ELEMENTARY NUMBER THEORY AND CRYPTOGRAPHY II SOLUTIONS FOR PROBLEM SHEET 4 EPIPHANY TERM 2015

(1) Assume that we had

$$|x-\frac{p_n}{q_n}|>|x-\frac{a}{b}|.$$

After multiplying with q_n , and noticing that $q_n > 0$ we get

$$|q_n x - p_n| > q_n |x - \frac{a}{b}| > b|x - \frac{a}{b}|$$

where the last inequality follows from the given fact that $b \leq q_n$. Hence we get $|q_n x - p_n| > |bx - a|$. Contradiction.

(2) Compute the first five partial quotients of 1.442 and 1.443:

$$\frac{1442}{1000} = \frac{721}{500} = 1 + \frac{221}{500}; \quad \frac{500}{221} = 2 + \frac{58}{221}; \quad \frac{221}{58} = 3 + \frac{47}{58};$$
$$\frac{58}{47} = 1 + \frac{11}{47}; \frac{47}{11} = 4 + \frac{3}{11}.$$

So 1.442 = [1; 2, 3, 1, 4, ...]. By analogy we get 1.443 = [1; 2, 3, 1, 7...]. Now we have that

$$[1; 2, 3, 1, 4] > 1.443 > x > 1.442 > [1; 2, 3, 1, 7].$$

Therefore the first four partial quotients of x are 1, 2, 3 and 1. However the fifth partial quotient of a number between 1.442 and 1.443 can be anything between 4 and 7. So it is not possible to compute the exact its value if no more information is provided.

(3) If p/q is a convergent of \sqrt{d} then we have by the theorem that

$$|\sqrt{d} - \frac{p}{q}| < \frac{1}{q^2}$$

and hence $|q\sqrt{d} - p| < \frac{1}{q}$. But then

$$|p + q\sqrt{d}| = |(p - q\sqrt{d}) + 2q\sqrt{d}| < \frac{1}{q} + 2q\sqrt{d} < (1 + 2\sqrt{d})q$$

Hence we have

$$|p^2 - dq^2| = |(p - q\sqrt{d})(p + q\sqrt{d})| < \frac{1}{q}(1 + 2\sqrt{d})q = 1 + 2\sqrt{d},$$

which shows the statement of the exercise.

(4) (a) We set $x = [\overline{1;2,3}]$. That is x = [1;2,3,x]. Forming the table

$$a_k: 1 2 3 x p_k: 1 3 10 10x + 3 q_k: 1 2 7 7x + 2$$

That is, x = (10x+3)/(7x+2) gives $7x^2 - 8x - 3 = 0$, $x = (4+\sqrt{37})/7$. Now we have $[3; 6, \overline{1, 2, 3}] = [3; 6, x]$. Again we have

$$a_k: 3 \quad 6 \qquad x$$

$$p_k: 3 \quad 19 \quad 19x + 3$$

$$q_k: 1 \quad 6 \quad 6x + 1$$
That is $y = \frac{19x + 3}{6x + 1} = \frac{19(\frac{4 + \sqrt{37}}{7}) + 3}{6(\frac{4 + \sqrt{37}}{7}) + 1} = \frac{97 + 19\sqrt{37}}{31 + 6\sqrt{37}}$
(b) We set $x = [\overline{1; 2, 1}]$. That is $x = [1; 2, 1, x]$. Forming the table
$$a_k: 1 \quad 2 \quad 1 \quad x$$

 $p_k : 1 \quad 3 \quad 4 \quad 4x + 3$ $q_k : 1 \quad 2 \quad 3 \quad 3x + 2$

That is $x = \frac{4x+3}{3x+2}$, or equivalently we have the equation $3x^2-2x-3 = 0$, the positive solution of which is $x = \frac{2+\sqrt{10}}{3}$. Again as before we obtain that

$$[2;3,\overline{1,2,1}] = \frac{7x+2}{3x+1} = \frac{7\sqrt{10+20}}{3\sqrt{10}+9}.$$

(5) Let us write $r = \frac{a}{b}$, with a, b > 0 and $a, b \in \mathbb{Z}$. Then we have that $a = a_0b + r_0$. In particular if we consider $\frac{1}{r} = \frac{b}{a} \ b > a$, and hence

$$b = 0a + b$$

and then $b = a_0 a + r_0$. That is $1/r = [0; a_0, a_1, a_2, \ldots]$.

- (6) (a) $\sqrt{5} = \mathbf{2} + (\sqrt{5} 2), \quad (\sqrt{5} 2)^{-1} = \sqrt{5} + 2 = \mathbf{4} + (\sqrt{5} 2);$ this relation will appear again and again. Therefore, $\sqrt{5} = [2; \overline{4}].$
 - (b) $\sqrt{7} = \mathbf{2} + (\sqrt{7} 2); \quad (\sqrt{7} 2)^{-1} = (\sqrt{7} + 2)/3 = \mathbf{1} + (\sqrt{7} 1)/3;$ $3/(\sqrt{7} - 1) = (\sqrt{7} + 1)/2 = \mathbf{1} + (\sqrt{7} - 1)/2; \quad 2/(\sqrt{7} - 1) = (\sqrt{7} + 1)/3 =$ $\mathbf{1} + (\sqrt{7} - 2)/3; \quad 3/(\sqrt{7} - 2) = \sqrt{7} + 2 = \mathbf{4} + (\sqrt{7} - 2).$ We obtained again $\sqrt{7} - 2$ and, therefore, from now on the process will be periodic. So, $\sqrt{7} = [2; \overline{1, 1, 1, 4}].$
 - (c) $(1 + \sqrt{13})/2 = 2 + (\sqrt{13} 3)/2; 2/(\sqrt{13} 3) = (\sqrt{13} + 3)/2 = 3 + (\sqrt{13} 3)/2.$ So, we obtained [2; $\overline{3}$].
 - (d) $(5 + \sqrt{37})/2 = 5 + (\sqrt{37} 5)/2; 2/(\sqrt{37} 5) = 1 + (\sqrt{37} 1)/6; 6/(\sqrt{37} 1) = 1 + (\sqrt{37} 5)/6; 6/(\sqrt{37} 5) = (\sqrt{37} + 5)/2$ and we obtained [5; 1, 1].
- (7) For any $n \in \mathbb{N}$ we have

$$0 \le |\alpha^{odd} - \alpha^{even}| < |C_{2n+1} - C_{2n}| = |\frac{p_{2n+1}}{q_{2n+1}} - \frac{p_{2n}}{q_{2n}}| = |\frac{(-1)^{2n}}{q_{2n}q_{2n+1}}| < \frac{1}{q_n^2}$$

But as $n \to \infty$ we have that $q_n \to \infty$, and so $\alpha^{even} = \alpha^{odd}$.

- (8) (a) First, prove that x = [2n] satisfies the equation 2n + 1/x = x and therefore equals $n + \sqrt{n^2 + 1}$.
 - (b) Similarly, first prove that x = [n; 2n] satisfies the equation $2nx^2 2n^2x n = 0$.

(c) First, prove that $[\overline{1;2n}] = (n + \sqrt{n^2 + 2n})/2n$.

(9) We know that

$$\left|\sqrt{15} - \frac{p_n}{q_n}\right| < \frac{1}{q_n q_{n+1}}$$

Find that $\sqrt{15} = [3; \overline{1, 6}]$. Then compute the p_n and q_n until $q_n q_{n+1} > 10,000$.

3 1 6 1 6 1 6 a_k : 27312132441677 p_k : 3 4 $q_k: 1$ $1 \ 7$ 8 5563433Because $q_5q_6 = 63 \cdot 433 > 10,000$ we can take $p_5/q_5 = 244/63$. (10) (a) Here $\sqrt{2} = [1; \overline{2}]$ and all solutions appear in the form $(x, y) = (p_{2n-1}, q_{2n-1})$, where $n \in \mathbb{N}$. $\mathbf{2}$ 22222 a_k : 1 73 17 $41 \quad 99$ 239 p_k : 1 25 12 29 70 169 q_k : 1 This gives $q_7 > 200$ and (x, y) = (3, 2), (17, 12), (99, 70).(b) Here $\sqrt{3} = [1; \overline{1, 2}]$ and all solutions appear in the form (p_{2n-1}, q_{2n-1}) . $a_k: 1 1$ 21 21 21 21 $p_k: 1$ 257 19 $26 \ 71 \ 97 \ 265$ 362 $1 \quad 3 \quad 4 \quad 11 \quad 15 \quad 41 \quad 56 \quad 153 \quad 209$ q_k : 1 This gives $q_9 > 200$ and (x, y) = (2, 1), (7, 4), (26, 15), (97, 56).(c) Here $\sqrt{5} = [2; \overline{4}]$ and all solutions appear in the form (p_{2n-1}, q_{2n-1}) . $a_k: 2 4 4$ 4 4 $p_k: 2 9 38$ 16168272305 $q_k: 1 4 17$ This gives $q_5 > 200$ and solutions are (9, 4) and (161, 72). (11) (a) Find that $\sqrt{23} = [4; \overline{1, 3, 1, 8}]$. The period has length n = 4 (even!), therefore the first two positive solutions are (p_3, q_3) and (p_7, q_7) . 3 1 a_k : $4 \ 1 \ 3$ 1 8 1 $4 \quad 5 \quad 19 \quad 24 \quad 211$ 235 916 1151 p_k : 44 49191240 q_k : 1 1 4 5Therefore, $(p_3, q_3) = (24, 5)$ and $(p_7, q_7) = (1151, 240)$. (b) Find that $\sqrt{26} = [5; \overline{10}]$. The period has length n = 1 (odd!), therefore the first two positive solutions are (p_1, q_1) and (p_3, q_3) . a_k : 510 10 105201551 515 p_k : 10 101 1020 q_k : 1 Therefore, $(p_1, q_1) = (51, 10)$ and $(p_3, q_3) = (5201, 1020)$. (c) Find that $\sqrt{33} = [5; \overline{1, 2, 1, 10}]$. The period has length n = 4 (even!), therefore the first two positive solutions are (p_3, q_3) and (p_7, q_7) . $a_k: 5 1$ 21021 1 1 $5 \ 6 \ 17 \ 23 \ 247$ 270787 1057 p_k : 4 43 47137 q_k : $1 \ 1 \ 3$ 184Therefore, $(p_3, q_3) = (23, 4)$ and $(p_7, q_7) = (1057, 184)$.