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SOLUTIONS FOR PROBLEM SHEET 3
EPIPHANY TERM 2015

We consider the cases,

If n = 2m is even then 2" = (2™)2 + (2.

If n = 2m + 1 is odd then 2™ = (2™)% + (2™)2.
Suppose n = a(a+1)/2+b(b+1)/2 with a,b € Z. Then 4n+1 = 2a(a+1)+
2b(b+1)+1 = (a®—2ab+b?)+(a*+b*+2ab+2a+2b+1) = (a—b)?+(a+b+1)%
Suppose n = a? + b2 is the sum of two square with a,b € Z. Note that
a? or b? can be congruent only to 0 or 1 modulo 4. Therefore, n can be
congruent only to 0,1 or 2 and can’t be congruent to 3 modulo 4. But one
of four consecutive integers will be always congruent to 3 modulo 4 and
therefore can’t be written as a sum of two squares.
Suppose p = p? + p3 + p3, where p,p1,pa,p3 are primes. If neither of
p1, P2, p3 equals three then p? = p3 = p3 = 1 mod 3 and p is divisible by 3,
but p > 22 422 + 22 = 12,
Note that b Z 0 mod p (otherwise ¢ = 0 mod p and ged(a,b) # 1). Then
a®? + b* = 0 mod p implies that (a/b)> = —1 mod p. So —1 is a quadratic
residue modulo p and p = 1 mod 4. Therefore, all prime divisors of a? + b?
are congruent to 1 modulo 4. This implies that any divisor of a? + b2
satisfies the same condition and is therefore a sum of two squares.
If p = 8k + 1 then both —1 and 2 are quadratic residues modulo p. If
p = 8k + 3 then both —1 and 2 are not quadratic residues modulo p.
Therefore, in both above cases —2 is a quadratic residue modulo p. Now
mimic the proof of Theorem that p = a?+b2 if p = 1 mod 4 (or equivalently,
if —1 is a quadratic residue modulo p).

Let o € Z be such that a? is congruent to -2 modulo p. Then 22 4 2y? =
(z — ay)(z + ay) mod p.

Consider the set S = {(20,%0) | 0 < 0,0 < \/D}-

Then S contains more than \/p - ,/p = p elements and there are two
different elements (z1, 1), (x2,y2) € S such that

T1 — ay; = T2 — ays mod p.

Therefore, for zg = 1 — x2 and yo = y1 — Y2, we have —/p < z9,%0 < /D,
(%0,90) # (0,0), and 23 + 2y3 = (w0 — ayo)(xo + ayo) = 0 mod p.

But this means that 0 < 23 + 2y2 < 3p and, therefore, 23 + 2y2 equals
to either p or 2p. In the first case our problem is solved. In the second case
¥ is divisible by 2 and substituting zo = 221 we obtain y3 + 227 = p.

We note that

22n+1 — (227),716 + 2]671)2 _ (22n7k _ 2k71)2

Hence for any given n, and for k = 1,...,n we get n different ways to write
the integer 22"*! as the difference of two squares.
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Since n cannot be written as the sum of two squares then by the theorem in
the lectures there exist a prime p, with p = 3 (mod 4) such that p*|n and
pF*t1 fn for some odd k. If n could be written as the sum of two squares
of two rational numbers then we would have

o= () +(5)

with a, b, c,d € Z. This is equivalent to

n(bd)* = (ad)® + (bc)?
However when we consider the prime factorization of the above numbers,
in the left hand side of the above equation the prime p appears in an odd
power. However in the right hand side, since the number is the sum of two
squares, has to appear in an even power. Contradiction
Let r be an odd primitive root modulo p. (why does it always exist?) Then
for some integer k£ > 1 we have

™ =2 (mod p)
or r2* = 4 (mod p). Moreover we have r*° = —1 (mod p). So together
P2 L4 =0 (mod p)
Since p =1 (mod p) we can rewrite
P2 4 92 = (mod p)

or
12
(r’“‘%l) +22=0 (mod p)

—1
kB
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So p divides the sum of two squares (r ) +22 which are relative prime

since ged(r,2) = 1, and clearly both exceed 3.
We rewrite the equation as

P24+ e +y+z2=1.
We multiply by 4 and get

(22)% + (2y)* + (22)? + 4o + 4y + 42 =4
and by adding 3 to both sides

(20) 2+ 4z +1+ 2y)° +4y + 14+ (22)2 +42+1=7

or
r+1)2+ 2y +1)*+(22+1)2=7.

In particular if there exist x,y,z which solve the original equation then we
could write 7 as the sum of three cubes, which we know it is not possible.
If p = a®>+b3 with a,b € N then p = (a+b)(a?—ab+b?) implies that a+b = p
and a? — ab + b*> = 1. But the second condition gives (a — b)? + ab = 1,
ab < 1 and therefore a = b = 1.

(a) 187=3 57+16; 57=3 16+9; 16=1 9+T;

9=1 742; 7=3 2+1; 2=2+40. Therefore, 187/57 = [3;3,1,1,3,2].
(b) 71=1 554+16; 55=3 16+7; 16=2 7+2;

7=3 2+1; 2=2+40. Therefore, 71/55 = [1;3,2,3,2].
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(¢) 118/303=0 303+118/303; 303/118=2 118+67/118; 118=1 67+51;
67=151+16; 51=3 16+3; 16=5 3+1; 3=3+0. Therefore, 118/303 =
0;2,1,1,3,5,3].

(13) Use the relations pg = ag, go = 1, p1 = apa1 + 1, ¢1 = a1 and for k > 2,
Pk = QkPk—1 + Pr—2 and qx = arqr—1 + qr—2:
ag: —2 2 4 6 8
a) pr: —2 -3 —14 —-87 -—-710
g : 1 2 9 56 457
and the number equals the last convergent ps/qs = —710/457.
a,: 4 2 1 3 1 2 4
b) pr: 4 9 13 48 61 170 741
q.: 1 2 3 11 14 39 170
and the number equals the last convergent pg/qs = 741/170.
ar: 0 1 2 3 4 3 2 1
¢) pp: 0 1 2 7 30 97 224 321
g : 1 1 3 10 43 139 321 460
and the number equals the last convergent p7/q; = 321/460.
(14) Use that go = 1 and for k > 2, & = axqr—1 + qr—2 = 2qr—2 to obtain
q2n, = 2™ for all n € N. For odd indices use that ¢2,,—1 > gon_o.

1
(15) (a) Let [2;3]. Then the relation x = 2+ 1 implies that x = 14++/15/3.

3+ =
x

1
b) Let x = [1;2,3]. Then x = 1 + ————— implies that
1
2 -
+ 1
3+ —
x
a,: 1 2 3 x
pr: 1 3 10 10x+3
a: 1 2 7 Tx+2

Therefore, z = (10x+3)/(7z+2) gives 722 —82—3 = 0, x = (4+/37)/7
and 271 = [0;1,2,3] = (V37 — 4)/3.



