
Chapter 1

Pattern formation, stripes, spots
and blotches in nature

In 1952 Alan Turing (yes that Turing), wrote a seminal paper entitled The chemical basis for mor-
phogenesis. The idea was to explain how patterns such as stripes, spots and spirals can develop spon-
taneously from homogeneous states. The basic idea is that two chemicals/populations/organisms
are originally uniformly mixed; but under some slight change in conditions the two species separate
out. For example milk is basically a suspension composed essentially uniformly of proteins and fat;
the protein supplies the white colour. Under the action of either a change in Ph, or through excess
heating, the protein molecules suddenly form bunches separating from the (translucent) rest of the
mixture, which gives the nasty (curdled custard) or nice (cheese) formation of blobs of solid curdle!

Turing’s idea was that a number of processes such as the formation of patterns on animal
skins/furs form due to reaction diffusion separation processes at the cellular level, usually when the
animal is in its embryonic phase. He called the chemical which produces the pattern a ”morphogen”
, this is not a specific chemical it is just an imagined chemical which dictates say skin colour. This
is to say that the morphogen is simply the agent of change. In our milk example the morphogen
would be the protein and the rest of the milk a fellow reactant. As we shall see this theory has in
some cases been completely validated, the relevant morphogen has been found experimentally. In
some cases the morphogen is not known but the theory can seemly naturally predicted the range
of patterns observed in nature so well that there is strong circumstantial evidence of its validity.

1.1 Linear patterns (Fourier Series)

Before jumping into the theory we first look at the mathematics behind the patterns. As we have
seen in the first terms notes partial differential equations of the form

∂u

∂t
= D1∇2u+B1u+B2v, (1.1)

∂v

∂t
= D1∇2v +B3u+B4v, (1.2)
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(a) (b)

(c) (d)

Figure 1.1: Various ”patterns” formed from restricted Fourier series where u > u0 is white, else
dark. (a) A checkerboard pattern n = 10 , m = 10 u0 = 0. (b) n = 10, m = 10 but with u0 = 0.5
as the cut-off, spots!. (c) n = 1, m = 10, u0 = 0, stripes . (d) n = 1, m = 10, u0 = 0.5 (fins?)
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i.e. linear equations, have solutions (say for the morphogen u) in the form

u = Aeik·x+λt. (1.3)

So

λ

(
u
v

)
=

(
−k · k +B1 B2

B3 −k · k +B4

)(
u
v

)
= A1

(
u
v

)
. (1.4)

The fundamental theorem of linear algebra states we can only have non-zero (u, v) if det(A1−λI) =
0, which we solve to obtain λ as a function of k (the so-called dispersion relation). For example
we might have considered a 2D Cartesian domain with coordinates (x1, x2) and domain lengths L1

and L2 and null boundary conditions u(0, x2) = u(L1, x2) = u(x1, 0) = u(x1, L2) = 0 and similar
for v, so that we would require

k1L1 = nπ, k2L2 = mπ, (1.5)

so only the part of the solution u = Aeik·x+λt which can satisfy the B.C.’s is

u = Ace
λt sin

(
nπ

L1
x1

)
sin

(
mπ

L2
x2

)
. (1.6)

This allows for a countable infinity of possible solutions based on choices n and m. A general
solution to this system for the morphogen u would then take the form

u(x, t) =

∞∑
n=0

∞∑
m=0

Anmeλ(n,m)t sin

(
nπ

L1
x1

)
sin

(
mπ

L2
x2

)
, (1.7)

where we recognise λ would now be a function of n and m. The initial condition u(x1, x2, 0) = u0
can be used to define the coefficients Aij through

Anm =

∫ L1

0

∫ L2

0

u(x, 0) sin

(
nπ

L1
x1

)
sin

(
mπ

L2
x2

)
dx1dx2. (1.8)

We also know that if λ(n,m) < 0 the mode (n,m) will decay to zero exponentially in time. So
pretty quickly for some t > 0 only terms for which λ(n,m) ≥ 0 will remain visible. Lets say for
argument sake that only the n = 10 and m = 10 modes have λ(n,m) ≥ 0, then at some time t the
solution is essentially

u(x, t) = A1010eλ(10,10)t sin

(
10π

L1
x1

)
sin

(
10π

L2
x2

)
. (1.9)

Lets say further that if u > 0 the morphogen triggers some cell to grow some cell which radiates
white (if u < 0 the cell remains dark). The pattern produced by this function is a checkerboard
pattern, as can bee seen in Figure 1.1(a). If we are a little more demanding and require u > 0.5
then this becomes a regular spotted pattern Figure 1.1(b). If say n = 1, m = 10 we get stripes for
u > 0 Figure 1.1(c) and if u > 0.5 these stripes become restricted “fin” type patterns.

In general a Fourier series can produce any reasonable scalar function f(x1, x2) but these spotted
and striped patterns seem so common in nature. Turing asked why? As we shall see it is typical
of reaction-diffusion equations that only a small number of nodes, (n,m), values are unstable and
grow.
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1.1.1 Non linearity

Of course if λ(n,m) > 0 then in theory u can grow without bound. However, most realistic
models are non-linear and permit spatially varying equilibria with bounded values, as we shall
see this includes spotted and striped type patterns. Of course we can always linearise non-linear
systems and look for which modes might grow, this is the essence of Turing’s analysis which tells us
something about the set of patterns which might form in reaction-diffusion systems. We expect a
restricted space of unstable modes (n,m) which can form spotted/striped patterns; the non-linear
effects then tend to take over and stabilise the growth of the pattern until it relaxes. The question
of how much the pattern changes is one which we will come back to throughout the term.

1.1.2 Domain shape

Of course the above discussion we assumed we were in a nice square domain. I have yet to come
across a square animal! In pattern formation the shape of the domain can play a vital role in the
allowed patterns the system forms. For example, one issue we cover this term is pattern formation
in a spherical domain. We shall see in Chapter 3 that the solutions to a system like (1.1), when
our domain is circular (coordinate system (r, θ)), take the from

u(r, θ, t) =

∞∑
n=1

∑
knm

AmnJ(n, knmr) cos(nθ) +BmnJ(n, knmr) sin(nθ). (1.10)

Where J(n, knmr) is the nth Bessel function. Bessel functions vary sinusoidally, but unlike sine and
cosine the amplitude of variation decays away with r. We see in Figure 1.2(c) this tends to produce
patterns which form on rings surrounding the centre of the domain (the Bessel function amplitudes
decide where). With stripes appearing as circles and spots lying on radii around a fixed central
spot. In (d) we show an example of a pattern formed on an annular domain. It is an almost periodic
set of “stripes” we will see later that this pattern can be used to explain branching type behaviour;
in fact reaction diffusion mechanisms have been used to explain the splitting of branches we see in
trees.
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(a) (b)

(c) (d)

Figure 1.2: Various ”patterns” formed from restricted Bessel series on circular domains where
u > u0 is white, else dark. (a) n = 0, k01 = 4 a dart board pattern from a single Bessel function.
(b) A circular spotted pattern. n = 0, 4 ,k01 = 2, k41 = 6. (c) a more random pattern ! (d), this is
actually in an Annular domain, n = 6, k61 = 1 an almost periodic circumferential annular pattern.



6 CHAPTER 1. PATTERN FORMATION, STRIPES, SPOTS AND BLOTCHES IN NATURE



Chapter 2

The Turing instability. (Ch 2-2.4
Murray)

2.1 The linearised system

We consider the following general reaction-diffusion system,

∂u

∂t
= D1∇2u+ F (u, v), (2.1)

∂v

∂t
= D2∇2v +G(u, v). (2.2)

and make the scalings x̂ = x/
√
γD1, t̂ = t/γ and D = D2/D1, so that upon substituting and

dropping the hat notation we have.

∂u

∂t
= ∇2u+ γF (u, v), (2.3)

∂v

∂t
= D∇2v + γG(u, v). (2.4)

The parameter D > 0, the non-dimensionalised diffusion represents the ratio of diffusion rates of u
and v, e.g. if D < 1 and u diffuses faster than v and vice-versa. The parameter γ > 0 represents the
relative strength of the “reaction” terms by comparison to the diffusion. The term “reaction” is not
always appropriate as F and G can be the interaction of the two densities u and v, which could be
populations (predator prey) biochemical reactions or neural signal interaction. It can also represent
independent growth/decay and or self competition terms. But for simplicity in what follows we call
it the reaction term.

We assume so-called “no flux” boundary conditions; if our domain is D with n̂ the normal to
the boundary ∂D, then ∇u · n̂ = 0 and ∇v · n̂ = 0. This implies nothing can enter or leave the
system and any pattern formation is due to internal changes in the system. At equilibrium u = u0
and v = v0 on ∂D.

The Turing analysis is basically a slight variant of a linear stability analysis, the only, major
difference is we actually want instability, we need some modes to grow, but as we shall discuss we
only want this to happen in a restricted sense. We proceed with the usual steps

7
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Find the equilibria

We are interested in the stability of homogeneous equlibria. As in last terms notes equilibrium
implies at temporal derivatives vanish, in the equations at hand that means

∂u

∂t
=
∂v

∂t
= 0. (2.5)

Homogenous implies that u and v have no variation in x, i.e. ∂nu
∂xn

i
= 0 for all k (similar for v). Such

equlibria occur when

F (u0, v0) = 0, G(u0, v0) = 0. (2.6)

Linearise the system

The linearisation of the derivative terms should be obvious by now, the reaction functions are
expanded using a Taylor series

F (u, v) = ε

(
u1
∂F

∂u

∣∣∣∣
u=u0,v=v0

+ v1
∂F

∂v

∣∣∣∣
u=u0,v=v0

)
+O(ε2), (2.7)

G(u, v) = ε

(
u1
∂G

∂u

∣∣∣∣
u=u0,v=v0

+ v1
∂G

∂v

∣∣∣∣
u=u0,v=v0

)
+O(ε2), (2.8)

where the O(1) contribution has vanished because we expand about a homogeneous equilibrium.
For notational brevity in what follows we denote partial derivatives evaluated at equilibrium with
a subscript e.g

∂F

∂u

∣∣∣∣
u=u0,v=v0

= Fu,
∂G

∂v

∣∣∣∣
u=u0,v=v0

= Gv. (2.9)

so that

F (u, v) = ε (Fuu1 + Fvv1) +O(ε2), (2.10)

G(u, v) = ε (Guu1 +Gvv1) +O(ε2). (2.11)

Solve the linearised system

On the assumption of a cuboidal domain D = [0, L1]× [0, L2]× . . . [0, Ln] we can assume solutions
in the form eik·x+λt, and the linearised system can be written as

λ

(
u1
v1

)
=

(
−k · k + γFu γFv

γGu −Dk · k + γGv

)(
u1
v1

)
(2.12)

or λu = A1u. For notational brevity in what follows we write ks = k · k = k21 + k22 + . . . k2n. We
call ks the pattern number.

Solving the eigen-equation det(A1 − λI) we have as usual

λ =
1

2

[
Tr(A1)±

√
Tr(A1)2 − 4 det(A1)

]
. (2.13)
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Where

Tr(A1) = γ(Fu +Gv)− k2(D + 1),

det(A1) = Dk2s − γks(Gv +DFu) + γ2(FuGv −GuFv). (2.14)

We have instability if Tr(A1) > 0 or detA1 < 0.

2.1.1 Turing instability analysis

This final part of the procedure differs for the Turing analysis. First we need to worry about
homogeneous growth of the system....

Fluxless boundaries and permissible wavemodes

Since we consider a Cartesian domain the boundary conditions take the explicit form

∂u

∂xi
(x1, . . . 0, . . . xn) =

∂u

∂xi
(x1, . . . L, . . . xn) = 0, (2.15)

for all i. The conditions are the same for v. We use the notation k̂ · xi = k1x1 + . . . ki0 + . . . knxn
(the dot product with the ith component of the sum removed). With this the ith boundary condition
will be

∂u1
∂x

= ReAuikie
ik̂·xi+λt = ReAuikie

ik̂·xi+kiL+λt = 0. (2.16)

This can only be satisfied if the solutions take the form

u1(x) = Aueλt cos(k1x1) cos(k2x2) . . . cos(knxn), (2.17)

as the conditions (2.16) can only be satisfied for the cos solution (which differentiates to sin). This
fixes all ki to take on values

k = (n1π/L1, n2π/L2, . . . nnπ/Ln) , (2.18)

thus

ks = π2

(
n21
L2
1

+ . . .
n2n
L2
n

)
. (2.19)

The same is true for v1. By contrast if we had chosen Dirichlet boundary conditions

u(x1, . . . 0, . . . xn) = u(x1, . . . L, . . . xn) = 0,∀i. (2.20)

Then the solution would be

u1(x) = Aueλt sin(k1x1) sin(k2x2) . . . sin(knxn). (2.21)

with the same conditions on k (2.18). It would seem this is little different from the fluxless boundary
condition case, since cos and sin are just the same function shifted, so the potential patterns are
basically the same. However, there is one critical difference, the existence of a zero pattern number
ks = 0.
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The zero pattern mode

The zero mode k = 0 is a homogeneous perturbation to the system then for the fixed value
boundary conditions (2.21) the only possibility is Au = 0, the trivial solution (no change to the
system). However with fluxless boundary conditions k = 0 will satisfy (2.16) for and Au 6= 0. So
with fluxless boundary conditions u1 can be homogeneous (∇u = 0), however, we want to restrict
the growth of this mode otherwise potential patterns would be drowned out by the
uniform growth. Ultimately this boils down to saying the ks = 0 uniform mode is asymptotically
stable i.e. it will decay. For ks = 0

Tr(A1) = γ(Fu +Gv), (2.22)

det(A1) = γ2(FuGv −GuFv). (2.23)

So we need both
Fu +Gv < 0 and FuGv > GuFv. (2.24)

2.1.2 Growing inhomogeneous modes

Next we seek for inhomogeneous pattern forming modes k = (n1π/L1, n2π/L2, . . . nnπ/Ln) which
are unstable, so they don’t vanish and instead grow (at least one λ is positive). Since γ(Fu+Gv) < 0
the trace γ(Fu +Gv)−k2(D+ 1) is less than zero. Thus we can only have positive λ if det(A1) < 0
so that one of the roots must be positive, that is to say

Dk2s − γks(Gv +DFu) + γ2(FuGv −GuFv) < 0. (2.25)

Since Dk2s > 0 and (FuGv −GuFv) > 0 (so the zeroth order mode vanishes), this can only occur if

Gv +DFu > 0. (2.26)

This condition is necessary but not sufficient. To guarantee that det(A1) < 0 for some (ks 6= 0).
We would also need real solutions to det(A1) = 0, so the discriminant of solutions to (2.14) = 0 be
positive, i.e.

(Gv +DFu)2 − 4D(FuGv −GuFv) > 0. (2.27)

2.1.3 Finite pattern number range

We have shown the existence of growing modes corresponds to the quadratic Dk2s−γks(Gv+DFu)+
γ2(FuGv − GuFv) taking on negative values. Since this quadratic had a positve k2s coefficient it
can only dip below zero for a finite domain before it goes to ∞ as ks → ±∞. But we have also
demanded that it is positve when ks = 0, FuGv −GuFv > 0. So there must be some positive finite
domain ks ∈ [kmins , kmaxs ] for which the modes ks grow. As I mentioned in the previous chapter
this restricts the permissible patterns, explaining why we often see simple stripe and spot patterns.

2.2 The Turing conditions

The summary of the previous analysis is as follows. If all of the following inequalities hold

Fu +Gv < 0, FuGv −GuFv > 0, (2.28)

Gv +DFu > 0, (Gv +DFu)2 − 4D(FuGv −GuFv) > 0,
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Then some inhomogeneous wavemodes will grow in time allowing patterns to develop, whilst ho-
mogenous growth is restricted. These four conditions are the so-called Turing conditions.

2.2.1 Additional consequences: Fu and Gv must have opposing signs

If all of the following inequalities hold

Fu +Gv < 0, FuGv −GuFv > 0, (2.29)

Gv +DFu > 0, (Gv +DFu)2 − 4D(FuGv −GuFv) > 0,

then the first and third condition imply that Fu and Gv must be of opposing sign. To see this we
note that if they had the same sign then Fu +Gv < 0 tells us they would have to be negative, but
then the third condition would say

D|Fu|+ |Gv| < 0⇒ D < −|Gv|
|Fu|

. (2.30)

But physically we need D > 0 (negative diffusion does not make sense) so this cannot be permissible.
One can see that this condition (of opposing Fu and Gv) make physical sense. The “reaction”F

promotes u and G promotes v. Consider for example the case Fu > 0 and Gv < 0. To separate we
want it to be the case that where a small increase in u leads to an acceleration in the production
of u to coincide with small increases in v leading to a drop in v so that (in this case) u can become
dominant over v. Decreases in u and v should lead to v being favoured. If both Fu and Gv are the
same sign they will both tend to grow and decay simultaneously, this will not promote separation
and hence pattern formation.

2.2.2 Additional consequences: the Turing instability is diffusion led.

If further we say Fu > 0 so that Gv < 0 and |Gv| > |Fu| (so Fu +Gv < 0) then

D|Fu| − |Gv| > 0⇒ D >
|Gv|
|Fu|

. (2.31)

so D > 1. A similar argument shows that if Gv > 0 then D < 1. Note that these inequities are
strict, i.e. D cannot equal 1. This is why the Turing instability is often referred to as a diffusion-led
instability, as it requires the diffusion of the two species be different.

2.3 A summary of the Turing instability result in two di-
mensions

Consider a system

∂u

∂t
= ∇2u+ γF (u, v), (2.32)

∂v

∂t
= D∇2v + γG(u, v). (2.33)
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on a domain [0, L1]× [0, L2] with coordinate system (x1, x2), subject to no-flux boundary conditions

∂u

∂x1
(0, x2) =

∂u

∂x1
(L1, x2) =

∂u

∂x2
(x1, 0) =

∂u

∂x2
(x1, L2) = 0, (2.34)

∂v

∂x1
(0, x2) =

∂v

∂x1
(L1, x2) =

∂v

∂x2
(x1, 0) =

∂v

∂x2
(x1, L2) = 0, (2.35)

and which has a homogenous equilibrium

F (u0, v0) = 0, G(u0, v0) = 0. (2.36)

If the system and its equilibrium satisfies the following set of inequalities.

Fu +Gv < 0, FuGv −GuFv > 0, (2.37)

Gv +DFu > 0, (Gv +DFu)2 − 4D(FuGv −GuFv) > 0,

then inhomogeneous patterns can form. The inhomogeneities of the morphogen, u1(x, t), solutions
to the linearised version of 2.32, will take the form.

u1(x) =

∞∑
i=0

∞∑
j=0

Bije
λ(i,j)t cos

(
iπ

L1
x1

)
cos

(
jπ

L2
x2

)
. (2.38)

The conditions
Fu +Gv < 0, FuGv −GuFv > 0. (2.39)

Ensure the homogeneous i = j = 0 part of the solution decays exponentially. The conditions

Gv +DFu > 0, (Gv +DFu)2 − 4D(FuGv −GuFv) > 0 (2.40)

ensure that we can solve

Dk2s − γks(Gv +DFu) + γ2(FuGv −GuFv) = 0, ks = π2

(
i2

L2
1

+
j2

L2
2

)
(2.41)

in order the find a real valued domain ks ∈ [kmins , kmaxs ] which defines the set of possible patterns
which will grow in time, that is λ(i, j) > 0. This pattern is assumed to be observed when the
morphogen rises above some concentration value a (u1 > a) to stimulate some chemical/physical
process.

2.4 What this result can tell us

The critical point to make regarding the turning analysis is that it is a linear analysis. Most of the
interesting systems we shall consider (and indeed not consider) are non-linear; nature is cruel like
that! However this linear analysis tells us something about the permissible pattern (the unstable
modes) which the system can take. In actual fact as relayed in section 2.4 of Murray, this constraint
tends to be quite accurate. That is to say when the full non-linear system is solved numerically
it tends to be the case that the pattern belongs to the permissible space indicted by the Turing
analysis.
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Of course the Turing analysis only presents us with a range of possible patterns, there can often
be many. We might be able to impose some conditions on the linearised system an choose one. The
question would then be, does that pattern match the full non-linear one? Experience tells us it is
often quite accurate if the permissible pattern numbers ks are small (large wavelengths) if the ks
are large the non linear system can differ significantly. We should be careful with this statement.
If ks is small this does not mean there cannot be a large number of stripes/spots. Since

ki =
πn

Li
(2.42)

If L is large, n can be large even if k is not, e.g. larger domains permit more spots/stripes
Of course Turing’s idea was that his analysis captures the system’s behaviour just as it develops

the pattern. In this case some parameter of the system is increased pushing the system just past
the point of stability. We can choose the ε in the linearisation to the difference this parameter has
from the loss of equilibrium; as was the case for our spiral wave weakly non-linear analysis. In this
case the linear approximation will likely be a much more reliable indicator of the system’s behavior.
Still further performing a weakly non-linear analysis which would include the turning analysis (as
many authors in the field have done) can lead to highly accurate predictions.

As a final note we remark Turing patterns have been discovered experimentally in a number of
Chemotaxic systems, some of which we shall cover in due course.

2.5 Scale and geometry effects

The parameters of the system dictate the permissible patten number domain ks ∈ [kmins , kmaxs ]. Of
course the size (the Li) of the domain dictates the relationship between a given ki and the relevant
mode ni, i.e.

ki = niπ/Li (2.43)

For a fixed ni the value of ki decreases as the domain size Li increases, thus the number of modes
in between ks ∈ [kmins , kmaxs ] will increase as the length of the domain increases. The effect of
the parameters D and γ is a little more complex. The expression for the bounds of the domain
[kmins , kmaxs ] is

kmin/maxs =
γ

2D

[
(DFu +Gv)±

√
(DFu +Gv)2 − 4D(FuGv − FvGu)

]
. (2.44)

So the size of the domain depends linearly on γ and is unbounded with respect to that parameter.
If we fix γ and send D → ∞ then the permissible bounds of ks will tend to ks ∈ (0, γFu) so the
domain remains bounded with respect to diffusion.

2.5.1 The peak unstable mode

Solving (2.13) gives us λ(ks) (remember we must take the positve root). A representative example
of both det(A1)(ks) and λ(ks) is shown Figure (2.1). When det(A1) is negative λ(ks) > 0 and both
curves cross zero at the same ks pair (this gives the range [kmins , kmaxs ]). We might like to know
the value of ks at which λ(ks) is maximam. This will then be the mode which grows the fastest (at
least when the linear approixmation is good). To find this we differentiate λ(ks) with respect to ks
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Figure 2.1: Representative plots of λ (downward curving) and det(A1) (upward curving)

and solve for dλ
dks

= 0. Since λ(ks) takes the form

1

2

[
γ(Fu +Gv)− ks(D + 1) +

{
(γ(Fu +Gv)− ks(D + 1))

2 − 4 det(A1)(ks)
}1/2

]
, (2.45)

det(A1) = Dk2s − γks(DFu +Gv) + γ2(FuGv − FvGu). (2.46)

this is not a trivial task! With no little effort solving dλ
dks

= 0 gives

ksm =
γ

D − 1

[
(D + 1)

(
−FvGu
D

)1/2

− Fu +Gv

]
. (2.47)

[NEM , I do not expect you to derive this result,its quite (very) tedious to obtain. If, however,
you feel like stretching your algebra muscles.... in deriving this result you should show that the
equation ∂λ

∂ks
= 0 can be written as the following quadratic

D(D − 1)2k2s + ks2D(D − 1)γ(Fu −Gv) + γ2
(
D
(
(D + 2)FvGu + (Fu −Gv)2

)
+ FvGu

)
.

]

2.5.2 Example problems

Problems 1-7 of the Epiphany extra problem set 1 are all based on the Turing analysis, they are
part A and part B style.

2.6 An example application of the Turing conditions

Consider the case
F = a+ u2v − u, G = b− u2v (2.48)
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These reaction terms are those we used in looking at switching oscillatory behaviour in last terms
notes, the so-called enzyme -reaction system.

Find the equilibrium

The equilibrium is

u0 = a+ b, v0 =
b

(a+ b)2
. (2.49)

so a+ b ≥ 0 and b > 0 for physical solutions. so

Find the partial derivative of the reaction terms

The beauty of the Turing analysis is that we have already done this in the general case (see equation
(2.12)). We simply need to find Fu/v and Gu/v.

Fu = 2u0v0 − 1 =
b− a
a+ b

, Fv = u20 = (a+ b)2, Gu = −2u0v0 =
−2b

a+ b
, Gv = −u20 = −(a+ b)2.

(2.50)

Solve the linearised system

But we have already done this also, again see see equation (2.12).

Apply the Turing conditions

So Fv > 0 and Gu, Gv < 0. As Fu and Gv must be of opposing sign Fu > 0 so b > a. Further
D > 1 as Gv < 0. To go further it is easier to parameterise by a and u0. We find

v0 =
u0 − a
u20

, b = u0 − a, (2.51)

and

Fu = 2u0v0 − 1 = 1− 2a

u0
, Fv = u20, (2.52)

Gu = −2u0v0 = −2(u0 − a)

u0
, Gv = −u20. (2.53)

Condition 1

So the first condition gives

1− 2a

u0
− u20 < 0⇒ a >

u0(1− u20)

2
, (2.54)

and as b = u0 − a we have

b <
u0(1 + u20)

2
. (2.55)
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Condition 2

The second condition tells us
FuGv − FvGu > 0⇒ u20 > 0. (2.56)

which is trivially satisfied.

Condition 3

The third condition gives, by a similar argument to the first

a <
u0
2

(
1− u20

D

)
and b >

u0
2

(
1 +

u20
D

)
. (2.57)

Condition 4

Finally the last condition (always the hardest)

(DFu +Gv)
2 − 4D(FuGv − FvGu) > 0, (2.58)

⇒
[
u0(D − u20)− 2Da

]2 − 4Du40 > 0, (2.59)

⇒ 4a2D2 − 4aDu0(D − u20) +
[
u20(D − u20)2 − 4u40D

]
> 0. (2.60)

The last expression is a quadratic in a solving for zero gives the inequalities

a <
u0
2

(
1− 2u0√

D
− u20
D

)
, or a >

u0
2

(
1 +

2u0√
D
− u20
D

)
. (2.61)

Note that this gives two disjoint conditions on a which allow condition 4 to be satisfied.

2.6.1 Cross check the conditions

We have already seen condition 2 is redundant in this case, but actually it is possible to go further
and show that we only actually need two inequalities to hold.

As
u0
2

(
1− 2u0√

D
− u20
D

)
<
u0
2

(
1− u20

D

)
(2.62)

we see that (2.57), condition 3, is satisfied if

a <
u0
2

(
1− 2u0√

D
− u20
D

)
. (2.63)

So satisfying one of the condition 4 inequalities also satisfies condition 3 automatically. Also

u0
2

(
1 +

2u0√
D
− u20
D

)
>
u0
2

(
1− u20

)
, (2.64)

so satisfying the other condition 4 inequity

a >
u0
2

(
1 +

2u0√
D
− u20
D

)
. (2.65)
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Ensures (2.54), condition 1. But it is important to note we must check each condition 4 inequality
satisfies both conditions 1 and 3.

We also note that

u0
2

(
1 +

2u0√
D
− u20
D

)
>
u0
2

(
1− u20

D

)
>
u0
2

(
1− 2u0√

D
− u20
D

)
. (2.66)

So it is not possible to satisfy

a >
u0
2

(
1 +

2u0√
D
− u20
D

)
. (2.67)

and

a <
u0
2

(
1− u20

D

)
(2.68)

That is to say one of the possible cases for condition 4 holding would fail to also satisfy condition
3. We are left with only one possibly viable inequality to satisfy condition 4,

a <
u0
2

(
1− 2u0√

D
− u20
D

)
. (2.69)

which we know from above satisfied condition 3. We need to check it can satisfy condition 1.
Indeed we can see it is possible that

u0
2

(
1− u20

)
<
u0
2

(
1− 2u0√

D
− u20
D

)
. (2.70)

For example in the limit D → 1 this cannot be satisfied, but in the limit D →∞ it clearly can.

2.6.2 The final result

So if we find some steady state u0 > 0 and then for any a satisfying

a <
u0
2

(
1− 2u0√

D
− u20
D

)
, and a >

u0(1− u20)

2
. (2.71)

then there will be a set of modes which are Turing unstable. Note that satisfying the second
condition

a >
u0(1− u20)

2
. (2.72)

means b will be greater than zero (assuming u0 > 0). It must be stressed that both conditions are
not always satisfied. In particular seen as a function of u0 they must cross, this would depend on
D. Solutions to

u0
2

(
1− 2u0√

D
− u20
D

)
=
u0(1− u20)

2
, (2.73)

are

u0 = 0 and u0 =
2
√
D

D − 1
(2.74)
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The u0 = 0 root is a double root. Remembering D > 1 we see the second crossing tends to u0 as
D gets large thus squeezing out the permissible domain. The difference

d(u0) =
u0
2

(
1− 2u0√

D
− u20
D

)
− u0(1− u20)

2
. (2.75)

is a cubic in u0 which has a positive u30 term and a double root at u0 and a second positive definite

root. Thus the difference d(u0) is negative on u0 ∈
(

0, 2
√
D

−1+D

)
. So on u0 ∈ ( 2

√
D

−1+D ,∞) there exists

a set of values a which satisfy (2.71).

2.6.3 Controlling the modes of instability.

We can also consider a means by which we exert control on the patterns formed by this system.
The Turing conditions tell us that when

(DFu +Gv)
2 = 4D(FuGv − FvGu). (2.76)

i.e. det(A1) = 0, the system is on the border of allowing turning instabilities. This occurs when

ks = γ
DFu +Gv

2D
. (2.77)

So only one mode can potentially be unstable. One could for example demand this occur a n1 =
5, n2 = 5 mode in a 2-D system (creating a checkerboard pattern like in Figure 1.1(a)). In the
example we are looking at

ks = γ
D(b− a)− (a+ b)3

2D(a+ b)
= 25π2

(
1

L2
1

+
1

L2
2

)
. (2.78)

2.7 Relaxing the assumptions

The fundamental components of a Turing analysis are

1. The loss of stability of a homogeneously mixed system of biochemicals/populations/cells leding
tot he formation of inhomogeneous patterns.

2. From the point of view of the stability analysis the crucial assumptions were the subexpression
(asymptotic stability) of the zero mode and the instability of some inhomogeneous ks 6= 0
modes which formed the pattern.

3. The critical result of these assumptions was that a finite range of ks values (specific patterns),
this explains why we often see spots and stripes, patterns which would be the consequence of
only one or two modes being promoted.

A number of the aspects of the analysis are not fundamental and can be relaxed:

1. The Boundary conditions do not necessarily need to be no-flux, which forbids anything leaving
or entering the system Similarly periodic boundary conditions, which are more realistic for
animal skin patterns, can give a similar result and similar patterns. However, as you will see
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in Question 2 of Epiphany extra problem set 1, the pattern formation paradigm is not the
same for Dirichlet boundary conditions, this is because the zero mode is not permissible so
does not need to be suppressed, this can mean the set of growing modes is not necessarily
finite.

2. The reaction-diffusion system is the sum of linear Diffusion terms representing spreading and
reaction terms. Pattern formation can and does occur for non-linear diffusion, but often the
system an analysis is more complex, an example is found in Question 5 of Epiphany extra
problems, which leads to slightly modified Turing conditions. In addition the reaction terms
can have dependence on derivatives of the functions u and v not just their value. An example
of this type will be covered in the first problem class of the term.

3. The domain will not generally be Cartesian, infact, whilst it is an excellent mathematical
starting point, it is often the case the domain should have more complex geometry (think
animal appendages). As we shall see in the next chapter different domains do not typically
affect the Turing conditions themselves, but change the mathematical form of the patterns
formed.

4. We assumed the instability occurred for a homogeneous equilibrium. In fact there is alot of
interest in dynamic pattern formation when a growing homogeneous state suddenly separates
out. This is true of many bacterial models and we covers some examples in chapter 5 this
term. This leads to a much more complex set of linear equations and can lead to phenomena
such a transient pattern formation and mode shifting.
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Chapter 3

Modeling Hair Patterns in a
Whorl in
Acetabularia :Murray,Chapter 3.4

The green marine algae Acetabularia is a unicellular organism which is able to regenerate (see
Figure 3.1(a)). It has been the subject of numerous lab experiments designed to quantitatively
asses this growth process (see Murray for more details and references). Of particular interest in
this chapter is the fact that the growth of the whorl hairs, which eventually lead to the formation
of the cap (see Figure 3.1(b)), can be shown to be mediated by the presence of calcium in the
surrounding fluid. The stalk is hollow and has a annular cross-section (Figure 3.2). The Calcium
enters through the outer wall, the inner wall is impermeable. By amputating the stalk and then
charting its re-growth in the presence of various levels of calcium the following experimental fidings
were established:

1. The number of hairs produced is proportional to the radius of the (hollow) stalk.

2. The growth of the tip is seen to only occur for a finite range of calculim concentrations in
the surrounding fluid, i.e. growth is halted if the levels are too high or too low (see Figure
3.4(a)).

So we have the spontaneous formation of a pattern (the hair growth pattern evenly spaces around
the axis of the stalk). Further it only occurs in limited scenarios in the presence of some tune-able
parameter (calcium concentration). This suggests we could model it the Turning mechanism, with
Calcium playing the role of v and u the morphogen triggering hair growth. This proposed model
was originally developed in 1985 at a meeting on the subject, and yields excellent results in that
it can explain the two key phenomena listed above. We assume the interaction equations take the
following form

∂u

∂t
= ∇2u+ γ(a− u+ u2v), (3.1)

∂v

∂t
= D∇2v + γ(b− u2v).

21
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(a) (b)

Figure 3.1: Acetabularia figures. Panel (a) a picture of Acetabularia. Panel (b) a schematic
depicting the groth process.

(a)

Figure 3.2: Model set-up for the Acetabularia problem.
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This is the enzyme reaction case we considered in Section 2.6, but here we are not considering
a Cartesian coordinate system. We consider an annular domain with a radial coordinate system
(r, θ) for which the inner and ourter radii are Ri and Ro, respectively. The inner boundary’s
impermeability is modelled by applying fluxless conditions there, i.e.

∂u

∂r
|r=Ri=

∂v

∂r
|r=Ri= 0. (3.2)

Realistically we should allow flux of the calcium v on the outer boundary, but the annular width is
small compared to the radius of cross-section and we model the Calcium source through the term
b and use zero flux conditions on the outer boundary as well i.e.

∂u

∂r
|r=Ro

=
∂v

∂r
|r=Ro

= 0. (3.3)

This will (with a little extra work) alllow us to utilise the Turing analysis developed in the previous
chapter. We non-dimensionalise the quantities as

r̂ =
r

Ri
, δ =

Ro
Ri
, R2 = R2

i γ. (3.4)

Under these scalings the inner radius is 1 and the outer radius δ. Upon dropping hats and using
the equations are

∂u

∂t
= ∇2u+R2(a− u+ u2v), (3.5)

∂v

∂t
= D∇2v +R2(b− u2v). (3.6)

With Ri = 1 and Ro = δ. The point of this scaling is that thee Turing conditions will explicitly
include the (reaction strength scaled) radius pf the stalk and allow us to compare the development
of hair growth directly to the annular radius of the stalk. We are now ready to perform our Turing
analysis. We have not specified what the parameter a is representing, in this analysis we will leave
it as a free parameter representing some as yet unknown physical process which helps produce the
morphogen (in addition to calcium). More modern reaction diffusion modelling of this process (as
recent as 2017) have far more sophisticated models which account for more of the known physiology,
but they build upon the model here.

We now perform parts of the Turing analysis to point out where the effect of using a non-
Euclidean domain (the annulus here) manifest.

Find the homogeneous equilibria

The homogeneous equilibrium for this system is

u0 = a+ b, v0 =
b

(a+ b)2
. (3.7)
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Linearise the system

We assume linearised solutions in the form u ≈ u0 + εu1 and v ≈ v0 + εv1. To order ε we have

∂u1
∂t

= ∇2u1 +R2(Fuu1 + Fvv1), (3.8)

∂v1
∂t

= D∇2v1 +R2(Guu1 +Gvv1) (3.9)

with Fu = 2u0v0 − 1, Fv = u20, Gu = −2u0v0, Gv = −u20.

Solve the linearised system

Here is where the effect of changing the domain shape from a Cartesian system manifests. If we
assume the solutions are in the from ψ(x)eλt, then we can write this in the form

λ

(
u
v

)
= A1

(
u
v

)
, A1 =

(
−k2 +R2(2u0v0 − 1) R2u20

−R22u0v0 −Dk2 −R2u20

)
, (3.10)

if ψ satisfies the following eigenvalue problem,

∇2ψ + k2ψ = 0. (3.11)

The advantage of making this particular assumption on ψ is that if we equate ks = k2 then the
linear system will always take the same form, which is the same form as for the Cartesian Turing
analysis we performed in Chapter 2.

3.0.1 The eigen-equation and the homogeneous mode

Choosing corrections u1, v1 to take the form ψ(x)eλt, such that ψ solves the eigen-equation is the
general means by which the Turing analysis varies in non-Euclidean domains, it is not specific to
this annular case. It means the linear matrix A1 will always take the form

A1 =

(
−k2 + Fu Fv

Gu −Dk2 +Gv

)
. (3.12)

Then the change in th analysis takes two forms. First the pattern will not look the same. In a
Euclidean coordinate system [0, L1]× [0, L2], with coordinates (x1, x2) we would have to solve the
problem

∂2ψ

∂x21
+
∂2ψ

∂x22
+ k2ψ = 0, (3.13)

whose solutions are complex exponentials. In this annular coordinate system we must solve

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+ k2ψ = 0. (3.14)

This means the mathematical form of the patterns will no longer be Fourier series. We are about to
consider the annular case. In your assignment you will consider a 3D cylindrical domain. In your
problem class we will consider an elliptic domain. One of the past exam questions was on a tapered
cylindrical domain (a model for a tail!). In each case you will be given the form of the Laplacian,
your aim will be so solve it. The basic structure mechanism for doing so will always be the same.
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(a) (b)

Figure 3.3: Examples of the family of Bessel functions, (a) the First kind Jn(r), (b) the second
kind Yn(r).

1. Step 1: Assume a separble solution, i.e. if there are coodrinates x1, x2, . . . xn (in our annular
case (x1 = r, x2 = θ) for example), then assume ψ(x1, . . . xn) = f1(x1)f2(x2) . . . fn(xn).

2. Step 2. Sub this into the Laplician, you will get a form which, when divided by ψ will separate
out into individual O.D.E’s for each function fi. You must then solve these O.D.E.’s. That
will be different each time.

A second point to note is that the Turing analysis assumed the ks = k2 = 0 was homogeneous
(which it was when we had a Fourier series). Then ensuring this ks = 0 mode removed the possibility
of homogeneous growth, which would drown patterns. It must be assured that this is the case in
our more general domains in order to ensure the Turing conditions can be applied.

Finding ψ in the annular case

We should assume solutions ψ(r, θ) = R(r)Θ(θ) say, however, we know ψ must be periodic in θ so
we can write

ψ(r, θ) =

∞∑
n=0

an(r) sin(nθ) + bn(r) cos(nθ). (3.15)

One of the tasks in your problem sheet will be to show why this is. This effectvely assumes P (θ)
takes the form cos(nθ) or sin(nθ) and R(r) = an(r), bn(r). The radial solutions (e.g. an) must then
satisfy

d2an
dr2

+
1

r

dan
dr

+

(
k2 − n2

r2

)
an = 0. (3.16)

Thus we have reduced the the eigen-equation to a set of O.D.E’s. This is Bessel’s equation for
which there are two solutions, Bessel’s functions of the first Jn(kr) and second kind Yn(kr). The
Bessel function of the first kind can be written as

Jα(r) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(r
2

)2m+α

, Γ(x) = (x− 1)!. (3.17)
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In our case α = n is an integer, but it need not be. It’s best we don’t write the second one down
in general, the n = 0 case is

Y0(r) =
2

π

{
[ln(r/2) + γ]J0(r) +

∞∑
k=1

(−1)k+1Hk
(r2/4)k

(k!)2

}
, (3.18)

crucially ally Yn have the logarithm function which means they have an asymptote at r = 0.Plots of
these functions can be seen in Figure 3.3. The Jn are oscillatory with an amplitude which decays at
a polynomial rate. The functions Yn(r) have, as discussed, logarithmic behaviour when r is small
then, eventually they revert to decaying oscillatory behaviour. The crucial point here is that
these are oscillatory functions, hence we expect (circular) stripes and/or spots (when
n 6= 0 the θ behaviour oscillates). These functions are linearly independent (all linear O.D.E’s of
order n have n linearly independent solutions) so

an(r) = AJn(kr) +BYn(kr). (3.19)

Denoting d
dr =′, the boundary condition dan

dr |r=1= 0 tells us

A = −BY ′n(k)/J ′n(k). (3.20)

so

an(r) = B

(
−Y ′n(k)

Jn(kr)

J ′n(k)
+ Yn(kr)

)
. (3.21)

The r = δ condition requires

0 = B

(
−Y ′n(k)

J ′n(kδ)

J ′n(k)
+ Y ′n(kδ)

)
. (3.22)

So either the solution is trivial, B = 0, or k satisfies

Y ′n(k)J ′n(kδ)− J ′n(k)Y ′n(kδ) = 0. (3.23)

This equation, for a given n has an infimum of solutions kni , i ∈ 1, . . . n. Basically this is because
both Jn and Yn are oscillatory functions. This is what determines the permissible wave modes k.
As δ → 1 and the annulus becomes almost one-dimensional, such that the k which solve (3.23)
approach n, as one might expect. So there will be sets of wavemode pairs

(n, kin), k2 = (kin)2 (3.24)

so the ks which we have used in our previous Turing analysis is ks = k2 in (3.10). In general the
solutions to (3.10) is

u1(r, θ, t) = (3.25)
∞∑
n=0

∞∑
i=1

eλ(k
n
i )t [(C1inJn(kni r) + C2inYn(kni r)) cos(nθ) + (C3inJn(kni r) + C4inYn(kni r)) sin(nθ)] .

Where the Cjin, j = 1, 2, 3, 4 are constants. The function λ(ks) can be obtained in the usual fashion
by solving det(A1 − λI) = 0. We showed some example patterns in Figure 1.2 of the first chapter
of this second terms notes. Note, that the functions Yn tend asymptotically to −∞ as r → 0, so if
the domain had been an actual disc r ∈ [0, Ro] then we could only have bounded solutions with the
Bessel functions of the first kind Jn. But in the problem at hand we are dealing with an annular
domain so the Yn are permissible.
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3.0.2 The homogeneous mode

If ks = k2, we need to establish the behaviour is homogeneous in order to assert the Turing
conditions. We note if any of the kni are zero then the Yn are unbounded so their constants must be
zero. Also looking at the Bessel functions, typically they are zero when their arguments are zero,
except for the case n = 0, where J0(0) = 1. This means only the n = 0 sinusoidal modes would
be non trivial and cos(0) = 1, sin(0) = 1, so when k = 0, u1 is constant. Thus, since the linear
system is identical to the Cartesian case, the Turing conditions in this annular domain
are identical to the Cartesian domain, it is only the form of the patterns which differ.

3.0.3 Applying the Turing analysis: Relationship between radius and no
of hairs

The point of assuming solutions satisfying (3.11) is that the Turing analysis is the same as for
the Cartesian case detailed in Chapter 2 (except that we have replaced γ with R2 by scaling the
problem). Thus the range of permissible ks is

kmaxs − kmins =
R2

D

√
(DFu +Gv)2 − 4D(FuGv − FvGu). (3.26)

The range of permissible ks values is proportional to the radius of the plant. For the problem at
hand The ks value for which Re(λ) is maximal (the dominant mode kmaxs ) is

ksm =
R2

D − 1

[
−b− a
b+ a

− (b+ a)2 + (D + 1)

√
2b(b+ a)

D

]
. (3.27)

which is obtained by substituting (2.50) into (2.47). So the dominant mode increases with R as
a square. As we have discussed previous this is often a good indicator of the ultimate pattern
(especially in 1-D). If we consider the thin case δ → 1 then the width of annular the domain
becomes negligible by comparison to its inner radius, i.e. it approaches its one-dimensional limit.
In this case we might consider the radial function behaviour to vary only negligibly and we write
an(r) = c+ (r− 1)εa1n +O(ε2), with c some constant. If we substitute this into (3.16) then we have

d2an
dr2

= O(ε2),
1

r

dan
dr

=
1

r
εa1n +O(ε2). (3.28)

We then expand 1/r and 1/r2 in ε, which as r ∈ [1, ε] gives us an estimate of the size of variation
in r of these terms, we find they are both O(1) at leading order:

1

1 + ε
= 1− ε+O(ε2),

1

(1 + ε)2
= 1− 2ε+O(ε2). (3.29)

then at O(1) (3.16) reduces to
(k2 − n2)c = 0. (3.30)

so was we might have expected ks = n2 takes on integer values and ψ takes the form of a Fourier
series. In this case the patterns (with some specified morphogen cut-off) are just sets of equally
spaced densities around the annular domain. Then (3.27) tells us that the number of such spacings
is proportional to R. This is a pleasing result as we know from the experiments that the number
of hairs in the whorl (which is detetmined by the number of maxima of u) grows with the radius of
the Acetabularia stalk.
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(a) (b)

Figure 3.4: (a) Experimentally obtained data of re-growth to Calcium (b) Plots of the the param-
eters b and a as a function of the equilibrium u0 for the Acetabularia model. The curve labelled
lowerCon is the curve given by the lower limit of (3.32) and (3.33). The curve labelled upperCon
is the curves given by the upper limit values of (3.32) and (3.33). the two solid lines are for fixed b
values and reach to the upper con curve.

3.1 Comparison with regeneration rates

Experimental data shown in Figure 3.4(a) indicate that there is a finite range of Calcium concen-
trations (modelled by the parameter b in our model) for which full hair growth (regeneration) can
occur. We also see that, within this range the hair spacing decreases as the calcium concentration
increases, quickly at first then more gradually. Further still the amplitude of the pattern decreases
as the concentration approaches both ends of this range.

3.1.1 Satisfying the Turing conditions

This formula simply gives us the formula for the maximum growth mode, but it does not guarantee
it exists. In order for patterns to form we must also enforce all the Turing conditions. We have
already established for this enzyme reaction type system that these conditions are

a <
u0
2

(
1− 2u0√

D
− u20
D

)
, and a >

u0(1− u20)

2
. (3.31)
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In this model the parameter b, representing the calcium configuration, is the parameter of interest.
If we take the bounding values a

a =
u0
2

(
1− 2u0√

D
− u20
D

)
, and a =

u0(1− u20)

2
, (3.32)

we can use b = u0 − a to get bounding values on b

b =
1

2
u0

(
1 +

2u0√
D

+
u20
D

)
and b =

u0
2

(1 + u20). (3.33)

Thus, for a fixed D > 1 (as is the case for this model), we can parameterise a and b for the upper
and lower limits by u0. The two curves are shown in Figure (3.4). The curve labelled lowerCon is
the curves given by the lower limit values of (3.32) and (3.33). The curve labelled upperCon is the
curve given by the upper limit values of (3.32) and (3.33). The area above the lowerCon curve and
below the upperCon curve is the so-called Turing space, where patterns can form; that is the set
of a and b values for which the conditions (3.31) are satisfied. On the figure we have drawn two
lines for fixed b values which, hit the upperCon curve at the same a value. The uppeCon curve,
representing the upper bound of the conditions

a <
u0
2

(
1− 2u0√

D
− u20
D

)
and b >

1

2
u0

(
1 +

2u0√
D

+
u20
D

)
. (3.34)

is the curve at which the determinant curve det(A1) just touches the 0 axis. This is the condition
for just one mode to be unstable (this will of course be the largest growing mode λm). If we
imagine we have set our a value in the model, and we now vary b, these represent bmin and bmax
the minimum and maximum Calcium concentrations at which patterns can form. As we increase b
from bmin, keeping a fixed, the value of b strays below this curve, which means the det(A1) curve’s
minimum value will become more negative, hence the peak λm, the fastest growing mode, will grow
at a faster rate. The idea is that this peak mode rate is indicative of the level of hair growth which
might occur. Presumably after some rate it will reach a cut-off and and we will see full growth, this
is why we might expect the growth rate to plateau form the model. Then as b begins to approach
bmax this rate will decay back to zero at b = bmax indicating an upper cut-off in growth based on
Calcium concentration.

So in summary the model predicts that, for the right parameters

• There is some finite range b ∈ [bmin, bmax] for which growth can occur.

• This value reaches some maximum (full regeneration) between bmin and bmax.

This model is an early example of a reaction-diffusion pattern mechanism actually being able to
explain measurable phenomena, a first step into the goal of giving biologists confidence in the
mechanism.
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Chapter 4

Chemotaxis and Snakes: Murray
Book I Ch 11.4 and Book 2 Ch
4.11

4.1 Introducing Chemotaxis

Chemotaxis basically describes the process by which populations, be they animal or chemical com-
municate with each other by chemical signaling. For example female silk moths use pheromones to
attract male moths. Also bacterial infections are naturally attacked within our body as Leukocyte
cells are attracted to move towards a chemical build up caused by the infection. What is often
of significant interest is group chemotaxic motion whereby a cell produces a chemical (chemotax-
ant) which its own population is attracted to, the example discussed in Murray is the slime mould
Dictyostellum Discoideum, but this is just one example amongst many.

As far as modelling goes if we denote the chemical as a scalar density c(x, t) then it is typically
found in experiments that the motion of some body n(x, t) caused by chemotaxis is proportional to
the gradient of the chemical c, that is to say the population tends to seek regions of higher chemical
density. The advection-diffusion equation for some population n was derived in the first term’s
notes to be

∂n

∂t
= −∇ · (nv)−∇ · J + f. (4.1)

We can represent chemotaxic motion as a velocity term which takes the form

v = χ(n, c)∇c. (4.2)

So the chemotaxic motion is proportional to the chemical gradient and the function χ(n, c) can be
thought of as allowing the gradient effect to depend on the concentration. We should also have
some law for the chemotaxant concentration c itself. It is a chemical so it diffuses and there may
be some additional term g which dictates the relationship between n and c, (perhaps n consumes
c as moves along the gradient in which case maybe g = −knc with k constant). That is to say the
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Figure 4.1: Snake skin pattern, both striped and spotted

generally the chemical also follows an advection-diffusion type equation

∂c

∂t
= g(n, c) +∇ ·Dc∇c. (4.3)

With Dc the diffusion coefficient of the chemotaxant. We would expect usually that Dc > D so the
chemoattractant (chemotaxant) spread out faster than the emitting population; if not how would it
draw fellow species members towards it? Unsurprisingly the simplest model has g a linear function
and χ constant. If we consider a one-dimensional system then we have

∂n

∂t
= D

∂2n

∂x2
− χ0

∂

∂x

(
n
∂c

∂x

)
, (4.4)

∂c

∂t
= hn− kc+Dc

∂2c

∂x2
. (4.5)

4.2 Snake skin pattern formation via chemotaxis

Snake coats can exhibit a wide variety of spotted and striped patterns, this includes stripes along
the length of the snake and those around the snake’s cross-section. It is possible that snakes within
the same family can exhibit both length wise and width wise stripes, or even mixture patterns,
Figure (4.1).

Murray talks at some length about the biology of alligator stripe patterns earlier in Chapter
4, there has been much experimental work on this mechanism. As Murray relates in Chapter 4.11
there is some evidence that a similar mechanism could be at work in snake skin patterning.The
basic assumptions are

1. The pattern is fixed in the dermis, below the outer epidermis which is what we see, there is
some evidence for this.

2. Pigment producing cells in this region are the same in different colored regions and that the
pigment production is dependent on some chemical (the “morphogen”) reaching a critical
concentration.

3. The motion and concentrations of these cells proceeds by a chemotaxic mechanism.
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4. Generally the pattern is not initially present and changes at various critical points during the
snake’s growth, thus we might look for a domain growth induced instability.

4.2.1 The model

If n denotes the pigment producing cell (we assume their size is negligible) and c the chemotaxant,
then the system is modelled by the following reaction diffusion type system:

∂n

∂t
= Dn∇2n− α∇ · (n∇c) + rn(N − n), (4.6)

∂c

∂t
= Dc∇2c+

Sn

β + n
− γc.

Here α is a parameter which alters the strength of the chemotaxis effect, r the cell mitosis (cell
pop growth) parameter, N the equilibrium population of self competition S the secretion rate of
the chemotaxant by the cells, β a constant associated with chemotaxic production and finally γ the
rate at which the chemotaxant is degraded. We use the following scalings to non dimensionalise
the system

x̂ =

√
γ

Dcδ
x, t̂ =

γt

δ
, n̂ =

n

β
, ĉ =

γc

S
, (4.7)

N̂ =
N

β
, D =

Dn

Dc
, α̂ =

αS

γDc
, r̂ =

rβ

γ
. (4.8)

With δ a new scaling parameter. Substituting these scalings into (4.6) we obtain

∂n

∂t
= D∇2n− α∇ · (n∇c) + δrn(N − n), (4.9)

∂c

∂t
= ∇2c+ δ

[
n

1 + n
− c
]
.

The parameter δ controls the relative effect of the growth/decay of both c and n. We assume the
domain is 2-D and Cartesian (a plane), really it should be a cylindrical domain but we keep things
simple. The domain has dimensions L1 and L2 with L1 >> L2, this assumption is reasonable as
observations show the pattern forms when the organism is already notably “snake-like”. We assume
fluxless boundary conditions [Question, why not periodic in y]. We perform a Turing analysis on
this system

Find the homogeneous equilibria

The non-trivial homogeneous equilibrium of (4.9) can be shown to be

n0 = N, c0 =
N

1 +N
. (4.10)

Linearise the system and solve

We set n ≈ n0 + εn1 and c ≈ c0 + εc1 and, as this is a Cartesian domain seek solutions in the form
eik·x+λt, so that

A1 =

(
−Dks − δrN αNks

δ
(1+N)2 −ks − δ

)
. (4.11)
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The major difference between this and the standard Turing analysis is the appearance of ks in the
off diagonal entries of A1. So to solve det(A1 − λI) we find

Tr(A1) = −δ(1 + rN)− ks(D + 1), (4.12)

det(A1 = Dk2s + δ

(
rN +D − Nα

(1 +N)2

)
ks + rNδ2. (4.13)

Apply the Turing conditions

It is left as an exercise in your problem sheet to show that the Turing conditions for pattern
formation in this system can be satisfied.

4.3 Shared modes

We assume that as the snake grows the system encounters an instability causing chemical separation
so that morphogen patterns grow. In the case of snakes where we see either longitudinal or transverse
it is reasonable to assume only one mode is activated. This suggests the pattern number domain
ks ∈ [kmins , kmaxs ] is very small so as to only reliably ever contain one or two modes. To keep things
simple we will seek a solution where kmins = kmaxs rather than say kmins = kmins +dk for some small
dk.

We are interested the first wavemode ks which becomes unstable, that is to say we look for the
case in which there is only one solution to the quadratic

det(A1) = Dk2s + δ

(
rN +D − Nα

(1 +N)2

)
ks + rNδ2 = 0. (4.14)

which will occur when the discriminant vanishes (this is also by default ksm the maximally growing
wavenumber). So (

rN +D − Nα

(1 +N)2

)2

− 4DrN = 0 (4.15)

so that

ks = δ

√
rN

D
. (4.16)

So higher diffusion leads to a smaller critical wavenumber. Increasing the mean pigment cell popula-
tion N and growth rate r of n lead to a higher wavenumber, presumable leading to more small scale
bunching of the cells. We also see that increasing the relative growth of both c and n (through the
parameter δ) increase the wavenumber. These are predictions which could be tested experimentally.

The wavenumber magnitude ks is given by

ks = π2

(
m2

L2
1

+
n2

L2
2

)
. (4.17)

What is interesting here is the significant difference of the dimensions L1 and L2. This will tend
to promote much higher wavenumbers k1 than k2. For example If ks = π2 L1 = 20 and L2 = 1
then we could for example have m = 20 and n = 0 a pattern with a significant number of width
wise bands. Or perhaps m = 0, n = 1. Which would give a single length wise band. So we have
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shared modes, integer pairs (n1,m1) and (n2,m2) which share the same pattern number. Since
instabilities presumably form due to random small changes in the system this could provide a path
whereby the same snake type (the same parameters in this model) can exhibit both types of striping
patterns, as is indeed observed to occur for snakes.
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Chapter 5

Bacterial pattern formation:
Murray book 2 Chapter 5

Under a variety of conditions bacteria aggregate to form macroscopic patterns of remarkable vari-
ability and stability. Two varieties in particular have been studied experimentally in great depth,
Escehria Coli (E-coli) and Salmonella Typherium (S.typh). The motion of both have been shown
to be well approximated by Fickian Diffusion (the type we have been using all along). Crucially
we know that in the presence of certain chemicals they move chemotaxically. There is a significant
amount of detail on the biology in Murray, here we review just the key points to introduce the
model.

The experiments roughly split into two types, with different preferences for patterns.

Liquid experiments

The bacteria are in fluid and not too densely packed. Initially there is a uniform bacterial distribu-
tion and some Tricarboylic acid (TCA) is added. First the TCA is added uniformly, the bacteria
then clump to form equally spread aggregates. Second the TCA is placed local to the centre of the
bacteria and the bacteria form a random distribution of aggregates contained inside a ring of the
origin. The timescale of formation is much faster than the bacterial reproduction rate, that is to
say this is solely due to chemotaxic motion, not bacterial reproduction. The patterns show clear
temporal behaviour. Initially lots of small aggregates form, then as time progresses they collect to
form smaller numbers of larger size aggregates, eventually these aggregates are seen to decay and
disappear.

Semi-solid experiments

The bacteria are densely packed in a fluid, uniformly at first. A food source is supplied uniformly
and the bacteria is allowed to reproduce over 25-50 generations. The patterns formed [fig] include
solid and dashed rings (S.typh), and various other spotted patterns (E-coli). In particular for E-coli
the bacteria form moving rings which expand and dissolve over time to leave the non motile (non
moving) patterns seen.

37
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5.0.1 Constructing the model: Semi-solid case

We define n to be the bacterial density, c the chemotaxant density and s the stimulant or food. We
assume the following phenomena affect the bacterial density

1. The bacteria diffuse, in fact we have experimental estimate for the diffusion constant Dn.

2. Chemotaxis due to c (the chemotaxant) causes motion of n. The model used is to define the
motion of chemotaxic flux is

∇ · [nχ(n, c)∇c] , where χ(n, c) =
k1

(k2 + c)2
. (5.1)

Experimental estimations of the parameters k1 and k2 have been obtained this functional
form was found to produce the best results amongst a number of different possibilities..

3. The growth/death of the popualtion is given by

k3n

(
k4

s2

k9 + s2
− n

)
, (5.2)

(the relevance of the subscripts numbering will become clear soon). This is basically logistic
growth of n n(N − n) with N dependent on the the food source s. If s is large this saturates
at k4, the maximum N . N grows rapidly with s for small to medium values then saturates
(asymptotes to k4).

The chemotaxant is affected by the following

1. The chemotaxant diffuses, we have measured values for the diffusion constant Dc

2. Production is dictated by the bacterial population n and follows a rapid growth/saturation
type model

k5s
n2

k6 + n2
(5.3)

It is proportional to the food/stimulant [why does this not just occur due to n which should
grow with s?].

3. The chemotaxant is used up as the bacteria consume it, this is modelled with the simplest
possible interaction term

− k7nc. (5.4)

The stimulant/food is affected by the following factors

1. The stimulant diffuses with a diffusion constant Ds, we have experimental measures of this.

2. The stimulant is consumed at a rate proportional to n. It is also assumed to have a maximum
initial value. As the stimulant becomes less dense the rate of consumption should drop of
fairly rapidly from a maximum value as it is harder for the bacteria to access it. So the model
is

− k8n
s2

k9 + s2
. (5.5)
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Putting this together the full model is

∂n

∂t
= Dn∇2n−∇ ·

[
n

k1
(k2 + c)2

∇c
]

+ k3n

(
k4

s2

k9 + s2
− n

)
, (5.6)

∂c

∂t
= Dc∇2c+ k5s

n2

k6 + n2
− k7nc. (5.7)

∂s

∂t
= Ds∇2s− k8n

s2

k9 + s2
. (5.8)

The liquid phase model

As mentioned above the patterns in the liquid phase form before and bacterium life cycle so we
drop the growth/death term from the n equation. The stimulant is not the main food source for the
cells so it is not consumed. Its not mentioned in Murray why the term which models the bacterium
consuming the chemotaxant is not included. I guess because the timescale for this to happen is
slower than the pattern formation timescale. So the liquid phase model is just a simpler case of the
semi-solid one.

∂n

∂t
= Dn∇2n−∇ ·

[
n

k1
(k2 + c)2

∇c
]
, (5.9)

∂c

∂t
= Dc∇2c+ k5s

n2

k6 + n2
.

∂s

∂t
= Ds∇2s.

There is a discussion in Murray on how the relevant model parameters are measured experimentally,
but we omit it here to instead concentrate on the analysis.

5.1 Analysis of the liquid phase model

We start by noticing there is a permissible homogeneous equilibrium n = n0 and c = s = 0. This
seems to confirm the experimental observation that we need to addition of TCA to obtain any
patterns. As the patterns form relatively quickly this suggests an instability. So we should be
expecting a linear stability analysis to be relevant. But there is a problem. When s is non zero
(initially homogeneous when added in the experiments) we don’t have an equilibrium for c which is
homogeneous (look at the second equation of 5.12). Of course we could solve for an inhomogeneous
equilibrium c, but we also know that initially it is zero everywhere, so we should expect it to grow
initially. Thus we don’t have initially have a homogeneous equilibrium for the system, we have a
state for which c is a function of t (growing). As we will see this makes the Turing type analysis
much harder. Before proceeding we make some extra assumptions.

The experiments involved an initially uniform stimulant distribution and suggest little of it is
consumed, thus we assume the stimulant is suddenly changed to a constant value s0 and it remains
in this state, thus we ignore the diffusion of the stimulant and just treat s0 as a constant in the
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model. We also consider a 1-D system at first for simplicity. We non-dimensionalise as follows,

n̂ =
n

n0
, ĉ =

c

k2
, t̂ =

k5s0
k2

t, x̂ =

√
k5s0
Dck2

, (5.10)

D =
Dn

Dc
, α =

k1
Dck2

, µ =
k6
n20
. (5.11)

Since here s0 for all t, w = 1 and this parameter seems superfluous, but we will need this non-
dimensionalisation later when this is not the case. For the sake of simplicity here we treat a
one-dimensional system on a domain xi ∈ [0, L]. The non-dimensionalised system we seek (upon
dropping hats) to solve is

∂n

∂t
= D

∂2n

∂x2
− α ∂

∂x

[
n

(1 + c)2
∂c

∂x

]
, (5.12)

∂c

∂t
=
∂2c

∂x2
+

n2

µ+ n2
.

We first assume that as the initial bacterial population n0 is homogeneous so its reasonable to
assume the initially growing chemotaxic population is homogeneous. For simplicity we assume
n0 = 1. We then assume c is homogeneous and solve for c.

With all n derivatives 0 and ∂c
∂x = 0 the first equation vanishes. The second becomes

dc

dt
=

1

µ+ 1
. (5.13)

So the solution, subject to an initial condition c(0) = 0 is.

c =
1

1 + µ
t. (5.14)

Next we perform the Turing analysis by assuming small changes to these homogeneous popula-
tions. As usual we assume this solution is separable. Since the domain is Cartesian we assume the
spatial behaviour is complex exponential as usual (so the patterns are spots and/or stripes. But
we do not set the temporal behaviour, i.e.

n(x, t) = 1 + ε
∑
k

fk(t)eikx, c(x, t) =
1

µ+ 1
t+ ε

∑
k

gk(t)eikx, (5.15)

with ε� 1. Thus we seek a solution which is varies about uniformly growing chemotaxant popula-
tion and uniform bacterial population with some inhomogeneous pattern. This looks a little bit like
the linear analysis we have been performing all along, but as we shall see does not lead to constant
coefficient linear equations. If we impose no flux boundary conditions then

k =
mπ

L
. (5.16)
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We now linearise To linear order

∂n

∂t
= ε

∑
k

∂fk
∂t

eikx,
∂c

∂t
=

1

1 + µ
+ ε
∑
k

∂gk
∂t

eikx,

∇2n = −ε
∑
k

k2fk(t)eikx, ∇2c = −ε
∑
k

k2gk(t)eikx.

∂c

∂x
= −εi

∑
k

kgk(t)eikx,
n

(1 + c)2
∂c

∂x
= ε

1

(1 + c0(t))2
i
∑
k

kgk(t)eikx +O(ε2),

∂

∂x

[
n

(1 + c)2
∂c

∂x

]
= −ε 1

(1 + c0(t))2
k2
∑
k

gk(t)eikx +O(ε2),

n2

µ+ n2
=

1

µ+ 1
+ ε

2µ

(µ+ 1)
2 f(t)

∑
k

eikx +O(ε2).

Where c0(t) = t/(µ+ 1).
So to O(ε) the equations read

∂fk
∂t

= −Dk2fk +
α

(1 + c0(t))2
k2gk(t) = −Dk2fk +

α(µ+ 1)2

(1 + µ+ t)2
k2gk(t), (5.17)

∂gk
∂t

= −k2gk +
2µ

(µ+ 1)
2 fk. (5.18)

To simplify we then make the substitution τ = 1 + µ+ t, and note that ∂fk
∂t = ∂fk

∂τ and similar for
gk. To drop the tedious subscript notation we just write fk = F and gk = G and understand the
equations apply for each k. So

∂F

∂τ
= −Dk2F +

α(µ+ 1)2

τ2
k2G, (5.19)

∂G

∂τ
= −k2G+

2µ

(µ+ 1)
2F. (5.20)

for each k. Then we can actually reduce this to a single equation as follows. First we differentiate
(5.17) to obtiain

d2F

dτ2
= −Dk2 dF

dτ
+
α(µ+ 1)2k2

τ2
dG

dτ
− 2α(µ+ 1)2

τ3
k2G. (5.21)

We substitute in our expression for dG
dτ we obtain

d2F

dτ2
= −Dk2 dF

dτ
+
α(µ+ 1)2k2

τ2

(
−k2G+

2µ

(µ+ 1)
2F

)
− 2α(µ+ 1)2

τ3
k2G, (5.22)

= −Dk2 dF

dτ
+

2αµk2

τ2
F − α(µ+ 1)2k2

τ2

(
k2 +

2

τ

)
G. (5.23)

To eliminate G we use (5.17) to obtain

α(µ+ 1)2k2

τ2
G =

dF

dτ
+Dk2F. (5.24)
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Figure 5.1: An example of solutions to 5.26 for modes n = 1, 5 with randomise initial conditions.
Note the peaks of the mode occur earlier for higher modes.

so that

d2F

dτ2
= −Dk2 dF

dτ
+

2αµk2

τ2
F −

(
k2 +

2

τ

)(
dF

dτ
+Dk2F

)
. (5.25)

which can be rearranged to give

d2F

dτ2
+

[
k2(D + 1) +

2

τ

]
dF

dτ
+ k2

(
Dk2 +

2D

τ
− 2αµ

τ2

)
F = 0.

The point here is that this is not a constant coefficient O.D.E so we cannot assume temporal
growth in the form eλt. The growth of each mode will alter with time. This is what is observed
experimentally.

We note in (5.19) that as τ → ∞ the F equation reduces to one of exponential decay. If
this occurs then G will also reduce to exponential decay (assuming G and F stay bounded). So
eventually all modes will die out. This is cited as pattern decay in Murray, but I have a few
worries about the growth of c being unbounded in this limit (perhaps its better to only consider
this accurate over a finite time). That said full numerical solutions to the system do show pattern
decay.

5.1.1 Constant coefficient analysis

The equation (5.26) does have full analytic solutions but they are basically next to useless for
analytic work (they are confluent hypergeometric functions). To perform some analytic analysis we
note the following. We write

d2F

dτ2
+A(τ)

dF

dτ
+B(τ)F = 0, (5.26)

A(τ) =

[
k2(D + 1) +

2

τ

]
, B(τ) = k2

(
Dk2 +

2D

τ
− 2αµ

τ2

)
. (5.27)
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and note that the functions A and B depend on τ polynomially. If we considered this equation over
an exponentially small timescale then we might see it as a linear equation with constant coefficients.
In this case the solution would be

F (τ) = C1eλ+τ + C2eλ−τ , λ± =
1

2

[
−A±

√
A2 − 4B

]
. (5.28)

So the temporal growth/decay of F over such a small timescale will be exponential and hence
significant. With this observation we make the assumption that we can construct our full solution
from a multitude of small time steps over which we assume constant coefficient exponential solutions.
For each step the values of A and B will differ of course. In particular we are looking here for values
of τ (at the centre of the “small steps”) for which we have a change from growth to decay of the
solution.

As A is positive we can only have growth if B < 0. Remember that even at t = 0, τ = 1 +µ > 0
so B is well defined. As τ →∞ it tends to a positive number Dk2, but it is possible it can take on
a negative value. We can search for these negative values by solving B(τ0) = 0, which gives

τ0 =
1

2Dk2

[
−2D + 2

√
D2 + 2Dk2αµ

]
=

1

k2

[
−1 +

√
1 + 2k2αµ/D

]
. (5.29)

Note that the negative root would have been less than zero (we seek positive t solutions). In order
for this time τ0 to exist we must have

τ0 > 1 + µ. (5.30)

By solving τ0 = 1 + µ for k2 we obtain

k2 =
2

D(1 + µ)

(
αµ

1 + µ
−D

)
. (5.31)

In some sense this is a sort of Turing criterion. This gives us some upper bound on the permissible
k2 values the system can take. But in this case we have some information on the dynamic behaviour
of the modes which can grow also. At any time we can also find the time τ at which some mode k
reaches its maximum (it switches from growing to decaying) by solving B = 0 for k which gives

kmax(τ) =

√
2

τ

( αµ
Dτ
− 1
)
. (5.32)

5.1.2 Asymptotic approximation

Numerical studies of the equation (5.26) suggest that the prediction of τ r0 (k), the time at which a
particular wavemode k has its peak (given by 5.29) is pretty accurate, indicating, as we might have
expected that the approximation of constant coefficients over small timescales was pretty good.
The value τ r0 occurs at a peak, where dF

dτ = 0 and

d2F

dτ2

∣∣∣∣
τ0

= −B(τ r0 )F. (5.33)

At a maximum ∂2F
∂τ2 < 0 and F > 0 so it must be that B > 0, thus our prediction must be greater

that the actual value (since B > 0 would correspond to the decaying phase). Since the numerics
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tell us our approximation τ0 for τ r0 is pretty close to the actual value this suggests that B(τ r0 ) must

be small. Hence we expect d2F
dτ2 so be small. So, close to this critical value we might expect to be

able to solve (5.26) with the second derivative term omitted. The solution to this can be found by
integration, it is somewhat fiddly, I have put an extra document under the Epiphany notes detailing
the method to obtain it. It involves three fiddly logarithm integrals. The individual integrals are of
the type I would expect you to perform in an exam, but the whole solution is way to long winded
to be asked as a practical exam question. The solution is

F (τ) =

[
(D + 1)k2τ0 + 2

(D + 1)k2τ + 2

]αµk2+ 2D2

(D+1)2
[
τ

τ0

]αµk2
e[D/(D+1)]k2(τ0−τ). (5.34)

[This equation, equation 5.33 is quoted incorrectly in Murray] The solutions and their numeri-
cally calculated solutions to (5.26) can be compared, they are basically the same shape except the
asymptotic solutions have a significantly smaller amplitude. In fact if we normalise them they
match almost perfectly. This suggests of course that the second derivative of F is not generally
small in the full equation away from the turning point. So whilst these analytic solutions won’t give
us the correct amplitude of the solutions, they can be used to given use some understanding of the
behavior of the solutions with respect to the various parameters of the system. For example loca-
tions of the peaks (though we already have a nice formula for that), some measure of the width of
the particular mode (say the time range for which the solution is below 5 percent of its maximum).

The main conclusions

The point of this analysis is to perform a diagnostic on the feasibility of the full model. The critical
experimental observations were as follows

1. The bacterium can be at a homogeneous equilibrium with no chemotaxant, in the absence of
stimulant.

2. The pattern formation shows a gradual formation of increasingly large aggregates which even-
tually fade away to leave a uniform bacterial distribution. This process is shown in Figures
5.2 and 5.3, which are snapshots of a full (numerical) solution to the 2-D variant of (5.12)

The first point is explained by the reduced form of the equations (5.12) having a homogeneous
equilibrium with s0 = c0 = 0 and n0 homogeneous.

The second point can be explained as follows. First (5.31) predicts a maximum permissible
wavemode. Then function τ0 (5.29), which predicts the peak of the a particular mode, tells us the
time of the peak τ0 decreases with k. Thus we start with the maximum possible wavemode and
then as τ increases we see peaks of increasingly low wavenumber. The function (5.34) tells us that
all k will reach some peak (the increasing polynomial τ term) before the exponential decay causes it
to disappear. So when one mode is peaking the previous mode is decaying. Thus as time proceeds
patterns of a given k form and decay causing the dominant pattern to be passed to lower and
lower k. So the model predicts the observed transition from finite but small aggregates to larger
aggregates (as shown in (a)-(d) in Figures 5.2 and 5.3). Eventually the model predicts only k = 0
mode does not decay (but nor does it grow) so as expected we return to the uniform distribution
(In fact we would need this to be zero to satisfy the fixed population size constraint).
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(a) (b)

(c) (d)

Figure 5.2: Solutions to n(x1, x2, t) 5.12 except two-dimensional with initial conditions perturbed
about n = 1 at t = 0. The parameters are D = 0.33, µ = 1, α = 80 and L = 20. Note the solutions
are only plotted in the range n ∈ [0, 2] so the peaks are cut-off (ther values get very large). (a)
t=1, a large number of small scale aggregations in density n. (b) t=3, the bacterial aggregations
begin to merge forming larger scale aggregates. This process continues in (c), t=5 and (d) t=15.
Eventually these aggregates disappear.
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(a) (b)

(c) (d)

Figure 5.3: Effective observed patterns corresponding to the solutions shown in Figure 5.2, obtained
by charting the bacterial values which obtain a value above n = 2.



Chapter 6

Elastic tubes and Biopolymers

A significant number of objects in nature have the structure of long, thin, tubes. This includes, but
is not limited to, DNA molecules, Proteins, plant stems and creepers, sea shell growth deposits (I
will explain this in class) and umbilical chords (a subject of a number of research articles!). Some
example figures of these models are shown in Figure 6.1. A simple thin elastic tube model has been
used in each of these cases to explain observed behaviour of the system under applied forces. In this
chapter I will introduce this model, specifically the equilibrium model (it has a dynamical variant
which we can’t cover here as it typically requires numerical treatments).

This model is a relatively straight forward application in the framework of Continuum mechanics.
In this field the creation of a model takes two steps. The first, kinematic, is to describe the possible
shapes which the system can take (permissible strains). The second, the mechanics, basically
assigns a model for the forces and moments required for each of the system’s state to exist.

6.1 Thin elastic tube kinematics

The mathematical description of this system is summarised in Figure 6.2(a)-(d). We begin with
an axis curve r(s) : [0, L] → R3, a three dimensional curve parameterised by a parameter s with
r(0) is beginning and r(L) its end. The tubular body surrounds this curve, as shown in (a). The
parameterisation s is arbitrary, but as we shall shortly discuss there is a sensible choice always used
in practice. In Figure 6.2(b) we see a series of discs which are assumed to make up the material body
(note in this is a continuum of discs, one for each s, but I have drawn a finite number for clarity).
One might imagine the body is at rest (the state it will be in if no forces/moments are applied) if
the axis curve is straight. Then a distorted curve will mean the discs become separated/compressed
when the axis curve distorts, as shown. This is what we will call the bending degree of freedom.
There is a second degree of freedom corresponding to twisting the tube around its axis. This can be
measured by having a fixed vector in the planes and a second vector which indicates the rotation of
the planes as shown in Figure 6.2(c) (we can come to define this fixed vector shortly). To describe
both of these degrees of freedom we define a triad of unit vectors centred at the curve as shown in
Figure 6.2(d) as follows.

47
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(a) (b) (c)

Figure 6.1: Depictions of various elastic tube models. (a) DNA supercoiling: a stochastic tube
model from Coronal, Suma and Micheletti (2018). (b) A model of the Human SYCE protein (Prior
and Pohl 2019), this is a structural prediction based on a tubular model. (c) a tendril perversion of
a plant (left) and an elastic model (right) (Goriely 2000). The interesting thing here is a number
of tendril structures in nature seem to be inter-locking helices of opposing chirality.
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(a) (b) (c) (d)

Figure 6.2: Illustrations of the kinematic description of the elastic tube model. (a), the axis curve
r(s) and the surrounding tube body. (b) a subset of the material discs of the tube. (c) an indication
of the twisting degree of freedom the red arrows are the undeformed (parallel transported), the
deforming blue arrow makes an increasing angle with the red arrow indicating a relative twisting
of the material discs. (d)

6.1.1 Orthonomal basis of deformation (framing)

The triad of vectors shown in Figure 6.2(d) can be defined as follows. We define a vector d3 which
is the unit tangent vector to the axis curve r, i.e.

d3 =
dr

ds
/

∣∣∣∣dr

ds

∣∣∣∣ . (6.1)

where for a vector v, |v| =
√

v · v. We then define some unit vector d1 which lies in the plane
normal to d3, i.e.

d3 · d1 = 0, |d1| = 1. (6.2)

We then complete a right-handed orthonormal triad (d1,d2,d3) by defining a second vector d2 =
d3 × d1. Such a construction is known as a frame and its application along the curve r(s) is a
framing of the curve r(s). Obviously this definition hinges on the choice of the vector d1. Given
a curve r(s) we can certainly make a sensible choice for d1, however, we don’t a-priori know its
shape (this should be the result of solving our model system). In fact as we shall discuss shortly
mechanics are best expressed in terms of the rates of change of curvature and twisting of the tube.

6.1.2 Curvature and twisting kinematics

The curvature, the stretching/compression of the material discs, is indicated by the rotation of the
curve’s axis, represented by the tangent vector d3, in the plane spanned by (d1,d2) (e.g Figure
6.3(a)). Thus there are two independent directions for bending, along d1 and along d2, the actual
bending rate will just be a linear combination of these two (e.g Figure 6.3(b)). We can then define
two functions u1(s) and u2(s) which define the rate of bending at each s, these are essentially



50 CHAPTER 6. ELASTIC TUBES AND BIOPOLYMERS

(a) (b)

(c)

Figure 6.3: Figures defpicting the curvature and twisting effects of the frame (d1,d2,d3). (a)
Depicts curvature of the axis curve manifesting in the frame rotating with the d2 direction as the
fixed axis, this rate is given by the curvature u1. (b) the rotation is about some fixed direction
which is a linear combination of d1 and d2. The red curve projected in plane indicates the plane
in which the vector d3 is rotating. (c) the rotation of the pair (d1,d3) with d3 the axis of rotation.
The rate of rotation is u3.
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changes in angles. The third degree of freedom is the twisting, represented by the rotation of
the pair (d1,d2) around the curve’s axis (the tangent direction), as shown in Figure 6.3(c). We
represent this rate by the function u3(s). It can be shown that one can define a combined rotation
rate vector Ω:

Ω = u1d1 + u2d2 + u3d3. (6.3)

such that
d

ds
di = Ω× di, i = 1, 2, 3. (6.4)

Another way of stating this is as the following matrix equation

d

ds

 d1

d2

d3

 =

 0 u3 −u2
−u3 0 u1
u2 −u1 0

 d1

d2

d3

 . (6.5)

This is a linear ordinary differential equation. It solution is exists and is uniquely specified by the
initial value of the vectors di at s = 0 1

For a planar curve which has no twisting (u3 = 0), we can choose either of u1 or u2 to be zero,
let it be u2 here. So we have

d

ds
d1 = 0, (6.6)

d

ds
d2 = u1d3,

d

ds
d3 = −u1d2.

So d1 is constant, this is the direction orthogonal to the plane in which the curve deforms. So

d2

ds2
d2 −

du1
ds

d3 + u21d2 = 0, ⇒ d2

ds2
d2 −

1

u1

du1
ds

d

ds
d2 + u21d2 = 0. (6.7)

Which represents three second order linear differential equations for the three components of d2. If
u1 is constant then

d2 = sin(u1s)A + cos(u1s)B, (6.8)

for vector constants A and B. So from the second equation of (6.6)

d3 = cos(u1s)A− sin(u1s)B. (6.9)

Applying the boundary conditions at s = 0 we have

d2 = sin(u1s)d3(0) + cos(u1s)d2(0), (6.10)

d3 = cos(u1s)d3(0)− sin(u1s)d2(0) (6.11)

So the frame pair (d2,d3) just rotate around the fixed direction d1. Unsurprisingly if dr
ds = d3 (we

show shortly we can always do this) then

r(s) =
1

u1
[sin(u1s)d3(0) + cos(u1s)d2(0)] . (6.12)

1[NEM] That we can always make this construction results from the fact the framing can be represented as the
matrix lie group S0(3) (special orthogonal matrices). Its Lie algebra, used to construct paths in the group is the set
of skew-symmetric matrices.
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If we write R = 1/u1 and d3(0) = (1, 0, 0) and d2(0) = (0, 0, 1) then this is clearly just a circle

r(s) = R (sin(s/R), 0, cos(s/R)) , (6.13)

as we should have expected.

In fact in the case of planar curves we could always have written

d3(s) = (cos θ(s), 0, sin θ(s)) , d2(s) = (− sin θ(s), 0, cos θ(s)) , d1 = (0,−1, 0), (6.14)

we will use this on the assignment for this topic.

6.1.3 Arclength and reconstructing r.

The typical problems we will solve will be to determine the functions (u1(s), u2(s), u3(s)), then the
shape of the rod can be reconstructed by solving the following further (linear) O.D.E.

dr(s)

ds
= ν(s)d3(s). (6.15)

But what is the ν(s)? Well, remember we have

d3 =
dr

ds
/

∣∣∣∣dr

ds

∣∣∣∣ .
So ν(s) is

∣∣dr
ds

∣∣. There is a choice of parameterisation called the arclength parameterisation for
which ν(s) = 1, hereafter we identify the parameter s as the arclength. To find s from any given
parameterisation (say t) we can simply write

s =

∫ t

0

∣∣∣∣ drdt′

∣∣∣∣dt′. (6.16)

For example consider a helix

r(t) = (R sin(2πt), R cos(2πt), P t) . (6.17)

A helix of radius R which rises a height P in one turn (this is called the pitch). The arclength
parameterisation is given by

s(t) =
√

(4π2R2 + P 2)t (6.18)

So we can write

r(s) =

(
R sin

(
2πs√

(4π2R2 + P 2)

)
, R cos

(
2πs√

(4π2R2 + P 2)

)
, P

s√
(4π2R2 + P 2)

)
. (6.19)

The point is we have shown that one can always choose ν(s) = 1. The question then is: is there
any reason not to do so?
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6.1.4 Stretchable rods

Sometimes the system being model responded to applied forces or moment. For example a DNA
molecule stretches out if the helical structure is unwound by twisting. In such cases the idea is the
parameter s represents the arclength in the unstretched state of the tube. Then a function ν(s)
can represent the stretching through the O.D.E

dr(s)

ds
= ν(s)d3(s). (6.20)

with ν(s) corresponding to (local) stretching of the material if ν > 1 and ν < 1 if it is compressed
(locally). Note this is independent of the functions u1, u2, u3 so is a genuine kinematic degree of
freedom.

6.1.5 Kinematic summary

We have demonstrated in this section we can describe the deformation of a elastic tube by four
kinematic parameters:

1. Two independent bending degrees of freedom u1(s) and u2(s) which basically represent the
rotation of the tangent direction of the curve r.

2. One degree of freedom of twisting of the material cross-sections of the tube, a function u3(s).

3. One stretching degree of freedom ν(s) of the curve r(s) from its relaxed unstretched state.

If these four functions are known then we can solve the linear matrix differential equation

d

ds


r
d1

d2

d3

 =


0 0 0 ν
0 0 u3 −u2
0 −u3 0 u1
0 u2 −u1 0




r
d1

d2

d3

 . (6.21)

Again this is a linear ordinary differential equation whose solution exists and is (for typical problems)
unique, up to an initial choice of the set (d1(0),d2(0),d3(0), r(0)). Often it would need to be
solved numerically, but it is so straightforward to solve that it does not really feature as an issue
in many problems. In-fact a problem of elastic tube’s is generally considered solved if the functions
(u1, u2, u3, ν) are obtained. The aim now is to develop the mechanics of the theory in order to
generate the equations we should solve to obtain these functions.

6.2 Thin elastic tube mechanics

In the kinematic description of the previous section the degrees of freedom of strain of the tube
body actually depended solely on the geometry of its axis curve r(s). So even though the body is
three-dimensional the description of its strain (deformation) is one-dimensional as it only depends
on the parameter s. This is a significant simplification and does not allow for a full description
of the potential range of deformation of the tube body, for instance oscillatory fibrillations or
denting/folding of the structure. Thus our thin tube model should be restricted to problems where
these are not important features of the system’s reaction to forces. As discussed in the introduction
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(a) (b)

(c)

Figure 6.4: Figures depiciting the force and moments acting on an elastic rod. Panel (a), the set
of forces and body force densities acting on the body. Panel (b), the set of moments acting on the
body, associated with the forces and body force densities shown in (a). Panel (c) the set of couples
acting on the rod.

to this chapter there are more than enough. Basically if the tube is sufficiently thin and its local
deformation not to extreme then we are ok.

The one dimensional kinematics suggests we should restrict to one-dimensional mechanics. Ba-
sically this is an average or mean field theory. It can be derived from a more general continuum
mechanics framework but does not need to be to justify its use.

6.2.1 Force and moment balance

We are considering bodies in equilibrium. So we adopt Newton’s principle, roughly paraphrased as

A body is in equlibrium when there are no net forces or moments acting on it.

In this context it means forces and moments acting externally on a body must be balanced by the
forces internal to the body.
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Force balance

Consider a subsection of the material covered by the parameter set [s, L]. In our model the possible
forces acting on this subsection of the body are

1. The force vector n(s) exerted at s by the material of the tube on [0, s).

2. A force vector N applied at the end cap s = L (basically a boundary condition).

3. Force densities (per unit length) acting on the domain (s, L). These act like forces on the
material’s interior. We label the sum of such forces as a vector f . A common example is
gravity f = gẑ, with g = 9.18ms−2.

(see Figure 6.4(a)). Then Newton’s principle says the total force acting on the interior of the body
f must be equal to the forces acting externally n and N, i.e.

n(s) + N =

∫ L

s

f(s′)ds′. (6.22)

This must be true for any s ∈ (0, L) and we differentiate with respect to s to obtain

dn

ds
= −f(s). (6.23)

Where we have used the fact that N has no s dependence and the Liebniz rule for differentiating
the integral. So we have our first system of ordinary differential equations governing’ the tube’s
equilibrium.

Moment balance

A reminder of the definition of a couple (or torque) which is basically a rotational force due to to
anti-parallel forces acting a distance d [fig] from a mutual point. In this case the average force is
zero but there is a moment as they don’t act at the same place. Typically we need a couple to twist
the tube [fig].

Consider a subsection of the material covered by the parameter set [s, L]. We need to consider
moments acting about a fixed point p, this can be arbitrarily chosen but the final equilibrium
equation will not depend on this choice. In our model the possible moments acting on this subsection
of the body are

1. A vector couple m(s) exerted at s by the material of the tube on [0, s).

2. A moment (r− p)× n by the material of the tube at s.

3. A moment (r− p)×N applied at the end cap s = L (a boundary condition).

4. An externally applied couple M applied at the end cap s = L (a boundary condition).

5. A moment density (per unit length) (r− p)× f acting on the domain (s, L), due to the sum
of force densities f .

6. A couple density (per unit length) l acting on the domain (s, L). A typical example would be
a magnetic couple induced in a ferromagnetic material due to an externally applied magnetic
field. An example I have seen is a tether designed for use in space!
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See Figure 6.4(b) for the moments and see Figure 6.4(c) for the couples. So, balancing moments
acting on the exterior of the tube and its interior we have

m(s) + (r(s)− p)× n(s) + M + (r(L)− p)×N =

∫ L

s

[(r(s′)− p)× f(s′) + l(s′)] ds′.

Again we take the derivative of this equation with respect to s:

dm

ds
+

dr

ds
× n + (r− p)× dn

ds
= −(r− p)× f − l.

But force balance states dn
ds = −f so we can cancel the terms involving f to obtain

dm

ds
+

dr

ds
× n = −l.

So the equations of equilibrium of our tube are

dn

ds
+ f = 0, (6.24)

dm

ds
+

dr

ds
× n + l = 0.

6.2.2 Constitutive laws

The system of equations (6.24) determining the tube’s mechanical equilibrium comprise 6 indepen-
dent equations (two vector equations for three-dimensional vectors). But there are 16 unknown
functions

m,n, f , l, u1, u2, u3, ν. (6.25)

So we are ten equations short of having a complete system which we can solve. As with the
advection-diffusion system we must make a choice of constitutive equations. There are many ex-
amples out in the field, but for this course we will stick to the two most common cases.

Unstretchable tubes

We assume ν = 1 for all configurations of the tube. This reduces the unknowns by 1. Typically
this is paired by the assumption that n is determined entirely by the balance equations (6.24). We
assume the couple m relates to the curvatures (u1, u2, u3) via a linear relationship, i.e.

m = Au1d1 +Bu2d2 + Cu3d3. (6.26)

Where the constant coefficients A,B and C are material constants. The constants A and B are
usually referred to as bending coefficients, the larger they are, the larger the moment required
to achieve localised bending of the tube u1 or u2. The constant C is the twisting coefficient an
determines the resistance to the material being twisted. For an isotropic tube with genuinely
circular cross-sections A = B, differing values indicate something lie maybe elliptic cross-sections 2

Note that this choice satisfies the so-called principle of material objectivity :

2These values can be determined by deriving a tube model as a mean value version of a full three-dimensional
model.
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The constitutive laws governing the internal conditions of a physical system and the
interactions between its parts should not depend on whatever external frame of reference
is used to describe them.

It is why we were so keen to define the kinematics in terms of the curvatures u1, u2, u3 which
determine the rod shape, only up to a translation and rotation given by the initial conditions.

Finally if we declare f(n, u1, u2, u3,x) and l(n, u1, u2, u3,x) to be functions of the other un-
knowns then we have a complete system. Note they may depend on position x and do not need to
satisfy the principle of material objectivity (for example gravity should often depend on position).

Stretchable tubes

Exactly the same as the unstretchable case except we specify the d3 component of the force n,
(remember this is the direction along which we have allowed stretching to occur). We use a simple
linear stretching law, Hooke’s law,

n · d3 = E(ν − 1). (6.27)

Here E is the Young’s modulus of the material. Thus we have swapped one unknown, a component
of n for another, ν, so the system is complete.

6.2.3 Strips, tubes and bars

The eagle eyed reader will note that whilst visually we have referred to the material cross-sections
of our “tube” as “discs” their actual shape has not been a feature of any of the derivations right
until the choice of constitutive law for the couple m, i.e. the choices A and B. In fact this model
can be applied to thin rectangular strips, in which case one of the directions is far harder to bend
in than the other e.g A� B are rectangular bars thin cuboids. Typically the choice of m is based
on this decision, the cross-sectional geometry, or some imposition of a symmetry property.

What is of interest to you is that thin strip problems, like the one on your assignment are often
(but nnot exclusively) two dimensional (planar).

6.2.4 The equations in component form.

We mark the equations out here for the unstretchable case. We remind ourselves that

d

ds
d1 = −u2d3 + u3d2,

d

ds
d2 = u1d3 − u3d1,

d

ds
d3 = −u1d2 + u2d1. (6.28)

So the force equation for each component i becomes

dni
ds

di + ni
d

ds
di + fi = 0. (6.29)

Hence,

dn1
ds
− n2u3 + n3u2 + f1 = 0, (6.30)

dn2
ds

+ n1u3 − n3u1 + f2 = 0,

dn3
ds
− n1u2 + n2u1 + f3 = 0.
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The moment derivatives take the following form,

dmi

ds
di +mi

d

ds
di. (6.31)

So the moment equations become

A
du1
ds

+ u2u3(C −B)− n2 + l1 = 0, (6.32)

B
du2
ds

+ u1u3(A− C) + n1 + l2 = 0,

C
du3
ds

+ u1u2(B −A) + l3 = 0.

We note that if l3 = 0 (as it will be in all problems this term) then if B = A i.e. a circular
cross-section, then u3 the twist rate is constant. This will be the case in many of the problems we
tackle here. So this equation is often the first one we turn to.

6.3 Semi-inverse problems

It is time to work through some examples. Important cases are from the so called semi-inverse
approach. We specify some specific aspect of the geometry of the tube, i.e. we specify u1, u2 and/or
u3 then we find the forces in the system which permit this state. This means we lose control of
the allowed boundary conditions. Basically such problems say: if we want the tube to take this
shape, then we need to apply these moments/forces to the tubes ends. This is obviously a very
useful category of problem.

6.3.1 Planar curves

We start as simple as possible by assuming no body forces or couples f = l = 0. We assume a
couple in the form

m = Au1d1 +Bu2d2 + Cu3d3. (6.33)

We assume u2 = u3 = 0 such that the tube is planar. With this assumption the third equation of
(6.32) becomes irrelevant. The first and second moment equations become

A
du1
ds

= n2, n1 = 0. (6.34)

With the first force equation of (6.30) is irrelevant the second and third become:

A
d2u1
ds2

− n3u1 = 0, (6.35)

dn3
ds

+A
du1
ds

u1 = 0. (6.36)

We can integrate the second equation of (6.35) to obtain

n3 = −A
2
u21 +D. (6.37)
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where D is a constant of integration. This in turn can yield a non-linear O.D.E for u1. Here we
seek to answer a very specific question. We consider tube which is subject to boundary conditions
that u1(0) = u1(L) = 0, that is it is forced to straighten out at its ends. We also assume it is
subjected to a compressing force −Nẑ at s = L (we press down on the tube). In this case we note
there is an equilibrium u1(s) = 0,∀s which gives n3 = D and satisfies the first equation of (6.35). If
we assume the tube is initially aligned along the ẑ (vertical) direction then n3 = −N as d3 = ẑ in
this case. So under these boundary conditions, there is always an equilibrium in which
the tube is straight, no matter the value of applied the load N.

Euler Buckling revisited.

But our experience of the Euler buckling problem suggests this should not be stable. We can tackle
this problem by perturbing u1 and n3 as

u1 = u01 + εu11, n3 = n03 + εn13. (6.38)

where u01 = 0 and n03 = −N . Then linearising (6.35) we obtain at O(ε)

A
d2u11
ds2

+Nu11 = 0, n13 = 0. (6.39)

The second equation n13 is zero if we do not change the applied load −N (this should be the case
for a stability analysis). The solution to the first equation is

u11 = D1 cos

(√
N

A
s

)
+D2 sin

(√
N

A
s

)
. (6.40)

Applying the boundary condition u1(0) = 0 implies D1 = 0. The second condition u1(L) = 0
implies.

D2 sin

(√
N

A
L

)
= 0⇒

√
N

A
L = nπ, n = 1, 2 . . . . (6.41)

(the n = 0 case is trivial). So, when

N =
n2π2A

L2
. (6.42)

there will be solutions. This first happens for a load N = π2A/L2. In fact for the linear moment m
we use A = EI where E is the Young’s modulus and I the moment of inertia. Then the minimum
force at which we can expect to see non straight configurations form locally is

N =
π2EI

L2
. (6.43)

which is exactly the Euler Buckling criteria derived in chapter 11 of Michaelmas term. There are
two quick points to make about this, neither class as examinable information.

1. The equation in term one was for the horizontal displacement d. We can get this from u11
on the assumption the displacement is small (then we can integrate the kinematic equations
6.21). So the beam equations used in term one are just a linearisation of the tube equations.
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Figure 6.5: The first three figures on the left depict an elastic tube model of plectoneme formation,
the plectoneme is the loop structure at the centre of he tube. These occur spontaneously when a
straight twisted tube (the fourth figure) becomes unstable and kinks (as shown in the fifth figure) .

2. We have no dynamics here (time dependence) whilst the equations in Michaelmas term did.
That meant our stability analysis had no eλt growth/decay. Here stability loss was indicated
by the appearance of new local equlibria. In fact it was the same case in the Michaelmas beam
problem. The analysis we used here is a static stability analysis (as compared to a dynamic
stability analysis). Static stability is less useful in general but in certain circumstances it gives
the same answer......

6.3.2 Twisting instability

We are now going to try solve a problem that related to plectoneme formation in DNA. This
is the formation of loops in the molecule, as indicated in Figure 6.5. It occurs when a straight
molecule/elastic tube is twisted until unstable, when its becomes unstable it loops and forms a
kinked structure. We first consider there being no body forces or couples f = l = 0. We assume an
unstretchable tube whose couple m is

m = Au1d1 +Au2d2 + Cu3d3. (6.44)

To start with we assume u1 = u2 = 0 and have a non zero twist u3 6= 0.

The third moment equation (the third of 6.32) tells us again that du3

ds = 0 so the twisting is
constant. Since u1 = u2 = 0 the first two equations of 6.32) tell us n1 = n2 = 0. The first two force
equations (the first two of 6.30) become redundant. The third equation is just

dn3
ds

= 0. (6.45)
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So n3 is constant. Without loss of generality we consider the tube to be alligned with the ẑ axis
when u1 = u2 = 0 and hence d3 = ẑ. Thus, we have shown that the tube can be in equilibrium for
any give force Nẑ and couple Mẑ (so that u3 = M/C). But again we ask the question, would this
equilibrium be stable? In order to match experimental findings we impose the conditions that the
tube’s curvatures u1 and u2 vanish at the tube’s end points (which is obviously true in this case).

We perform a static stability analysis by expanding as

u1 = εu11, u2 = εu12, u3 = u03 + εu13, (6.46)

n1 = εn11, n2 = εn12, n3 = n03 + εn13, (6.47)

where ε� 1. We assume the applied moment and force stay fixed (so that we can asses stability).
To O(ε) the moment equations are

du11
ds

+ u12u
0
3(C −A)− n12 = 0, (6.48)

du12
ds

+ u11u
0
3(A− C) + n11 = 0, (6.49)

du13
ds

= 0. (6.50)

The third equation here implies u13 = const. In a stability analysis we are assuming the applied
load and couple remain the same. So u13 = 0. To simplify matters a little here we set A = C = 1,

then n12 =
du1

1

ds and n11 = −du1
2

ds . Thus our force equations become:

−d2u12
ds2

− du11
ds

u03 + n03u
1
2 = 0, (6.51)

d2u11
ds2

− du12
ds

u03 − n03u11 = 0, (6.52)

dn13
ds

= 0.

By the same argument as for the couple (the applied force doesn’t change) we have n13 = 0. So the
first two equations remain. This is a linear system of equations so solutions should be in the form
eλs, we are going to encounter a problem however. We cannot solve the system in this form unless
u03. For example try u11 = C1eλs and u12 = C2eλs. Then we would have

−C1λ
2 − C2λu

0
3 + C1n

0
3 = 0, (6.53)

C2λ
2 − C1λu

0
3 − C2n

0
3 = 0 (6.54)

Which can be reduced to
(C2

1 + C2
2 )u03λ = 0 (6.55)

So if C1, C2 and u03 are non-zero then λ = 0. But then we could not satisfy (say) the first equation,
so there can be no solution to this system. Finally I remark that one can find this is the case if A
and C are arbitrary.

This is an example of where a static stability analysis fails. A dynamic approach works better
here but leads to a sixth order polynomial which can only be solved numerically. In fact a general
stability analysis result for this problem is still an open question. I have published some work
myself, but it you can figure out how you will make a name for yourself!
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(a) (b)

Figure 6.6: Panel (a), the untwisted basis (E1,E2) used to frame the DNA mini-circle axis r(s).
Panel (b), the twisted basis (d1,d2) whose rotation describe the DNA’s helical rotation.

6.3.3 Closed DNA rings

From wikipediad: Minicircles are small ( 4kb) circular replicons. They occur naturally in some
eukaryotic organelle genomes. In the mitochondria-derived kinetoplast of trypanosomes, minicir-
cles encode guide RNAs for RNA editing. In Amphidinium, the chloroplast genome is made of
minicircles that encode chloroplast proteins. In short they are an important biological structure.
First we are going to show that our DNA rod model allows for them to exist in its framework. In
practice this means showing a circular twisted rod is in equilibrium.

To describe the mini-circle’s equilibrium we use a circular axis curve:

r(s) = R (cos(s/R), sin(s/R), 0) , d3 = (− sin(s/R), cos(s/R), 0) . (6.56)

Since the curve r(s) is specified (this is a semi-inverse problem), the pair (d1,d2) are determined
up to a single variable. To see this we can construct a basis as follows. The s-derivative of d3 is
orthonormal to d3 when normalised, we label this E1, i.e.,

E1 = −(cos(s/R), sin(s/R), 0). (6.57)

Then we can create an orthonormal frame with a vector E2 = d3 × E1 = (0, 0, 1). This frame is
shown in Figure 6.6(a). If we then choose any vector

f = cos(φ)E1 − sin(φ)E2, φ = const, (6.58)

then the curve r + εf will be a circle. In other words this basis (E1,E2) is completely untwisted
(in fact it is parallel-transported around r). If instead we made φ a function of s and had it satisfy
periodic conditions the form

φ(s) = φ(2πR) + 2nπ,
dφ

ds
|s=0 =

dφ

ds
|s=2πR, (6.59)
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where n is an integer representing the number of turns of the frame (the number of full turns of the
DNA axis). then the curve r + εf would rotate around the axis curve r(s) and form a differentiable
curve, as shown in Figure 6.6(b). Thus is could be used to represent helical DNA. In fact we can
write the basis, (d1,d2) as a rotation of the basis (E1,E2), e.g.

d1 = cosφ(s)E1 + sinφ(s)E2 (6.60)

d2 = − sinφ(s)E1 + cosφ(s)E2. (6.61)

If for example we differentiate d1 with respect to s we obtain

d

ds
d1 =

dφ

ds
(sinφE1 + cosφ(s)E2) + cos(φ)

dE1

ds
, (6.62)

d

ds
d1 =

dφ

ds
d2 −

cosφ

R
d3. (6.63)

A comparison to (6.5), from which

d

ds
d1 = u3d2 − u2d3, (6.64)

gives u3 = dφ
ds and u2 = cos(φ)/R. A similar calculation involving the derivative of d2 tells us

u1 = sin(φ)/R. We can now check if this is consistent with the mechanics equations. We once again
assume an unstretachble rod with a linear constitutive moment

m = Au1d1 +Bu2d2 + Cu3d3. (6.65)

We also assume no external body forces f or couples l.
We now substitute our forms of (u1, u2, u3) into the moment equations (6.32 to find

A
dφ

ds

cos(φ)

R
+

cos(φ)

R

dφ

ds
(C −B) = n2, (6.66)

−B dφ

ds

sin(φ)

R
+

sin(φ)

R

dφ

ds
(A− C) = −n1,

C
d2φ

ds2
+

sinφ cosφ

R2
(B −A) = 0.

We are, in the first instance, going to consider the case A = B, for which we find φ = c1s+ c2, the
constant c2 is not really important here, but periodicity requires that c1 = n/R for n integer. We
also find that

n1 =
nC

R2
sinφ, n2 =

nC

R2
cosφ, (6.67)

(again this requires that A = B). Then we must still check these forms of n1 an n2 are consistent
with the force equations, there is no guarantee this is the case with the semi inverse method, and
in fact we will see later this shape cannot be an equilibrium if B 6= A [see problem class]. Writing
nc = nC/R2 and dφ/ds = φc, a constant, the force equations become

ncφc cosφ− ncφc cosφ+ n3 cosφ/R = 0, (6.68)

−ncφc sin(φ) + ncφc sinφ− n3 sinφ/R = 0,

dn3
ds
− nc
R

sinφ cosφ+
nc
R

cosφ sinφ = 0.
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So n3 is a constant from the third equation and 0 from the first two. Hence this twisted circular
tube, used to represent a DNA minicircle if it has equal bending coefficients. It is not a reasonable
assumption in reality. DNA is composed of a pair of chains linked by covalent bonds. This means
it has a sort of flat-ish cross section and there would naturally be a preferential bias in its bending.

DNA is a coild-coil!

In the final problem class of term (and in the extra problem sets) we will see that if A 6= B then this
mini-circle solution, with a circular axis, is not valid. Basically there needs to be a non-constant
force n3 which balances the forces due to the nonuniform s=twisting. But because the axis is
circular it cannot generate the appropriate balancing force. The implication being that the axis
curve would need to not be planar. In fact one can show that there are solutions where the axis is
itself a helix (although they are much more intricate) . This is an example of a coiled-coil structure
and indeed although it is not often taught at high-school/A-level, DNA itself has a coiled coil shape,
not a pure helical shape.

Curvature and Torsion

In the previous example the functions u1, u2 and u3 had restricted values, due to fact we had
assumed the shape of the curve to be circular (i.e. we took a semi-inverse approach). More
specifically, we defined our basis as

d1 = cosφ(s)E1 + sinφ(s)E2 (6.69)

d2 = − sinφ(s)E1 + cosφ(s)E2. (6.70)

and found that u1 = κ sin(φ), u2 = κ cos(φ) and u3 = dφ
ds , so the only degree of freedom was φ, the

rotation of the frame pair (E1,E2) around the axial direction d3. This represents the fact that we
can determine the shape of the rod/tube’s axis, but there is still freedom for the material discs to
rotate whilst keeping this axial shape (the curve r(s) fixed). One should then expect that we could
do something similar for more complex axial curves r.

Getting a frame (E1,E2) from an arbitrary curve

From a given curve r(s) we can determine a unit tangent vector:

d3(s) =
dr

ds
. (6.71)

Since d3 is a unit vector, d3 · d3 = 1, and its derivative is normal to d3, i.e.

d

ds
d3 · d3 = 2

d2r

ds2
· dr

ds
= 0. (6.72)

So we can always set E1 = d2r
ds2 /

∣∣∣d2r
ds2

∣∣∣ and we can write d
dsd3 = κE1, where κ is the curvature of

the curve r (in the rate of rotation of d3). We create a frame as E2 = d3 ×E1, then, from this we
can obtain the more general in-plane frame vectors (d1,d2) by rotation

d1 = cosφE1 + sinφE2, d2 = − sinφE1 + cosφE2. (6.73)
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We differentiate d1 and d2 to get the curvatures (u1, u2) and the twist u3:

d

ds
d1 =

dφ

ds
(− sinφE1 + cosφE2) + cosφ

d

ds
E1 + sinφ

d

ds
E2, (6.74)

=
dφ

ds
d2 + cosφ

d

ds
E1 + sinφ

d

ds
E2,

d

ds
d2 = −dφ

ds
d1 − sinφ

d

ds
E1 + cosφ

d

ds
E2.

Since E1 is also a unit vector, and hence dE1/ds is normal toE1, it can only have components along
d3 and E2 (but not E1). In fact it can be written as:

d

ds
E1 = −κd3 + τE2. (6.75)

To see this we note that, as E1 · d3 = 0, we find, from differentiating that

d

ds
E1 · d3 = − d

ds
d3 ·E1 = −κ. (6.76)

and we have defined τ to be:

τ =
dE1

ds
·E2, (6.77)

a quantity which we can calculate directly from r. The quantity τ is commonly called the torsion
in the literature. We note that since E2 = d3 ×E1 we have

d

ds
E2 = −τE1. (6.78)

Then a comparison of (6.74) with the equations

d

ds
d1 = −u2d3 + u3d2,

d

ds
d2 = u1d3 − u3d1,

d

ds
d3 = −u1d2 + u2d1, (6.79)

gives

u1 = κ(s) sinφ(s), u2 = κ(s) cosφ(s), u3 = τ(s) +
dφ

ds
, (6.80)

Thus we see that τ is the rate of rotation of the pair (E1,E2) around d3 (it so happens it is zero for
the planar circle). The critical point here is that κ and τ are determined entirely from r, then the
function φ is the so-called over-twist, i.e. the quantity that allows use to have arbitrary rotations
of the tube’s body. It is φ which must be solved for in semi-inverse problems. We will now use this
to perform the stability analysis of the twisted ring solution we found in the previous section.

6.3.4 Stability analysis of the ring solution

It will be convinient to cast the equilibriium equations (6.30) and (6.32) as euqations relating κ, τ
and φ. This can eb done relatively sraightforwardly if we retain the assuptions we used for the
DNA minicircle equilibrium. That is f = l = 0, ν = 1 and

m = A(u1d1 + u2d2) + Cu3d3. (6.81)
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Then we have, from the third moment equation (6.32)

du3
ds

= 0,⇒ dφ

ds
=

dτ

ds
. (6.82)

and from the first two

n1 = −Adκ

ds
cosφ+ f(s) sinφ, (6.83)

n2 = A
dκ

ds
sinφ+ f(s) cosφ, (6.84)

f(s) = κ

[
A

dφ

ds
− u3(A− C)

]
. (6.85)

The function f(s) is brought in to simplify the algebra in what follows. Then we note the following
linear combinations

n1 sin(φ) + n2 cos(φ) = f, −n1 cos(φ) + n2 sin(φ) = A
dκ

ds
. (6.86)

So from the third of the force equations (6.30) we have

dn3
ds

= −Aκdκ

ds
. (6.87)

If we label the first of (6.30) (1) and the second (2) the, − cosφ(1) + sinφ(2) gives

−dn1
ds

cosφ+
dn2
ds

sinφ+ fu3 − n3κ = 0 (6.88)

and sinφ(1) + cosφ(2) gives

dn1
ds

sinφ+
dn2
ds

cosφ−Au3
dκ

ds
= 0 (6.89)

With a little algebra can simplify the derivative combinations:

−dn1
ds

cosφ+
dn2
ds

sinφ = A
d2κ

ds2
− f dφ

ds
, (6.90)

dn1
ds

sinφ+
dn2
ds

cosφ = A
dκ

ds

dφ

ds
+

df

ds
. (6.91)

So that finally we have the following system

A
d2κ

ds2
− f dφ

ds
+ fu3 − n3κ = 0, (6.92)

df

ds
−Aτ dκ

ds
= 0, (6.93)

dn3
ds

= −Aκdκ

ds
. (6.94)

We now linearise

τ = ετ1, u3 =
m

R
+ εu13, κ = 1/R+ εκ1,

dφ

ds
=
m

R
+ ε

dφ1

ds
, n3 = εn13. (6.95)
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where m the number of full twists of the minicircle. Note we do not linearise n1 and n2 as they
have been reduced from our general equations. We alreay know u13 is constant. The first equation,
to linear order, gives

A
d2κ1

ds2
− f0 dφ1

ds
− f1n

R
+ f0u13 +

f1n

R
− n13κ0 = 0, (6.96)

A
d2κ1

ds2
− f0 dφ1

ds
+ f0u13 − n13κ0 = 0, (6.97)

where we have used the fact that n03 = 0.We can differentiate with respect to s:

A
d3κ1

ds3
− f0 d2φ1

ds2
− dn13

ds
κ0 = 0 (6.98)

To linear order the third equation is
dn13
ds

= −A
R

dκ1

ds
. (6.99)

(as κ0 is constant). So our κ1 equation becomes

A
d3κ1

ds3
− f0 d2φ1

ds2
+

A

R2

dκ1

ds
= 0. (6.100)

We see to linear order, the second equation becomes

df1

ds
= 0. (6.101)

So we just need to lienarise f . We have, as u03 = dφ0

ds = m/R

f0 =
mC

R2
, f1 =

Cmκ1

R
+

1

R

[
A

dφ1

ds
− u13(A− C)

]
. (6.102)

As u13 is constant we find
df1

ds
=
Cm

R

dκ1

ds
+
A

R

d2φ1

ds2
= 0. (6.103)

So finally we have our O.D.E for κ1 :

d3κ1

ds3
+

1

R2

[
m2C2

A2
+ 1

]
dκ1

ds
= 0. (6.104)

This is an equation in the form κ′′′+γ2κ′ = 0 with γ constant. Thus it admits soltuons in the form
eλs so,

λ(λ2 + γ2) = 0. (6.105)

So λ = 0,±iγ. Then the solution takes the form

C1 cos(γs) + C2 sin(γs) + C3. (6.106)

with the Ci constants of integration. If we considered only a constant solution, it would remain
a circle hence since κ = κ0 + εκ1 = 1/R for the circle it would be that C3 = 0. Thus we need
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non-constant solutions. For non trivial solutions periodicitiy κ1(0) = κ1(2πR), so 2πRγ = 2lπ for
l integer. Thus

m2C2

A2
+ 1 = l2. (6.107)

Note if l = 1 it says the original twisting m/R is 0. If however, l = 2 we get

m2 =
3A2

C2
. (6.108)

So the critical number of turns, up to a sign is

m =

√
3A

C
. (6.109)

This is a famous result which has been re-discovered many times over the years. It would appear
the first person to find it was an Australian mathematician called John Henry Mitchell. What is
interesting is the dimensions of the tube are absent. The shorted the tube the faster the rate of turns.
But this then changes the curveature of the linear solution. As far as the stability is concerned its
only the ratio A/C the ratio of the bending stiffness to the twisting stiffness. Essentially if it is
hard to bend and easy to twist it can support alot of twist. Estimates for DNA have this value at
about 2/3 so the critical m would be 7.23 so about 8. That does mean that if the DNA is longer
it should be twisted at a slower rate than if it is shorter.
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