algebraic side of the theory; for a treatment of the
broader subject including geometric aspects, see §1 of [GN1].
Two of us (R.G. and A.N.) would like to thank our coauthor Dirk Schütz whose
careful reading uncovered the error in Lemma 4.8 of [GN1], and who immediately
went on to supply a proof of combinatorial invariance, given here in a suitably
adapted form in §4.

§1. The One-Parameter Trace of a Homotopy

In this section we review the definition of the 1–parameter trace of a cellular ho-
motopy F : X × I → X as introduced in [GN1]. We begin with some background
material concerning Hochschild homology and traces.

(A) Algebraic Preliminaries.

Let R be a commutative ground ring and let S be an associative R–algebra with
unit. If M is an S–S bimodule (i.e., a left and right S–module satisfying (s1m)s2 =
s1(ms2) for all m ∈M , and s1, s2 ∈ S), the Hochschild chain complex (C∗(S,M), d)
consists of Cn(S,M) = S⊗n ⊗M where S⊗n is the tensor product of n copies of S
and

d(s1 ⊗ · · · ⊗ sn ⊗m) = s2 ⊗ · · · ⊗ sn ⊗ms1

+
n−1∑
i=1

(−1)is1 ⊗ · · · ⊗ sisi+1 ⊗ · · · ⊗ sn ⊗m

+(−1)ns1 ⊗ · · · ⊗ sn−1 ⊗ snm.

2While the assertion of simple homotopy invariance of R(F ) is repeated in Theorem 1.12 of
[GN3] only subdivision invariance is used in that paper.
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The tensor products are taken over R. The n–th homology of this complex is
the n–th Hochschild homology of S with coefficient bimodule M . It is denoted
by HHn(S,M). If M = S with the standard S–S bimodule structure then it is
customary to write HHn(S) for HHn(S,M).
We will be concerned mainly with HH1 which is computed from

· · · −→ S ⊗ S ⊗M
d−→ S ⊗M

d−→ M

s1 ⊗ s2 ⊗m 7→ s2 ⊗ms1 − s1s2 ⊗m+ s1 ⊗ s2m

s⊗m 7→ ms− sm

The following observation will be useful:

Lemma 1.1. Let 1 ∈ S be the unit element and let m ∈ M . Then the 1–chain
1⊗m is a boundary.

Proof. d(1⊗ 1⊗m) = 1⊗m− 1⊗m+ 1⊗m = 1⊗m. �

If A is a m × n matrix over S and B is a n ×m matrix over M , we define A ⊗ B
to be the m×m matrix with entries in the R–module S ⊗M given by

(A⊗B)ij =
n∑
k=1

Aik ⊗Bkj .

The trace of A⊗B, written trace(A⊗B), is
∑m
i=1

∑n
k=1Aik⊗Bki which we interpret

as a Hochschild 1–chain. Observe that the 1–chain trace(A ⊗ B) is a cycle if and
only if trace(AB) = trace(BA), in which case we denote its homology class by
T1(A⊗B) ∈ HH1(S,M).
We use Hochschild homology in the following situation. Let G be a group and
φ : G → G an endomorphism. Also denote by φ the induced ring homomorphism
ZG→ ZG. Take the ground ring R to be Z, the ring S to be ZG, and the bimodule
M to be the ZG–ZG bimodule whose underlying abelian group is ZG and whose
bimodule structure is given by g ·m := gm and m · g := mφ(g). We denote this
bimodule by (ZG)φ.
Elements g1 and g2 of G are semiconjugate if and only if there exists g ∈ G such
that g1 = gg2φ(g−1). We write C(g) for the semiconjugacy class containing g and
Gφ for the set of semiconjugacy classes. The partition of G into the union of its
semiconjugacy classes induces a direct sum decomposition of HH∗(ZG, (ZG)φ) as
follows: each generating chain c = g1 ⊗ · · · ⊗ gn ⊗ m can be written in canon-
ical form as g1 ⊗ · · · ⊗ gn ⊗ g−1

n · · · g−1
1 g and we call g := g1 · · · gnm ∈ G the

marker of c. All the generating chains occurring in the boundary d(c) are easily
seen to have markers in the same semiconjugacy class C(g) when put into canon-
ical form. For C ∈ Gφ let C∗(ZG, (ZG)φ)C be the subgroup of C∗(ZG, (ZG)φ)
generated by those generating chains whose markers lie in C. The decomposition
(ZG)φ ∼=

⊕
C∈Gφ

ZC as a direct sum of abelian groups determines a decomposi-
tion of chain complexes C∗(ZG, (ZG)φ) ∼=

⊕
C∈Gφ

C∗(ZG, (ZG)φ)C . There results
a natural isomorphism HH∗(ZG, (ZG)φ) ∼=

⊕
C∈Gφ

HH∗(ZG, (ZG)φ)C where the
summand HH∗(ZG, (ZG)φ)C corresponds to the homology classes of Hochschild
cycles marked by the elements of C. We call this summand the C–component.
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Let (ZG)φ be the left G–module whose underlying abelian group is ZG and whose
left module structure is given by g ·m := gmφ(g−1). There is a natural isomorphism
HH∗(ZG, (ZG)φ) ∼= H∗(G, (ZG)φ), which is induced from an isomorphism of the
Hochschild complex to the bar complex for computing group homology, see Theorem
1.d of [I]. The decomposition (ZG)φ ∼=

⊕
C∈Gφ

ZC is a direct sum of left ZG
modules, inducing a direct sum decompositionH∗(G, (ZG)φ) ∼=

⊕
C∈Gφ

H∗(G,ZC).
Choosing representatives gC ∈ C we have an isomorphism of left ZG modules ZC ∼=
Z(G/Z(gC)) where Z(h) = {g ∈ G | h = ghφ(g−1)} denotes the semicentralizer of
h ∈ G. Since H∗(G,Z(G/Z(gC))) is naturally isomorphic to H∗(Z(gC)), we obtain:

Proposition 1.2. There is a natural isomorphism

HH∗(ZG, (ZG)φ) ∼=
⊕
C∈Gφ

H∗(Z(gC))

and HH∗(ZG, (ZG)φ)C corresponds to the summand H∗(Z(gC)) under this identi-
fication. �

We now discuss the “relativization” mentioned in the Introduction. It may happen
in topological applications that trace(A ⊗ B) ∈ C1(ZG, (ZG)φ) is not a cycle, but
that for an appropriate geometrically defined J ⊂ Gφ its C–component [trace(A⊗
B)]C ∈ C1(ZG, (ZG)φ)C is a cycle for all C /∈ J . We define

HH∗(ZG, (ZG)φ; J) :=
⊕

C∈Gφ−J
HH∗(ZG, (ZG)φ)C

regarded as a subgroup of HH∗(ZG, (ZG)φ) and we write T1(A ⊗ B; J) for the
element of HH1(ZG, (ZG)φ; J) whose C–component is represented by [trace(A ⊗
B)]C for each C ∈ Gφ − J . If J ⊂ J ′ ⊂ Gφ then the projection⊕

C∈Gφ−J
HH∗(ZG, (ZG)φ)C −→

⊕
C∈Gφ−J′

HH∗(ZG, (ZG)φ)C

defines a homomorphism p : HH∗(ZG, (ZG)φ; J) → HH∗(ZG, (ZG)φ; J ′).
Next, we discuss morphisms between Hochschild groups. Suppose α : G → H,
φ : G → G, and ψ : H → H are group homomorphisms such that αφ = ψα.
Such an α induces a chain map α∗ : C∗(ZG, (ZG)φ) → C∗(ZH, (ZH)ψ) given by
α∗(s1⊗· · ·⊗sn⊗m) = α(s1)⊗· · ·⊗α(sn)⊗α(m). Note that α induces a function,
also denoted α, Gφ

α→ Hψ given by α(C(g)) = C(α(g)). If α is an isomorphism of
groups and J ⊂ Gφ then α(Gφ − J) = Hψ − α(J) and there is an isomorphism

α∗ : HH∗(ZG, (ZG)φ; J)
∼=−→ HH∗(ZH, (ZH)ψ;α(J)).

There is a left action of the center of G, Center(G), on HH∗(ZG) which we will
use in §2. At the level of chains it is defined by

(1.3) ω ·
(
g1 ⊗ · · · ⊗ gn ⊗m

)
= g1 ⊗ · · · ⊗ gn ⊗ (mω−1)

where ω ∈ Center(G). One easily checks that this action is compatible with d and
hence makes HH∗(ZG) into a left Center(G)–module. The summand HH∗(ZG)C
is taken by the left action of ω isomorphically onto the summand HH∗(ZG)Cω−1

where Cω−1 is the conjugacy class {gω−1 | g ∈ C}.
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We recall the definition of K1 of a ring. Let GL(n,R) denote the general linear
group consisting of all n×n invertible matrices over R, and let GL(R) be the direct
limit of the sequence GL(1, R) ⊂ GL(2, R) ⊂ · · · . Then K1(R) := H1(GL(R)).

Definition 1.4. The Dennis trace homomorphism DT : K1(R) → HH1(R) is
defined as follows. If α ∈ K1(R) is represented by an invertible n × n matrix A
then DT(α) = T1(A⊗A−1) (see Chapter 1 of [I]).

In case R = ZG, let ±G ⊂ GL(1,ZG) be the subgroup consisting of 1×1 matrices of
the form [±g], g ∈ G. The cokernel of the natural homomorphism ±G→ K1(ZG)
is called the Whitehead group of G and is denoted by Wh(G).

Proposition 1.5. The image of the composite homomorphism:

±G i−→ K1(ZG) DT−→ HH1(ZG)

lies in HH1(ZG)C(1).

Proof. For g ∈ G, DT(i(±g)) = homology class of g ⊗ g−1 ∈ HH1(ZG)C(1). �

Proposition 1.5 implies that the Dennis trace induces a homomorphism

(1.6) DT : Wh(G) −→ HH1(ZG; {C(1)})

where we write HH1(ZG; J) for HH1(ZG; (ZG)id; J) with J ⊂ Gid.
We will also use an analog of the Dennis trace in §2. Let M(n,ZG) denote the
abelian group consisting of all n × n matrices over ZG, and let M(ZG) be the
direct limit of the sequence M(1,ZG) ⊂M(2,ZG) ⊂ · · · . Given an endomorphism
φ : G → G, the group GL(ZG) acts on M(ZG) on the left by m.u = umφ(u−1)
where m ∈ M(ZG), u ∈ GL(ZG) and umφ(u−1) is the matrix product of ZG-
matrices. Let M(ZG)φ denote M(ZG) with this left GL(ZG) module structure.
Define a homomorphism

(1.7) D : H1(GL(ZG);M(ZG)φ) −→ HH1(ZG; (ZG)φ)

by D(α) =
∑
i trace(ui ⊗ u−1

i mi) where α ∈ H1(GL(ZG);M(ZG)φ) is represented
by the 1–cycle

∑
i(ui − 1) ⊗ mi for some ui ∈ GL(n,ZG) ⊂ GL(ZG) and mi ∈

M(n,ZG) ⊂M(ZG) (recall that the first homology of a group K with coefficients
in a left K-module B is naturally isomorphic to ker(IK⊗ZKB → B), (x−1)⊗b 7→
xb− b, x ∈ K, b ∈ B, where IK is the augmentation ideal of ZK).

(B) The One-Parameter Trace of a Homotopy.

Let X be a finite connected oriented CW complex and let I = [0, 1] be endowed
with its usual CW structure and orientation of cells. Let F : X × I → X be a
cellular homotopy, where X × I has the product CW structure and its cells are
given the product orientation.
Choose a basepoint (v, 0) ∈ X × I and choose a basepath τ from v to F (v, 0). We
identify π1(X × I, (v, 0)) with G := π1(X, v) via the isomorphism induced by the
projection p : X×I → X. In particular, we write φ : G→ G for the homomorphism

π1(X × I, (v, 0))
F#−→ π1(X,F (v, 0))

(τ−1)−→ π1(X, v).
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Let τ̃ be the lift of the basepath τ which starts at the basepoint, ṽ ∈ X̃, and let
F̃ be the unique lift of F mapping (ṽ, 0) to τ̃(1). F̃ induces a chain homotopy
D̃k : Ck(X̃) → Ck+1(X̃) given as follows:

Sign Convention. If ẽ is an oriented k–cell of X̃ then D̃k(ẽ) is the (k + 1)–
chain (−1)k+1F̃∗(ẽ × I) ∈ Ck+1(X̃), where ẽ × I is given the product orienta-
tion. This is consistent with the convention that if Ei,ε is the face of the cube
In = [0, 1]n obtained by holding the ith coordinate fixed at ε = 0 or 1, then the
incidence number [In : Ei,ε] is (−1)i+ε. At the level of cellular n–chains, we have
∂nI

n =
∑
i,ε[I

n : Ei,ε]Ei,ε.

This satisfies D̃k(ẽg) = D̃k(ẽ)φ(g). The boundary ∂̃k : Ck(X̃) → Ck−1(X̃), how-
ever, satisfies ∂̃k(ẽg) = ∂̃k(ẽ)g. Define endomorphisms of ⊕kCk(X̃) by D̃∗ =
⊕k(−1)k+1D̃k, ∂̃∗ = ⊕k∂̃k, (F̃0)∗ = ⊕k(−1)k(F̃0)k, and (F̃1)∗ = ⊕k(−1)k(F̃1)k.
We reuse the symbols D̃∗, ∂̃∗, (F̃0)∗, and (F̃1)∗ for the matrices of the corresponding
endomorphisms. The chain homotopy relation yields the matrix equation:

D̃∗φ(∂̃∗)− ∂̃∗D̃∗ = (F̃0)∗ − (F̃1)∗.

The minus sign appearing on the left arises from our convention concerning the
alternation of signs. Note that the entry of the matrix D̃ corresponding to an n–
cell ẽ1 and an (n+ 1)–cell ẽ2 is the coefficient of ẽ2 in the (n+ 1)–chain F̃∗(ẽ1× I).
Let ω be the path given by ω(t) = F (v, t). Then τω is a path from v to F1(v).
Note that it is this path which must be used to determine the lift F̃1 of F1 and so
even if F0 = F1 it is possible that F̃0 6= F̃1.
In the language of §1(A), consider trace(∂̃∗ ⊗ D̃∗) ∈ ZG ⊗ (ZG)φ. This is a
Hochschild 1–chain whose boundary is

trace(D̃∗φ(∂̃∗)− ∂̃∗D̃∗) = trace((F̃0)∗ − (F̃1)∗).

The latter might not be zero, so trace(∂̃∗ ⊗ D̃∗) might not be a cycle; but in the
important special case in which F0 and F1 have no fixed points then trace(∂̃∗⊗ D̃∗)
is a cycle because by Theorem 2.6 of [GN1] trace((F̃0)∗) = trace((F̃1)∗) = 0 and in
this situation the invariant of interest to us is T1(∂̃∗ ⊗ D̃∗) ∈ HH1(ZG, (ZG)φ).
For the general case, recall that we are studying how Fix(F ) is altered by homo-
topies of F rel X×{0, 1}. Since this is a relative problem it makes sense to remove
the influence of F0 and F1. First, we recall how semiconjugacy classes are associ-
ated to the fixed points of a map f : X → X. Let η be a basepath from v to f(v).
Two fixed points x and y of f are in the same fixed point class if and only if for
some path ν from x to y, the loop ν(f ◦ ν)−1 is homotopically trivial. This defines
an equivalence relation on the set of fixed points, Fix(f). There is an injective
function Φ from the set of fixed point classes of f into Gφ: the class containing x
is mapped to the semiconjugacy class containing [µ(f ◦ µ)−1η−1], where µ is any
path from the basepoint v to x. We say x is associated with that semiconjugacy
class. We write Gφ(f) for the image of Φ in Gφ. It is straightforward to check
that Φ is well-defined, that Fix(f) is thus partitioned into only finitely many fixed
point classes, and that fixed points in the same path component of Fix(f) are in
the same fixed point class. Let Gφ(∂F ) := Gφ(F0) ∪Gφ(F1), i.e., the subset of Gφ
consisting of semiconjugacy classes associated to fixed points of F0 or F1 (where we
are using the basepath τ for F0 and the basepath τω for F1).
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Definition 1.8. The one-parameter trace of F is

R(F, τ) := T1(∂̃∗ ⊗ D̃∗;Gφ(∂F )) ∈ HH1(ZG, (ZG)φ;Gφ(∂F )).

§2. Obstructions to Homotopy Invariance and Proof of Simple
Homotopy Invariance in a Special Case

Let (Y,X) be a finite CW pair where Y is connected and the inclusion i : X ↪→ Y
is a homotopy equivalence. Choose a basepoint v ∈ X and let G := π1(Y, v). Let
f : (Y,X) → (Y,X) be a cellular map of pairs. Choose a basepath τ in X from v
to f(v). Let φ : G → G be the homomorphism induced by f and τ . Recall that
Gφ(f) denotes the set of those φ-semiconjugacy classes of G which are associated
with fixed points of f . Let H : Y × I → Y be a strong deformation retraction of Y
into X, i.e., H0 = id, H1 = ir where r : Y → X is a retraction, and H(x, t) = x for
all x ∈ X. Consider the homotopy of pairs U := H ◦ (f × id) : (Y,X)× I → (Y,X).
Since U0 = f and U1|X = f |X , Fix(U1) = Fix(f) ∩X. Hence Gφ(∂U) = Gφ(f).

Definition 2.1. E(f, τ) := R(U, τ) ∈ HH1(ZG, (ZG)φ;Gφ(f)).

Proposition 2.2. E(f, τ) is independent of the choice of the strong deformation
retraction H.

Proof. Let Ỹ be the universal cover of Y and X̃ ⊂ Ỹ the universal cover of X. Let
(C∗(Ỹ ), ∂̃′∗) and (C∗(X̃), ∂̃∗) be the corresponding cellular chain complexes. The
relative chain complex of the pair (Ỹ , X̃), (C∗(Ỹ , X̃), ∂̃′′∗ ) is contractible. We have
a strictly commutative diagram of ZG–complexes:

C∗(X̃) //

D̃∗
��

C∗(Ỹ ) //

D̃′
∗
��

C∗(Ỹ , X̃)

D̃′′
∗

��

C∗(X̃) // C∗(Ỹ ) // C∗(Ỹ , X̃)

where D̃′
∗ is the chain homotopy associated to U := H ◦ (f × id), D̃∗ is the chain

homotopy associated to U |X×I , and D̃′′
∗ is the induced chain homotopy on the

relative chain complex. Note that D̃∗ = 0 since U |X×I is a constant homotopy. By
Proposition 3.5 and Addendum 3.6 of [GN1],

trace(∂̃′∗ ⊗ D̃′
∗)− trace(∂̃∗ ⊗ D̃∗)− trace(∂̃′′∗ ⊗ D̃′′

∗ )

is a Hochschild boundary. Thus trace(∂̃′∗⊗ D̃′
∗) and trace(∂̃′′∗ ⊗ D̃′′

∗ ) are homologous
1–chains. Let δ∗ : C∗(Ỹ , X̃) → C∗(Ỹ , X̃) be a chain contraction, i.e., δ∗∂̃′′∗ + ∂̃′′∗ δ∗ =
id∗.3 Let ∆∗ : C∗(Ỹ , X̃) → C∗(Ỹ , X̃) be the degree two φ-homomorphism4:

∆∗ = δ∗(δ∗f̃∗ − D̃′′
∗ ).

3A degree 1 chain homotopy satisfies D∂ + ∂D = f − g, as usual. When we put all the

matrices together to make a single matrix for ∂ and for D, as in §1(B), our sign rules turn this

into Dφ(∂) − ∂D = f − g. Similarly for the degree 2 case with opposite signs. Thus there is
no contradiction between the signs in this proof, which are for chain maps rather than matrices,

and those in the formula in §1(B) which are for matrices rather than chain maps. Note that the

notation D̃∗ has one meaning in §1 and a slightly different meaning here. This should cause no

confusion.
4A φ–homomorphism h : A → B between right G–modules is a homomorphism of the under-

lying abelian groups such h(ag) = h(a)φ(g) for all a ∈ A and g ∈ G.
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The equality δ∗∂̃′′∗ + ∂̃′′∗ δ∗ = id∗ implies δ2∗∂̃
′′
∗ + δ∗∂̃

′′
∗ δ∗ = δ∗ and δ∗∂̃′′∗ δ∗ + ∂̃′′∗ δ

2
∗ = δ∗

from we which we deduce that ∂̃′′∗ δ
2
∗ = δ2∗∂̃

′′
∗ . Using this and D̃′′

∗ ∂̃
′′
∗ + ∂̃′′∗ D̃

′′
∗ =

f̃∗−(Ũ1)∗ = f̃∗ (note that U1(Y ) ⊂ X implies (Ũ1)∗ = 0 on C∗(Ỹ , X̃)), a calculation
yields:

∆∗∂̃
′′
∗ − ∂̃′′∗∆∗ = D̃′′

∗ − δ∗f̃∗,

i.e., ∆∗ is a degree two φ-chain homotopy ∆∗ : D̃′′
∗ ' δ∗f̃∗. By Lemma 3.2 of [GN1],

trace(∂̃′′∗ ⊗ δ∗f̃∗) and trace(∂̃′′∗ ⊗ D̃′′
∗ ) are homologous Hochschild 1–chains. Hence

E(f, τ) = T1(∂̃′′∗ ⊗ δ∗f̃∗;Gφ(f)) ∈ HH1(ZG, (ZG)φ;Gφ(f))

which is independent of the choice of H. �

We deduce two corollaries from the proof of Proposition 2.2:

Corollary 2.3. E(f, τ) is represented by the image of trace(∂̃′′∗⊗δ∗f̃∗) in HH1(ZG,
(ZG)φ;Gφ(f)) where δ∗ : C∗(Ỹ , X̃) → C∗(Ỹ , X̃) is any chain contraction. �

Corollary 2.4. E(f, τ) = R(f ◦H, τ) ∈ HH1(ZG, (ZG)φ;Gφ(f)).

Proof. Retaining the notation of the proof of Proposition 2.2, let ∆′
∗ = δ∗(δ∗f̃∗ −

f̃∗δ∗). Then ∆′
∗∂̃

′′
∗ − ∂̃′′∗∆′

∗ = f̃∗δ∗ − δ∗f̃∗ and so, again by Lemma 3.2 of [GN1],
E(f, τ) is also represented by trace(∂̃′′∗ ⊗ f̃∗δ∗). Since Gφ(fir) ⊂ Gφ(f) and δ̃∗ can
be taken to be the chain homotopy associated with the lift of H, this implies that
E(f, τ) = R(f ◦H, τ). �

There is a commutative diagram:

(2.5)

π1(X, v)
(f |X)#

//

i#

��

π1(X, f(v))
τ−1
#

//

i#

��

π1(X, v)

i#

��

π1(Y, v)
f#

// π1(Y, f(v))
τ−1
#

// π1(Y, v).

where the vertical arrows i# are isomorphisms. Let N := π1(X, v) and let
ψ : N → N be the composite of horizontal arrows in the first row of (2.5). Then
i#ψ = φi# and so i# induces a bijection i# : Nψ → Gφ. It is easy to see that
i#(Nψ(f |X)) ⊂ Gφ(f). In this situation we will write Gφ(f |X)) for i#(Nψ(f |X))
and we will denote by i† the composite homomorphism

HH1(ZN, (ZN)ψ;Nψ(f |X)) i∗−→ HH1(ZG, (ZG)φ;Gφ(f |X)))
p−→ HH1(ZG, (ZG)φ;Gφ(f)),

where p : HH1(ZG, (ZG)φ;Gφ(f |X))) → HH1(ZG, (ZG)φ;Gφ(f)) is projection as
in §1.
The next result formulates the obstruction to homotopy invariance of the one-
parameter trace. This result replaces Theorem 4.5 of [GN1] which, as explained in
the Introduction, is not valid in the generality asserted there (but see Theorem 2.8
below).
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Theorem 2.6. If the diagram

X × I
F //

i×id

��

X

i

��

Y × I
E // Y

is homotopy commutative rel X × {0, 1}. Then

R(E, τ)− i†R(F, τ) = p0 (E(E0, τ))− p1 (E(E1, τω))

where τ is a basepath in X from a basepoint v ∈ X to F (v, 0), ω is the path ω(t) =
F (v, t), and, for k = 0 or 1, the homomorphism pk : HH1(ZG, (ZG)φ;Gφ(Ek)) →
HH1(ZG, (ZG)φ;Gφ(∂E)) is projection.

Proof. By hypothesis there exists a homotopy K : (X × I) × I → Y , K : iF '
E◦(i×id) rel X×{0, 1}. Then r◦K is a homotopy F ' r◦E◦(i×id) rel X×{0, 1}
and so Corollary 4.3 of [GN1] implies that R(F, τ) = R(r ◦E ◦ (i× id), τ). Trivially,
there is a commutative diagram:

C∗(X̃) //

D̃∗
��

C∗(Ỹ ) //

D̃′
∗
��

C∗(Ỹ , X̃)

0

��

C∗(X̃) // C∗(Ỹ ) // C∗(Ỹ , X̃)

where D̃ and D̃′ are the chain homotopies associated to the lifts to the universal
cover of r ◦ E ◦ (i × id) and ir ◦ E respectively. By Proposition 3.5 of [GN1],
trace(∂̃∗ ⊗ D̃∗) = trace(∂̃′∗ ⊗ D̃′

∗) where ∂̃ and ∂̃′ are the boundary operators of
C(X̃) and C(Ỹ ) respectively. Since Fix(ir ◦ E) = Fix(r ◦ E ◦ (i× id)),

Gφ(∂(ir ◦ E)) = Gφ(∂(r ◦ E ◦ (i× id))) = Gφ(∂F )

and so R(F, τ) = R(ir ◦ E, τ) ∈ HH1(ZG, (ZG)φ;Gφ(∂F )). Define a homotopy
Q : (Y ×I)×I → Y by Q = H◦(E×id). Then Q0 = E and Q1 = ir◦E. For k = 0, 1
define Uk : Y × I → Y by Uk(y, t) = Q(y, k, t). Then Uk = H ◦ (Ek × id), k = 0, 1.
By Proposition 4.2 of [GN1], R(Q0, τ) − R(Q1, τ) − R(U0, τ) + R(U1, τω) = 0
calculated in HH1(ZG, (ZG)φ;Gφ(∂Q0 ∪ ∂Q1)). But Gφ(∂Q0) = Gφ(∂E) and
Gφ(∂Q1) = Gφ(∂F ) ⊂ Gφ(∂E). Furthermore, R(Q0, τ) = R(E, τ), R(Q1, τ) =
R(ir◦E, τ) = i†R(F, τ), R(U0, τ) = p0 (E(E0, τ)), and R(U1, τω) = p1 (E(E1, τω)).
The conclusion of the theorem follows. �

In the special case that E0 = E1 = id the difference p0(E(E0, τ)) − p1(E(E1, τω)),
taking τ to be the constant path at the basepoint v, (we write v for τ), can be
expressed in terms of the Dennis trace of the Whitehead torsion of (Y,X). In this
case φ : G → G is the identity, Gφ(E0) = {C(1)}, and Gφ(E1) = {C([ω]−1)}
where [ω] is the element of the center of G represented by the closed path ω(t) =
F (v, t) = E(v, t) and, since φ = id, C(g) is the conjugacy class of g ∈ G. Recall
that the Dennis trace induces a homomorphism DT : Wh(G) → HH1(ZG; {C(1)})
(see (1.6)) and that there is an action of the center of G on HH1(ZG) (see (1.3)).

Proposition 2.7. Suppose E0 = E1 = id. Then

R(E, v)− i†R(F, v) = p0(E(id, v))− p1(E(id, ω)) = p
(
(1− [ω])j ◦DT(σ)

)
.
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where σ ∈ Wh(G) is the Whitehead torsion of the pair (Y,X), and the homormor-
phisms

j : HH1(ZG; {C(1)}) → HH1(ZG)
p : HH1(ZG) → HH1(ZG; {C(1), C([ω]−1)})

are, respectively, inclusion and projection. �

A proof of Proposition 2.7 is given in Theorem 2.8 of [GN2]. (The proof is also im-
plicit in §7 of [GN1].) Since the torsion of a simple homotopy equivalence vanishes,
Proposition 2.7 implies the simple homotopy invariance of the one-parameter trace
in an important special case.

Theorem 2.8. If E0 = E1 = id and the inclusion i : X ↪→ Y is a simple homotopy
equivalence then R(E, v) = i†R(F, v). �

If i : X ↪→ Y is not a simple homotopy equivalence, the conclusion of Theorem 2.8
can fail to hold:

Example 2.9. Let (p, q) be a pair of relatively prime positive integers with p > 1.
Recall that the 3–dimensional lens space L(p, q) is the orbit space of the action of the
cyclic group Z/p = 〈t | tp = 1〉 on the 3–sphere S3 = {(z0, z1) ∈ C2 | |z0|2+ |z1|2 =
1} defined by t(z0, z1) = (e2πi/pz0, e2πiq/pz1). Let [z0, z1] ∈ L(p, q) denote the the
orbit of (z0, z1) ∈ S3. Define a self homotopy of the identity γ : L(p, q)×I → L(p, q)
by γ([z0, z1], s) = [e2πis/pz0, e2πisq/pz1]. Consider the lens spaces L(7, 2) and L(7, 1)
which are homotopy equivalent but not simple homotopy equivalent (see (29.6) and
(30.1) of [C]). Let h : L(7, 1) → L(7, 2) be any homotopy equivalence and let

M(h) := (L(7, 1)× I
◦→ ∪L(7, 2))/(x, 1) ∼ h(x)

be the mapping cylinder of h. We identify L(7, 1) with L(7, 1)× {0} ⊂M(h). The
homotopy γ : L(7, 1) × I → L(7, 1) can be extended to a self homotopy of the
identity, γ′ : M(h) × I → M(h). Choose a basepoint v ∈ L(7, 1). By Remark 5.8
of [GN1], the difference R(γ′, v)− i†R(γ, v) is not zero.

Recall the homomorphism D : H1(GL(ZG),M(ZG)φ) → HH1(ZG, (ZG)φ) from
(1.7).

Proposition 2.10. Suppose f : (Y,X) → (Y,X) is such that there exists a strong
deformation retraction H with the additional property that f ◦ H =
H ◦ (f × id). Then there is an α ∈ H1(GL(ZG),M(ZG)φ) such that E(f, τ) =
p ◦ D(α) where p : HH1(ZG, (ZG)φ) → HH1(ZG, (ZG)φ;Gφ(f)) is projection.

Proof. As before, let (C∗(Ỹ , X̃), ∂̃∗) be the cellular chain complex of the pair (Ỹ , X̃).
Let f̃∗ be the chain map associated to the lift of f and let δ̃∗ be the chain homotopy
associated to the lift of H. Note that δ̃∗ is a chain contraction. The hypothesis
f ◦ H = H ◦ (f × id) implies that f̃∗δ̃∗ = δ̃∗f̃∗. Replacing δ̃∗ with the chain
contraction δ̃∗∂̃∗δ̃∗, we can assume that δ̃2∗ = 0 and the property f̃∗δ̃∗ = δ̃∗f̃∗ is
retained. Let B and F be the ZG–matrices:

B =


∂̃1 0 0 · · ·
δ̃1 ∂̃3 0 · · ·

0 δ̃3
. . .

... 0
. . .

 , F =


f̃0 0 0 · · ·
0 f̃2 0 · · ·
0 0 f̃4 · · ·
...

...
. . .
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Then B is invertible and by Proposition 3.7 of [GN1], trace(∂̃∗ ⊗ δ̃∗f̃∗) is homol-
ogous to − trace(B ⊗ B−1F ). View −(B − id) ⊗ F as a 1–cycle representing an
element α of H1(GL(ZG),M(ZG)φ). Then D(α) is the Hochschild homology class
of − trace(B ⊗B−1F ). Since E(f, τ) is represented by trace(∂̃∗⊗ δ̃∗f̃∗), the conclu-
sion of the proposition follows. �

Remark. The point of Proposition 2.10 is that the group H1(GL(ZG),M(ZG)φ) is
analogous toK1(ZG)=H1(GL(ZG),Z) and the element α ∈H1(GL(ZG),M(ZG)φ)
constructed in its proof is reminiscent of Whitehead torsion.

§3. Failure of Simple Homotopy Invariance

In this section we describe a finite CW pair (Y,X) and homotopies F : X × I → X,
E : Y × I → Y so that the diagram

X × I
F //

i×id

��

X

i

��

Y × I
E // Y

is homotopy commutative rel X × {0, 1} and i : X ↪→ Y is a simple homotopy
equivalence, but where R(E, τ) 6= i†R(F, τ). In fact Y will be obtained from X by
two elementary expansions (see [C]). Lemma 4.7 of [GN1] implies that if Y were
obtained from X by a single elementary expansion then R(E, τ) = i†R(F, τ), so
the example given here would appear to be as economical as possible.
Let X = P 2. The space Y is (P 2 ∨B3 ∨S2)∪h e3 where P 2 is the projective plane,
S2 is the 2–sphere, B3 and e3 are 3–cells and h is a certain attaching map for e3.
Give X the following cell structure: one vertex v, one 1–cell attached to v to give
S1, and one 2–cell attached to S1 via a map of degree two yielding P 2 = X. We
now specify the cell structure of Y . Attach two 2–cells to X via constant maps at
v to give P 2 ∨ S2

1 ∨ S2
2 , attach one 3–cell e31 by a homeomorphism S2 → S2

1 to give
P 2 ∨ B3 ∨ S2

2 , and attach one 3–cell e32 by a map h into the 2–skeleton; this map
will be specified shortly.
In this case G := π1(Y, v) = 〈ω | ω2 = 1〉, the group of order 2 and φ = id : G→ G.
Choose orientations for the cells of Y and a lift of each cell to the universal cover Ỹ .
Orient ẽ (the lift of e) compatibly with e, and ẽω so that the covering transformation
ω preserves orientation. The basepoint of Ỹ is chosen to be ṽ. The first requirement
for h is that on cellular chains,

∂̃ẽ32 = S̃2
1(1− ω) + S̃2

2 .

Let Z = P 2 ∨ B3, a subcomplex of Y . The second requirement for h is that the
inclusion i2 : Z ↪→ Y be an elementary expansion; this is possible because the
coefficient of S̃2

2 in ∂̃ẽ32 is 1. Of course, i1 : X ↪→ Z is also an elementary expansion.
Let Y@ > r2 >> Z@ > r1 >> X be collapsing retractions. The matrix for
∂̃3 : C3(Ỹ , X̃) → C2(Ỹ , X̃) is [

1 1− ω
0 1

]
.
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Define f : (Y,X) → (Y,X) to be a cellular map which restricts to idX on X and
induces the matrix [

0 0
1 + ω 0

]
.

both on C2(Ỹ , X̃) and on C3(Ỹ , X̃). Such a map f exists because the two displayed
matrices commute. Furthermore, we may choose f to have no fixed points outside
X because the diagonal terms in the latter matrix are 0. We have r1r2fi2i1 '
idX rel X, and i2i1r1r2 ' idY rel X, so f ' idY rel X. Let E : Y × I → Y be
a homotopy rel X with E0 = f and E1 = idY . We wish to apply Theorem 2.6
to this E, where F : X × I → X is projection. In this case it is clear that the
diagram in the statement of Theorem 2.6 is strictly commutative. Moreover, we
may take τ and ω to the constant paths at the basepoint v (denoting them by v).
With notation as in Theorem 2.6 we have:

Proposition 3.1. R(E, v)− i†R(F, v) = p0(E(f, v)) ∈ HH1(ZG;Gid(∂E)), where
i = i2i1 : X ↪→ Y .

Remark. When, as in this case, φ = id, we write HH1(ZG;Gid(∂E)) for HH1(ZG,
(ZG)φ;Gφ(∂E)).

Proof. We apply Theorem 2.6. The term p1(E(idY , v)) = 0 because H, the concate-
nation of two elementary collapses, can be chosen to have no fixed points associated
with semiconjugacy classes outside Gid(∂H). �

It remains to prove that the term p0(E(f, v)) in Proposition 3.1 is not zero. For
this, we return to the general situation of §2. So, until after Proposition 3.3, X and
Y are general complexes as in that section. We consider special cases.

Special Case 1. f(X) ⊂ X (as in §2) and i : X ↪→ Y is an elementary expansion.
Let α ∈ A and β ∈ B index the (q − 1)–cells and q–cells of Y respectively. Assume
Y = X ∪ eq−1

α0
∪ eqβ0

where eq−1
α0

is the free face of eqβ0
(see p.14 of [C]). Then

Cq(Ỹ , X̃) is a free ZG–module of rank 1 in dimensions q−1 and q and is zero in all
other dimensions. Moreover, we may choose lifts and orientations so that ẽq−1

α0
⊂

ẽqβ0
. Then the unique non-zero entry in the matrix of δ∗, the chain contraction of

C∗(Ỹ , X̃) induced by the collapse Y onto X, is (δ∗)β0α0 = ±1 and

(δ∗f̃∗)βα =
∑
ν

(δ∗)βν(f̃∗)να =
{
±(f̃∗)α0α if β = β0

0 if β 6= β0

The signs depend on choices and will be irrelevant. The unique non-zero entry in
the matrix of ∂̃′′∗ , the boundary operator of C∗(Ỹ , X̃), is (∂̃′′∗ )α0β0 = ±1. Thus we
have:

Proposition 3.2. In this situation, trace(∂̃′′∗ ⊗ δ∗f̃∗) = ±1 ⊗ (f̃∗)α0α0 which is a
Hochschild boundary. �

Special Case 2. i is an elementary expansion but it is not assumed that f(X) ⊂
X. There is a homotopy U := H ◦ (f × id) : Y × I → Y as before which might
not be constant on X × I. As in the proof of Proposition 2.2, we denote by
D̃′
∗ : C∗(Ỹ ) → C∗(Ỹ ) the chain homotopy associated with U , and ∂̃′∗ the boundary

operator of C∗(Ỹ ).
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Proposition 3.3. Under these hypotheses, the Hochschild 1–chains
trace(∂̃′∗⊗D̃′

∗) and
∑
α∈A

(
±(∂̃′∗)αβ0 ⊗ (f̃∗)α0α

)
are homologous for suitable choices

of sign in each term of the sum.

Proof. The proof runs parallel to that of Proposition 2.2 and we stay as close to it
as possible. Now we must work with C∗(Ỹ ) rather than with C∗(Ỹ , X̃) and so

δ∗∂̃
′
∗ + ∂̃′∗δ∗ = id∗−r̃∗.

Let ∆′
∗ : C∗(Ỹ ) → C∗(Ỹ ) be the degree two φ–homomorphism ∆′

∗ = δ∗(δ∗f̃∗− D̃′
∗).

Using D̃′
∗∂̃

′
∗ + ∂̃′∗D̃

′
∗ = f̃∗ − r̃∗f̃∗, a calculation yields

∆′
∗∂̃

′
∗ − ∂̃′∗∆

′
∗ = (id∗−r̃∗)(D̃′

∗ − δ∗f̃∗),

i.e., ∆′
∗ is a degree two φ–chain homotopy ∆′

∗ : D̃′
∗ ' δ∗f̃∗ − r̃∗(δ∗f̃∗ − D̃′

∗).
We may assume that the retraction r takes the q-chain ẽqβ0

to 0, and hence that
r̃∗(δ∗f̃∗− D̃′

∗) = 0. Thus ∆′
∗ : D̃′

∗ ' δ∗f̃∗. By Lemma 3.2 of [GN1], trace(∂̃′∗⊗ δ∗f̃∗)
and trace(∂̃′∗ ⊗ D̃′

∗) are homologous Hochschild 1–chains. We now proceed as in
the proof of Proposition 3.2 (noting that the matrix of ∂̃′∗ can have many non-zero
entries) to obtain

trace(∂̃′∗ ⊗ δ∗f̃∗) =
∑
α∈A

(
±(∂̃′∗)αβ0 ⊗ (f̃∗)α0α

)
. �

Remark 3.4. If the chain contractions δ∗ are chosen to be induced by the elemen-
tary collapses H in Proposition 3.3, then δf̃∗ = D̃′

∗. This simplifies the above proof
since the degree two chain homotopies ∆′

∗ become zero. However, one must then
prove that the homotopy H(f × id) induces the chain homotopy δ∗f̃ , something
which is true but not entirely obvious.

We now return to the particular map f : (Y,X) → (Y,X) constructed earlier in
this section. Let H(2) : Y × I → Y and H(1) : Z × I → Z be strong deformation
retractions corresponding to the collapses r2 and r1; i.e., H(2)

0 = idY , H(2)
1 = i2r2,

H
(1)
0 = idZ , and H

(1)
1 = i1r1. Let H : Y × I → Y be the homotopy obtained by

concatenating H(2) and i2 ◦H(1) ◦ (r2 × id):

H(y, t) =

{
H(2)(y, 2t) if 0 ≤ t ≤ 1

2

i2 ◦H(1)(r2(y), 2t− 1) if 1
2 ≤ t ≤ 1.

Note that H0 = idY and H1 = i2i1r1r2. Writing U := H ◦ (f × id), we compute
E(f, v) := R(U, v) by adding traces whose form is given by Propositions 3.2 and
3.3 corresponding to the two parts of the homotopy. The contribution from i2 ◦
H(1) ◦ (r2 × id) can be ignored as it is a Hochschild boundary. There are exactly
two conjugacy classes C(1) and C(ω) in G ∼= Z/2Z. Since f |X = idX and f has
no other fixed points, Gid(f) = {C(1)}. Thus in computing E(f, v) we may ignore
all Hochschild homology classes whose marker is 1 ∈ G. It follows that in the sum
given in Proposition 3.3, only the term ±ω ⊗ 1 = ±ω ⊗ ωω matters; its marker is
ω ∈ G. By Proposition 1.2, this term is non-trivial in HH1(ZG;G1(f)). Thus we
have:

Theorem 3.5. In this example, R(E, v) 6= i†R(F, v). �
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Since the inclusion i : X ↪→ Y is a simple homotopy equivalence (having been
obtained by two elementary expansions), Theorem 3.4 provides an example of the
failure of simple homotopy invariance of the 1–parameter trace.

§4. Proof of Combinatorial Invariance

In this section we prove the combinatorial invariance of R(F ), Theorem 4.6.
Let X = Z0 ⊂ Z1 · · · ⊂ ZN = Y be a filtration of Y by subcomplexes such that
Zi−1 is a strong deformation retract of Zi for i = 1, . . . , N . Let v ∈ X be a
basepoint. We identify π1(Zi, v) with G := π1(Y, v) via the isomorphism induced
by the inclusion Zi ⊂ Y . Let f : (Y,X) → (Y,X) be a filtration preserving
cellular map, i.e., f(Zi) ⊂ Zi for i = 0, . . . , N . Let fi : (Zi, Zi−1) → (Zi, Zi−1),
i = 1, . . . , N , denote the restriction of f to Zi regarded as map of pairs. Let τ be
a basepath in X from v to f(v). Since fi = f |Zi , it follows that Gφ(fi) ⊂ Gφ(f)
for i = 1, . . . , N (see the discussion following (2.5)). Hence there are projections
pi : HH1(ZG,ZGφ;Gφ(fi)) → HH1(ZG,ZGφ;Gφ(f)) for i = 1, . . . , N .

Proposition 4.1. For f : (Y,X) → (Y,X) as above, E(f, τ) =
∑N
i=1 pi(E(fi, τ)).

Proof. For i = 1, . . . , N , choose strong deformation retractions Hi : Zi × I → Zi of
Zi into Zi−1 and strong deformation retractions Qi : Y × I → Y of Y into Zi. The
homotopy Fi : Y × I → Y defined by

Fi(y, t) =

{
Qi(y, 2t) if 0 ≤ t ≤ 1

2

Hi(Qi(y, 1), 2t− 1) if 1
2 ≤ t ≤ 1.

is a strong deformation retraction of Y into Zi−1. Note that Fi(Zi × I) ⊂ Zi. Let
gi = f , regarded as a map of pairs gi : (Y, Zi) → (Y,Zi). Let Ỹ be the universal
cover of Y and let Z̃i ⊂ Ỹ be the universal cover of Zi. Consider the diagram

C∗(Z̃i, Z̃i−1) //

D̃i
∗
��

C∗(Ỹ , Z̃i−1) //

P̃ i
∗

��

C∗(Ỹ , Z̃i)

T̃ i
∗

��

C∗(Z̃i, Z̃i−1) // C∗(Ỹ , Z̃i−1) // C∗(Ỹ , Z̃i)

where D̃i
∗, P̃

i
∗, andT̃ i∗ are the chain homotopies associated with the lifts of Hi ◦

(fi × id), Fi ◦ (gi−1 × id) and Fi ◦ (gi × id) respectively. Since Hi ◦ (fi × id) '
Fi ◦ (gi−1 × id)|(Zi,Zi−1)×I rel Zi × {0, 1} ∪ Zi−1 × I, the left hand square of the
above diagram is chain homotopy commutative. The right hand square is strictly
commutative. By Proposition 3.5 of [GN1] (which applies by Addendum 3.6 of
[GN1] since C∗(Ỹ , Z̃i) is a contractible chain complex),

trace(∂̃i−1
∗ ⊗ P̃ i∗)− trace(∂̃i∗ ⊗ T̃ i∗)− trace(∂̃

′i
∗ ⊗ D̃i

∗)

is a Hochschild boundary where ∂̃k∗ , for k = i − 1 or i, is the boundary operator
of C∗(Ỹ , Z̃k) and ∂̃

′i
∗ is the boundary operator of C∗(Z̃i, Z̃i−1). Although Fi is

not necessarily a strong deformation of Y into Zi, E(gi, τ) can be computed from
trace(∂̃i∗ ⊗ T̃ i∗) because the chain homotopy (F̃i)∗ : C∗(Ỹ , Z̃i) → C∗(Ỹ , Z̃i) induced
by the lift of Fi is a chain contraction and so Corollary 2.3 applies. Hence

(4.2) E(gi−1, τ) = E(gi, τ) + pi(E(fi, τ)) ∈ HH1(ZG, (ZG)φ;Gφ(f)).
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Summing (4.2) yields
N∑
i=1

E(gi−1, τ) =
N∑
i=1

E(gi, τ) +
N∑
i=1

pi(E(fi, τ))

and so E(g0, τ)− E(gN , τ) =
∑N
i=1 pi(E(fi, τ)). Clearly E(gN , τ) = 0. Since f = g0

the conclusion of the Proposition follows. �

Definition 4.3. A subdivision X ′ of a CW complex X is another CW structure on
the underlying space of X such that each open cell of X ′ is contained in an open
cell of X.

Suppose that X is a finite connected CW complex, X ′ is a subdivision of X, and
f : X → X is a self-map of the underlying space which is cellular for both CW
structures, i.e., f : X → X and f : X ′ → X ′ are both cellular. Let Y be the CW
complex whose underlying space is X × I and whose open j-cells are of the form
◦→ ej × {0}, ◦→ ej−1× ◦→ I, or ◦→ sj × {1} where ◦→ ek, for k = j − 1 or j, is an
open k-cell of X and ◦→ sj is an open j-cell of X ′. There is a natural identification
of Y with the mapping cylinder of the identity map X → X ′ (which is cellular);
informally, the CW structure of Y is obtained from the product CW structure of
X × I by subdividing X × {1} according to X ′. Since f is cellular with respect to
both CW structures, f× id : Y → Y is cellular. Let f̂ : (Y,X×{0}) → (Y,X×{0})
and f̂ ′ : (Y,X ′ × {1}) → (Y,X ′ × {1}) be f × id regarded as maps of pairs. Let
the vertex v ∈ X be a basepoint and τ a basepath in X from v to f(v). Choose
(v, 0) as the basepoint for X ×{0} and (v, 1) as the basepoint for X ′×{1}. Define
basepaths τ̂ and τ̂ ′ by τ̂(t) = (τ(t), 0) and τ̂ ′(t) = (τ(t), 1), t ∈ [0, 1].

Proposition 4.4. For f̂ and f̂ ′ as above, E(f̂ , τ̂) = 0 and E(f̂ ′, τ̂ ′) = 0.

Proof. Define filtrations Z0 ⊂ Z1 · · · ⊂ ZN = Y and Z ′0 ⊂ Z ′1 · · · ⊂ Z ′N = Y of Y
by Zj = X × {0} ∪Xj−1 × I and Z ′j = X ′ × {1} ∪Xj−1 × I, j = 0, . . . , N , where
Xj is the j–skeleton of X (by convention, X−1 := ∅) and N = dimY = dimX + 1.
Note that f̂(Zj) ⊂ Zj and f̂ ′(Z ′j) ⊂ Z ′j , j = 0, . . . , N . Clearly, Zj−1 ⊂ Zj and
Z ′j−1 ⊂ Z ′j are strong deformation retracts. By Proposition 4.1,

(4.5) E(f̂ , τ̂) =
N∑
i=1

pi(E(f̂i, τ̂)) and E(f̂ ′, τ̂ ′) =
N∑
i=1

pi(E(f̂ ′i , τ̂
′))

where f̂i : (Zi, Zi−1) → (Zi, Zi−1) and f̂ ′i : (Z ′i, Z
′
i−1) → (Z ′i, Z

′
i−1) are, respectively,

the restriction of f̂ to Zi and of f̂ ′ to Z ′i, regarded as a maps of pairs. We will show
that E(f̂i, τ̂) = 0 and E(f̂ ′i , τ̂

′) = 0 from which the conclusion of the Proposition
then follows from (4.5). As in the proof of Proposition 4.1, let Z̃i ⊂ Ỹ be the
universal cover of Zi. Lifts of the cells of Y can be chosen so that the matrix of the
boundary operator ∂̃i∗ : C∗(Z̃i, Z̃i−1) → C∗(Z̃i, Z̃i−1) is an integer matrix (i.e., its
entries belong to Z ↪→ ZG) as follows. Choose lifts of the cells of X × {0}. These
lifts determine lifts of the cells in the product CW complex X × I in the obvious
manner. Since Y is a subdivision of X×I, this determines lifts for all the cells of Y .
The integrality of the matrix of ∂̃i∗ implies that E(f̂i, τ̂) = 0 because by Corollary
2.3 E(f̂i, τ̂) is represented by a Hochschild 1–chain of the form trace(∂̃i∗⊗ Ẽ∗) which
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is a sum of chains of the form 1⊗u, u ∈ ZG; this a Hochschild boundary by Lemma
1.1. Similarly, E(f̂ ′i , τ̂

′) = 0. �

Corollary 4.6 of [GN1] is correct as stated there, but it requires a new proof:

Theorem 4.6 (Combinatorial invariance). Suppose F : X×I → X is a cellular
homotopy and X ′ is a subdivision of X such that Fi : X ′ → X ′ is cellular for
i = 0, 1. If F ′ : X ′ × I → X ′ is a cellular homotopy which is homotopic to F rel
X ′ × {0, 1} then R(F, τ) = R(F ′, τ) where τ is a basepath in X from v to F0(v).

Proof. Let H : (X×I)×I → X be a homotopy H : F ' F ′ rel X×{0, 1}. Then for
x ∈ X and s, t ∈ I, H(x, s, 0) = F (x, s), H(x, s, 1) = F ′(x, s), H(x, 0, t) = F0(x) =
F ′

0(x), and H(x, 1, t) = F1(x) = F ′
1(x). As in Proposition 4.4, let Y be the CW

complex whose underlying space is X×I and whose CW structure is obtained from
the product CW structure of X×I by subdividing X×{1} according to X ′. Define
Ē : Y × I → Y by Ē((x, t), s) = (H(x, s, t), t) for x ∈ X and s, t ∈ I. Note that Ē
is cellular on the subcomplex A := (X × {0})× I ∪ (X ′ × {1})× I ∪ Y × {0, 1}
of Y × I and so by the Cellular Approximation Theorem, Ē is homotopic rel A to
a cellular homotopy E : Y × I → Y . There are (strictly) commutative diagrams:

(X × {0})× I
F //

i×id

��

X × {0}

i

��

(X ′ × {1})× I
E //

j×id

��

X ′ × {1}

j

��

Y × I
E // Y Y × I

E // Y

where, with a slight abuse of notation, F : (X×{0})×I → X×{0} is the map given
by F ((x, 0), t) = (F (x, t), 0) and F ′ : (X ′ × {1})× I → X ′ × {1} is the map given
by F ′((x, 1), t) = (F ′(x, t), 1); the vertical maps are inclusions of subcomplexes.
Note that Ek = Fk × id = F ′

k × id for k = 0, 1 and so Fix(Ek) = Fix(Fk) × I for
k = 0, 1. Define paths τ̂0 and τ̂1 in X × {0} and paths τ̂ ′0 and τ̂ ′1 in X ′ × {1} by
τ̂0 = (τ, 0), τ̂1 = (τω, 0), τ̂ ′0 = (τ, 1), and τ̂ ′1 = (τω′, 1) where ω(t) = F (v, t) and
ω′(t) = F ′(v, t). As in the discussion preceding Proposition 4.4, for k = 0, 1 let
F̂k : (Y,X × {0}) → (Y,X × {0}) and F̂ ′

k : (Y,X ′ × {1}) → (Y,X ′ × {1}) denote
Fk × id, regarded as maps of pairs. Let G := π1(Y, (v, 0)), G′ := π1(Y, (v, 1)),
φ : G → G the homomorphism induced by E and τ̂0, and φ′ : G′ → G′ the
homomorphism induced by E and τ̂ ′0. By Theorem 2.6,

R(E, τ̂0)− i†R(F, τ) = p0(E(F̂0, τ̂0))− p1(E(F̂1, τ̂1)) ∈ HH1(ZG, (ZG)φ;Gφ(∂E))

R(E, τ̂ ′0)− j†R(F ′, τ) = p0(E(F̂ ′
0, τ̂

′
0))− p1(E(F̂ ′

1, τ̂
′
1)) ∈ HH1(ZG′, (ZG′)φ

′
;G′

φ′(∂E))

By Proposition 4.4, the right sides of these equalities vanish and so R(E, τ̂0) =
i†R(F, τ) and R(E, τ̂ ′0) = j†R(F ′, τ). Let σ : I → Y be the path σ(t) = (v, t). Then
σ induces an isomorphism σ# : G→ G′ such that φ′σ# = σ#φ which in turn induces
an isomorphism σ∗ : HH1(ZG, (ZG)φ;Gφ(∂E)) → HH1(ZG′, (ZG′)φ

′
;G′

φ′(∂E))
(see §1). Furthermore, σ∗R(E, τ̂0) = R(E, τ̂ ′0) and hence σ∗i†R(F, τ) = j†R(F ′, τ).
Now σ∗i† = j† and j† is an isomorphism since Gφ(∂F ) = Gφ(∂F ′) = Gφ(E) and so
it follows that R(F, τ) = R(F ′, τ). �

References

[Br] R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman, Chicago, 1971.



OBSTRUCTIONS TO HOMOTOPY INVARIANCE 19

[C] M. M. Cohen, A Course in Simple-Homotopy Theory, Springer Verlag, New York, 1973.

[Ge] R. Geoghegan, Nielsen Fixed Point Theory, Handbook of Geometric Topology, R. Daver-

man and R. Sher eds., Elsevier Publishers, to appear.
[GN1] R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hoch-

schild homology traces, Amer. J. Math. 116 (1994), 397-446.

[GN2] R. Geoghegan and A. Nicas, A Hochschild homology Euler characteristic for circle actions,
K-Theory 18 (1999), 99-135.

[GN3] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology 33 (1994),

683-719.
[I] K. Igusa, What happens to Hatcher and Wagoner’s formula for π0C(M) when the first

Postnikov invariant is nontrivial?, Lecture notes in Math. vol. 1046, Springer Verlag, New

York, 1984, pp. 104-172.
[Ki] T. Kiang, Theory of fixed point classes, Springer Verlag, New York, 1987.

Department of Mathematics, SUNY Binghamton, Binghamton, NY 13902–6000, USA

E-mail address: ross@math.binghamton.edu

Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

E-mail address: nicas@mcmaster.ca

Department of Mathematics, SUNY Binghamton, Binghamton, NY 13902–6000, USA

E-mail address: dirk@math.binghamton.edu


