
ELEMENTARY NUMBER THEORY AND CRYPTOGRAPHY II

SOLUTIONS FOR PROBLEM SHEET 3

EPIPHANY TERM 2015

(1) We consider the cases,
If n = 2m is even then 2n = (2m)2 + 02.
If n = 2m+ 1 is odd then 2n = (2m)2 + (2m)2.

(2) Suppose n = a(a+1)/2+b(b+1)/2 with a, b ∈ Z. Then 4n+1 = 2a(a+1)+
2b(b+1)+1 = (a2−2ab+b2)+(a2+b2+2ab+2a+2b+1) = (a−b)2+(a+b+1)2.

(3) Suppose n = a2 + b2 is the sum of two square with a, b ∈ Z. Note that
a2 or b2 can be congruent only to 0 or 1 modulo 4. Therefore, n can be
congruent only to 0,1 or 2 and can’t be congruent to 3 modulo 4. But one
of four consecutive integers will be always congruent to 3 modulo 4 and
therefore can’t be written as a sum of two squares.

(4) Suppose p = p21 + p22 + p23, where p, p1, p2, p3 are primes. If neither of
p1, p2, p3 equals three then p21 ≡ p22 ≡ p23 ≡ 1 mod 3 and p is divisible by 3,
but p > 22 + 22 + 22 = 12.

(5) Note that b 6≡ 0 mod p (otherwise a ≡ 0 mod p and gcd(a, b) 6= 1). Then
a2 + b2 ≡ 0 mod p implies that (a/b)2 ≡ −1 mod p. So −1 is a quadratic
residue modulo p and p ≡ 1 mod 4. Therefore, all prime divisors of a2 + b2

are congruent to 1 modulo 4. This implies that any divisor of a2 + b2

satisfies the same condition and is therefore a sum of two squares.
(6) If p = 8k + 1 then both −1 and 2 are quadratic residues modulo p. If

p = 8k + 3 then both −1 and 2 are not quadratic residues modulo p.
Therefore, in both above cases −2 is a quadratic residue modulo p. Now
mimic the proof of Theorem that p = a2+b2 if p ≡ 1 mod 4 (or equivalently,
if −1 is a quadratic residue modulo p).

Let α ∈ Z be such that α2 is congruent to -2 modulo p. Then x2 +2y2 ≡
(x− αy)(x+ αy) mod p.

Consider the set S = {(x0, y0) | 0 6 x0, y0 <
√
p}.

Then S contains more than
√
p · √p = p elements and there are two

different elements (x1, y1), (x2, y2) ∈ S such that

x1 − αy1 ≡ x2 − αy2 mod p.

Therefore, for x0 = x1 − x2 and y0 = y1 − y2, we have −√p < x0, y0 <
√
p,

(x0, y0) 6= (0, 0), and x20 + 2y20 ≡ (x0 − αy0)(x0 + αy0) ≡ 0 mod p.
But this means that 0 < x20 + 2y20 < 3p and, therefore, x20 + 2y20 equals

to either p or 2p. In the first case our problem is solved. In the second case
x0 is divisible by 2 and substituting x0 = 2x1 we obtain y20 + 2x21 = p.

(7) We note that

22n+1 = (22n−k + 2k−1)2 − (22n−k − 2k−1)2

Hence for any given n, and for k = 1, . . . , n we get n different ways to write
the integer 22n+1 as the difference of two squares.
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(8) Since n cannot be written as the sum of two squares then by the theorem in
the lectures there exist a prime p, with p ≡ 3 (mod 4) such that pk|n and
pk+1 6 |n for some odd k. If n could be written as the sum of two squares
of two rational numbers then we would have

n =
(a
b

)2

+
( c
d

)2

with a, b, c, d ∈ Z. This is equivalent to

n(bd)2 = (ad)2 + (bc)2

However when we consider the prime factorization of the above numbers,
in the left hand side of the above equation the prime p appears in an odd
power. However in the right hand side, since the number is the sum of two
squares, has to appear in an even power. Contradiction

(9) Let r be an odd primitive root modulo p. (why does it always exist?) Then
for some integer k > 1 we have

rk ≡ 2 (mod p)

or r2k ≡ 4 (mod p). Moreover we have r
p−1
2 ≡ −1 (mod p). So together

r2k+
p−1
2 + 4 ≡ 0 (mod p)

Since p ≡ 1 (mod p) we can rewrite

r2(k+
p−1
4 + 22 ≡ 0 (mod p)

or (
rk+

p−1
4

)2

+ 22 ≡ 0 (mod p)

So p divides the sum of two squares
(
rk+

p−1
4

)2

+22 which are relative prime

since gcd(r, 2) = 1, and clearly both exceed 3.
(10) We rewrite the equation as

x2 + y2 + z2 + x+ y + z = 1.

We multiply by 4 and get

(2x)2 + (2y)2 + (2z)2 + 4x+ 4y + 4z = 4

and by adding 3 to both sides

(2x)2 + 4x+ 1 + (2y)2 + 4y + 1 + (2z)2 + 4z + 1 = 7

or
(2x+ 1)2 + (2y + 1)2 + (2z + 1)2 = 7.

In particular if there exist x,y,z which solve the original equation then we
could write 7 as the sum of three cubes, which we know it is not possible.

(11) If p = a3+b3 with a, b ∈ N then p = (a+b)(a2−ab+b2) implies that a+b = p
and a2 − ab + b2 = 1. But the second condition gives (a − b)2 + ab = 1,
ab 6 1 and therefore a = b = 1.

(12) (a) 187=3 57+16; 57=3 16+9; 16=1 9+7;
9=1 7+2; 7=3 2+1; 2=2+0. Therefore, 187/57 = [3; 3, 1, 1, 3, 2].

(b) 71=1 55+16; 55=3 16+7; 16=2 7+2;
7=3 2+1; 2=2+0. Therefore, 71/55 = [1; 3, 2, 3, 2].
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(c) 118/303=0 303+118/303; 303/118=2 118+67/118; 118=1 67+51;
67=1 51+16; 51=3 16+3; 16=5 3+1; 3=3+0. Therefore, 118/303 =
[0; 2, 1, 1, 3, 5, 3].

(13) Use the relations p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1 and for k > 2,
pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2:

a)
ak : −2 2 4 6 8
pk : −2 −3 −14 −87 −710
qk : 1 2 9 56 457

and the number equals the last convergent p5/q5 = −710/457.

b)
ak : 4 2 1 3 1 2 4
pk : 4 9 13 48 61 170 741
qk : 1 2 3 11 14 39 170

and the number equals the last convergent p6/q6 = 741/170.

c)
ak : 0 1 2 3 4 3 2 1
pk : 0 1 2 7 30 97 224 321
qk : 1 1 3 10 43 139 321 460

and the number equals the last convergent p7/q7 = 321/460.
(14) Use that q0 = 1 and for k > 2, qk = akqk−1 + qk−2 > 2qk−2 to obtain

q2n > 2n for all n ∈ N. For odd indices use that q2n−1 > q2n−2.

(15) (a) Let [2; 3]. Then the relation x = 2+
1

3 +
1

x

implies that x = 1+
√

15/3.

(b) Let x = [1; 2, 3]. Then x = 1 +
1

2 +
1

3 +
1

x

implies that

ak : 1 2 3 x
pk : 1 3 10 10x+ 3
qk : 1 2 7 7x+ 2

Therefore, x = (10x+3)/(7x+2) gives 7x2−8x−3 = 0, x = (4+
√

37)/7

and x−1 = [0; 1, 2, 3] = (
√

37− 4)/3.


