Elementary Number Theory and Cryptography, Epiphany 2015

Problem Sheet 1, (Due: Monday Jan 26, at 12:00 in CM116)

Please hand in Problems 1(b), 2(a,b), 3(a), 4(a), 5. The Problems 1(a), 4(b), 6, 7, 9 will be discussed in the tutorials, (depending on time).

- 1. Determine whether each of the following congruences has a solution in integers.
 - (a) $x^2 \equiv -1 \pmod{5987}$,
 - (b) $x^2 \equiv 6780 \pmod{6781}$,
 - (c) $x^2 + 14x 35 \equiv 0 \pmod{337}$,
 - (d) $x^2 64x + 943 \equiv 0 \pmod{3011}$.
- 2. (a) Produce a list of all the QRs and NRs modulo the prime 23.
 - (b) Is 7¹¹ a QR modulo 23? Justify your answer.
 - (c) Determine

$$\left(\frac{2^k \cdot 5^\ell}{23}\right)$$

for arbitrary $k, \ell \in \mathbb{N}$. [Your answer will depend on ℓ and k].

3. Use Gauss lemma to evaluate each of the following Legendre symbols

(a)
$$\left(\frac{8}{11}\right)$$
 (b) $\left(\frac{7}{13}\right)$ (c) $\left(\frac{5}{19}\right)$ (d) $\left(\frac{6}{31}\right)$.

4. Compute the following Legendre symbols:

(a)
$$\left(\frac{65}{101}\right)$$
 (b) $\left(\frac{101}{2011}\right)$ (c) $\left(\frac{111}{641}\right)$ (d) $\left(\frac{31706}{43789}\right)$.

5. Let $p \neq 3$ be an odd prime. Show that

$$\binom{3}{p} = \begin{cases} 1 & : p \equiv \pm 1 \pmod{12} \\ -1 & : p \equiv \pm 5 \pmod{12} \end{cases}$$

- 6. Write $F_n = 2^{2^n} + 1$ for n > 1. Show that
 - (a) $F_n \equiv 5 \pmod{12}$,
 - (b) Assume that F_n is a prime. By using question 5 above conclude that $\left(\frac{3}{F_n}\right) = -1.$
 - (c) Show that 3 is a primitive root modulo F_n when F_n is a prime number.

- 7. (a) Let $n \in \mathbb{N}$. Show that for each prime divisor p of the number $n^2 + 1$ we have either p = 2 or $p \equiv 1 \pmod{4}$. [Hint: show that -1 is a QR modulo p].
 - (b) By using (a) or otherwise show that there are infinitely many primes of the form $4k + 1, k \in \mathbb{N}$.
- 8. Show that there are infinitely many primes of the form 8n 1 for $n \in \mathbb{N}$. [Hint: Assume there exist finitely many, say p_1, p_2, \dots, p_k , and consider the integer $N = (4p_1p_2 \dots p_k)^2 - 2$].
- 9. The aim of the following exercise is to prove the following theorem

Theorem: If p is an odd prime and gcd(a, p) = 1, then the congruence

$$x^2 \equiv a \pmod{p^n}$$

for $n \ge 1$ has a solution if and only if $\left(\frac{a}{p}\right) = 1$. Show the following

- (a) Show that if $x^2 \equiv a \pmod{p^n}$ has a solution then $\left(\frac{a}{p}\right) = 1$.
- (b) Assume that $x_k \in \mathbb{Z}$ is a solution of $x^2 \equiv a \pmod{p^k}$ for some $k \in \mathbb{N}$. Show that $x_{k+1} := x_k + yp^k$ is a solution of the congruence $x^2 = a \pmod{p^{k+1}}$. Here y is defined as follows: Write $x_k^2 = a + bp^k$, and let y be defined by the equation $2x_ky \equiv -b \pmod{p}$ (Why is this well-defined?).
- (c) Conclude the theorem.
- 10. (a) Let a be an odd integer. Show that $x^2 \equiv a \pmod{4}$ has a solution if and only if $a \equiv 1 \pmod{4}$.
 - (b) Show that $x^2 \equiv a \pmod{2^n}$ for $n \ge 3$ has a solution if and only if $a \equiv 1 \pmod{8}$.
- 11. Let $n \in \mathbb{N}$ and assume $n = 2^{k_0} p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, with $p_i \neq p_j$ for $i \neq j$. For an $a \in \mathbb{Z}$ with gcd(a, n) = 1 show that the equation

$$x^2 \equiv a \pmod{n}$$

is solvable if and only if $\left(\frac{a}{p}\right) = 1$ for $i = 1, 2, \dots r$ and

$$a \equiv \begin{cases} 1 \pmod{4} & : k_0 = 2\\ 1 \pmod{8} & : k_0 \ge 3 \end{cases}$$