
ELEMENTARY NUMBER THEORY AND CRYPTOGRAPHY II

SOLUTIONS FOR PROBLEM SHEET 1

EPIPHANY TERM 2015

(1) (a) Since 5987 ≡ 3 (mod 4), we know that
(

−1
5987

)
= −1, and hence the

congruence has no solution. (Note that 5987 is a prime.)
(b) Since 6780 ≡ −1 (mod 6781) and the latter is ≡ 1 (mod 4), we find(

−1
6781

)
= 1, and so this congruence does have a solution. (Note that

6781 is a prime.)
(c) x2 + 14x − 35 ≡ 0 can be rewritten as (x + 7)2 ≡ 84, so we need to

figure out whether 84 is a QR modulo 337. We get( 84

337

)
=

( 22

337

)( 3

337

)( 7

337

)
,

and invoking the quadratic reciprocity law, we find that( 3

337

)
= +

(337

3

)
= +

(1

3

)
= +1

as well as ( 7

337

)
= +

(337

7

)
= +1

and so the answer is yes, as( 84

337

)
= 1 · 1 · 1 = 1 .

[In fact, since 742 ≡ 84 (mod 337), the natural answer is x = 74− 7 =
67. ]

(d) We rewrite it as (x − 32)2 − 322 + 943 = (x − 32)2 − 81 ≡ 0 which
obviously has solutions x − 32 ≡ ±9 (mod 3011) so one possibility is
x = 41, and another one is x = 23.

(2) (a) The quadratic residues are (the classes of) 1, 2, 3, 4, 6, 8, 9, 12, 13,
16, 18, while the non-residues are given by their negatives modulo 23
(as −1 is not a square mod 23).

(b) Since 7 is a NR and 710 = (75)2 is a QR modulo 23, we know that
711 = NR×QR = NR.

(c) Since 2 is a QR and 5 is a NR modulo 23, we get
( 2

23

)
= 1 and( 5

23

)
= −1, so using the multiplicativity of the Legendre symbol we

find, for any k, ` ∈ Z(
2k · 5`

23

)
=

(
2

23

)k (
5

23

)`

= (−1)` .

(Note that (−1)a = (−1)−a.)
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(3) (a) We count the number of integers with residue larger 11/2 in {8 ≡
8, 16 ≡ 5, 24 ≡ 2, 32 ≡ 10, 40 ≡ 7} which turns out to be 3, hence( 8

11

)
= −1.

(b) Similarly, we find {7, 1, 8, 2, 9, 3}, and again
( 7

13

)
= −1.

(c) Here we get {5, 10, 15, 1, 6, 11, 16, 2, 7}, and so
( 5

19

)
= 1 (indeed, e.g.

81 ≡ 5 (mod 19)).
(d) Finally, we find {6, 12, 18, 24, 30, 5, 11, 17, 23, 29, 4, 10, 16, 22, 28}, and

hence
( 6

31

)
= −1.

(4) Note that for an odd prime p, p−1
2 is even if and only if p ≡ 1 (mod 4).

(a) Using that 101 ≡ 1 (mod 4), we get( 65

101

)
=

( 5

101

)( 13

101

)
=

(101

5

)(101

13

)
=

(1

5

)( 2

13

)( 5

13

)
=

= (−1)
132−1

8

(13

5

)
= −

(3

5

)
= 1 .

Here we have used
(

2
p

)
(−1)

p2−1
8 for an odd prime p, which we have

seen is equivalent to(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8)

(b) Using again that 101 ≡ 1 (mod 4), we get( 101

2011

)
=

(2011

101

)
=

(−9

101

)
=

(−1

101

)
= 1 .

(c) In a similar way, we consider(111

641

)
=

( 3

641

)( 37

641

)
=

(641

3

)(641

37

)
=

(2

3

)( 3

37

)(22

37

)
= −1 ,

since 2 is quadratic non-residue modulo 3, and
(

3
37

)
=

(
37
3

)
[[ as 37 ≡ 1

(mod 4) ]] which is obviously a quadratic residue modulo 3 [[ as 37 is
also congruent to 1 modulo 3 ]] .

(d) Finally,
(31706

43789

)
= −1 (note 31706 = 2 · 83 · 191 and check that( 2

43789

)
= −1,

( 83

43789

)
=

( 191

43789

)
= 1).

(5) Since 3 ≡ 3 (mod 4) the Quadratic Reciprocity Law implies that(
3

p

)
=

{ (
p
3

)
if p ≡ 1 (mod 4)

−
(
p
3

)
if p ≡ 3 (mod 4)

But p ≡ 1 (mod 3) or p ≡ 2 (mod 3). Hence in the first case we have(
p
3

)
= 1 and in the second case we have

(
p
3

)
=

(
2
3

)
= −1. Hence we have

that
(

3
p

)
= 1 if and only if (p ≡ 1 (mod 4) and p ≡ 1 (mod 3)) or (p ≡ 3

(mod 4) and p ≡ 2 (mod 3)). The first condition is equivalent to p ≡ 1

(mod 12) and the second to p ≡ −1 (mod 12) (why?). Hence
(

3
p

)
= 1 if

and only if p ≡ ±1 (mod 12). for the rest, namely p ≡ ±5 (mod 12) we
have that it is −1.
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(6) (a) We first note that 4m ≡ 4 (mod 12) for any m. Indeed this is clear
for m = 1, and for m ≥ 2 we have 4m − 4 == 4(4m−1 − 1) = 4(4 −
1)(4m−2 + · · ·+ 1), and hence it is divisible by 12. Then we have

Fn ≡ 22
n

+ 1 ≡ 22m + 1 ≡ 4m + 1 ≡ 4 + 1 ≡ 5 (mod 12)

(b) This follows by the previous question immediately.

(c) By the Eule’s Criterion we have that 3
Fn−1

2 ≡
(

3
Fn

)
≡ −1 (mod Fn).

But since we are taking Fn prime we have that φ(Fn) = Fn − 1, and

hence we obtain 3
φ(Fn)

2 ≡ −1 (mod Fn). From this we conclude that
3 has order φ(Fn) and hence is a primitive root modulo Fn. Indeed
for this it is enough to observe that φ(Fn) − 1 = 22

n

has only 2 as a
prime in its prime factorization, hence we need to check only whether

3
Fn−1

2 6≡ 1 (mod Fn).
(7) (a) Consider a prime divisor p of n2 + 1. Then we have

n2 ≡ −1 (mod p)

or in other words −1 is QR modulo p. If p = 2 there is nothing to
show. If p is odd then p has to be congruent to 1 modulo 4.

(b) Suppose that there are only finitely many primes of the form 4k + 1.
Let these be p1, p2, . . . , pn. Consider the number

N = (2 · p1 · p2 · . . . · pn)2 + 1.

By part (a) every prime divisor q of N must be of the form 4k + 1
(cannot be two since N is odd). However q is coprime to all num-
bers p1, p2, . . . , pn. Therefore q is not in the list, and so we derive a
contradiction.

(8) This is similar as the last one. Assume there is a finite number of such
primes, say p1, . . . , pn, and consider the N := (4p1p2 · · · pn)2 − 2. There
exists at least one odd prime divisor of (since N cannot be a power of
2), which implies that (4p1p2 · · · pn)2 ≡ 2 (mod p) or equivalently that(

2
p

)
= 1, and hence p ≡ ±1 (mod 8). If all prime divisors of N were of the

form 8k + 1, then N would have been of the form 16m + 2, which is not
possible since N is of the form 16m− 2. Hence there is at least one prime
divisor of the form 8k − 1, and this cannot be any of the ones in teh list.
Contradiction.

(9) (a) This is clear since if x2 ≡ a (mod pk) has a solution, then so has also
x2 ≡ a (mod p).

(b) We compute

(xk + ykp)2 = x2k + 2xkyp
k + y2p2k = a+ (b+ 2xky)pk + y2p2k

Taking now modulo pk+1, and using the fact that b+2xky ≡ 0 (mod p)
we conclude that x2k+1 ≡ a (mod pk+1).

(c) The theorem follows now by induction, where the inductive step is as
above.

(10) (a) It is enough to observe that the square of an odd integer is congruent
to one modulo 4. And if we are given an a with a ≡ 1 (mod 4), then
we can take as solution 1 or 3.
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(b) We first observe that the square of an odd integer is always congruent
to 1 modulo 8 (Check). Hence if the equation x2 ≡ a (mod 2n) with
n ≥ 3 has a solution then a ≡ 1 (mod 8). For the other direction
we argue as in the previous exercise (9), and use induction. When
n = 3 we can always find a solution to the equation x2 ≡ 1 (mod 8),
actually all 1, 3, 5, 7 are solutions. Now we take an n > 3 and assume
for the induction hypothesis that the congruence x2 ≡ a (mod 2n) has
a solution xn. We write x2n = a+ b2n, and since a is odd, we have that
so is xn. Hence we can solve xny ≡ −b (mod 2) to find a y, and then
set xn+1 = xn + y2n−1. Then one can check, exactly as in (9) that
x2n+1 ≡ a (mod 2n+1), and hence finishing the induction.

(11) This follows by combining the exercises (9) and (10) above. Indeed we
notice that the equation x2 ≡ a (mod n) has a solution if and only if the

equations x2 ≡ a (mod 2k0), x2 ≡ a (mod pk1
1 ), . . . , x2 ≡ a (mod pkrr ) all

have a solution. If k0 = 1 there is no condition on the first congruence in
order to have a solution. The other cases follow from (9) and (10) above.


