
ELEMENTARY NUMBER THEORY AND CRYPTOGRAPHY II

SOLUTIONS FOR PROBLEM SHEET 4

MICHAELMAS TERM 2014

(1) (a) For the last 2 digits result when we should take congruences modulo
100.
Since ϕ(100) = 100 · (1− 1

2 )(1− 1
5 ) = 40, we have

340 ≡ 1 (mod 100)

by Euler–Fermat, and hence the same holds for the tenth powers of
the LHS.

(b) Successive squaring gives:

52 ≡ 2 (mod 23) , 54 ≡ 4 (mod 23) , 58 ≡ 16 (mod 23) ,

and hence

513 = 58+4+1 = 58 · 54 · 5 ≡ 16 · 4︸ ︷︷ ︸
≡−5

·5 ≡ −25 ≡ 21 (mod 23) .

(c) To make calculations slightly shorter we notice that 2011 ≡ −2 (mod 2013)
Then repeat the same procedure as before.

k 0 1 2 3 4 5 6 7 8 9 10

(−2)2
k

-2 4 16 256 1120 301 16 256 1120 301 16

(Note that after k = 6 the sequence (−2)2
k

(mod 2013) becomes pe-
riodic.) Hence we read off

(−2)2012 ≡ 16 · 256 · 1120 · 16 · 256 · 1120 · 301 · 16 ≡ 301 (mod 2013).

(2) (a) We know, as a consequence of Fermat, that 2k·16 ≡ 1 (mod 17). The
algorithm for computing kth roots modulo m in the lectures suggested
(here r = 2, k = 11, m = 17) first to compute ϕ(m) (here = 16), then
to find an a with 1 ≤ a ≤ ϕm, such that ak ≡ 1 (mod ϕ(m)). Here we
have a = 3 suffice), and then to compute ra (mod m) (here 23 = 8).
Indeed 811 can be written as 88+2+1, and we get, by successive squar-
ing, 82 ≡ 13, 84 ≡ 132 = 169 ≡ −1 and 88 ≡ 1 (mod 17), so
811 ≡ 8 · 13 = 104 ≡ 2 (mod 17).

(b) As above we get ϕ(23) = 22 and then by Euclidean algorithm we
find1 = 7 · 22 − 9 · 17. Hence we have a ≡ −9 ≡ 13 (mod 22). Hence
we have that a solution given by (note that the computations below
have been done in 1(b)
x ≡ 513 ≡ 21 (mod 23).

(c) ϕ(29) = 28, 1 = 1 · 28− 3 · 9 = 25 · 9− 8 · 28,

x ≡ 1225 (mod 29).

We can calculate it by the method of successive squaring:
1



2 ENTC II, M’MAS 2014, SOLUTIONS 4

k 0 1 2 3 4

122
k

12 28 1 1 1

So x ≡ 1225 ≡ 12 (mod 29).

x can also be calculated by using value a = −3 instead of a = 25:
x ≡ 12−3 ≡ 12 (mod 29). To calculate the negative power we need to
solve the linear congruence 123x ≡ 1 (mod 29).

(3) There are four solutions to this congruence: x ≡ 3, 9, 15, 21 (mod 24). To
get this one can either use the brute force or use the following arguments:

x2 − 9 = (x− 3)(x + 3) ≡ 0 (mod 24).

Therefore 24|(x − 3)(x + 3). Now consider each prime factor from the
factorization of 24 separately. From 3|(x − 3)(x + 3) we have that either
x ≡ 3 (mod 3) or x ≡ −3 (mod 3). In both cases we get x ≡ 0 (mod 3).
Finally note that each odd number x satisfy 8|(x − 3)(x + 3). Hence the
solutions x should satisfy x ≡ 0 (mod 3) and x ≡ 1 (mod 2) which, modulo
24, gives us the results above.

Remark. Here we see that the number of solutions modulo 24 is bigger
than the degree of the congruence. It shows that for the composite modules
the theorem of Lagrange from the lectures is not true.

(4) An inverse of 3 in Z/22Z is given by −7, as 3(−7) = −21 ≡ 1 (mod 22).
Now x = −7 ≡ 15 (mod 22) satisfies

8x ≡ (23)x = 23x ≡ 245 ≡ 222 · 2 ≡ 2 (mod 23) ,

the last congruence due to Fermat.

(5) (a) We have

ord13(5) = 4 use, e.g. 52 ≡ −1 (mod 13)),

and

ord13(7) = 12.

It suffices to check that 74 = (72)2 ≡ (−3)2 6≡ 1 (mod 13) and 76 =
74 · 72 ≡ 9 · (−3) 6≡ 1 (mod 13), since the order of 7 modulo 13 must
divide ϕ(13) = 12.

Furthermore, we have

ord13(9) = 3 use, e.g. 9 · 92 ≡ 9 · 3 ≡ 1 (mod 13)).

(b) The order of 11 modulo 641 must divide 640 = 27 · 5, so we look at all
the binary powers 2k of both 11 and of 115 for k = 0, . . . , 7, using our
squaring method.
We get for

112
2

≡ 539 ≡ −102 (mod 641) ,

and hence

115 ≡ (−102) · 11 = −1122 ≡ 160 (mod 641)

together with its inverse

11−5 ≡ −4 (mod 641) .
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For the further binary powers of 11, we find

112
3

= (114)2 ≡ (−102)2 ≡ 148 (mod 641) ,

112
4

≡ 1482 ≡ 110 (mod 641) ,

112
5

≡ 1102 ≡ 562 (mod 641) ,

112
6

≡ 5622 ≡ 472 (mod 641) ,

112
7

≡ 4722 ≡ 357 (mod 641) .

None of the above is 1 (mod 641), hence 5 must divide ord641(11).
We now compute the powers of 115. Since the order of 11 is the same
as the order of 11−1, we could just as well take successive squares of
11−5 ≡ −4, which is simpler:

(11−5)2 ≡ 16 , (11−5)4 ≡ 256 , (11−5)8 = 65536 ≡ 154 (mod 641) ;

now squaring the latter gives (11−5)16 ≡ 1542 ≡ −1 (mod 641), and
so, without further squaring we can already deduce that the order of
11−1, and hence also of 11, is 5 · 32, hence 160.

(6) We find ord21(2) = 6 (look at the orders of the individual prime powers
dividing the modulus 21, and take the lcm of the results).

Furthermore, for ord25(2) we have to check only the powers of two with
exponent dividing ϕ(25) = 20, i.e., exponents 1, 2, 4, 5, 10. The correspond-
ing powers (i.e., 2, 4, 16, 32, 1024), are clearly 6≡ 1 (mod 25) hence we can
deduce ord25(2) = 20.

For ord32(3), we only need to check the powers 1, 2, 4, 8 (all the divisors
of ϕ(32) = 16 different from 16 itself), giving the numbers 3, 9, 81 ≡ −15,
(−15)2 = 225 ≡ 1 (mod 32). Hence the order is ord32(3) = 8.

Finally, the order of 3 modulo 7 is 6, and its order modulo 2 is equal to 1,
hence ord14(3) = lcm(6, 1) = 6. (Indeed, 36 = 272 ≡ (−1)2 = 1 (mod 14),
but neither 32 nor 33 satisfies that congruence.)

(7) (a) We’ll try different numbers between 2 and 16 one by one until we find a
number a such that ord17(a) = 16. Since ord17(a)|16 so the candidates
for the order are the powers of 2 only.
Let’s firstly try a = 2:

21 ≡ 2, 22 ≡ 4, 24 ≡ 16 ≡ −1, 28 ≡ 1 (mod 17).

Therefore ord17(2) = 8. Next try a = 3:

31 ≡ 3, 32 ≡ 9 34 ≡ 13, 38 ≡ 16, 316 ≡ 1 (mod 17).

Therefore 3 is the primitive root modulo 17.
(b) We proceed as before. In this case ϕ(23) = 22 = 2 · 11. So to be sure

that given a is a primitive root we need to check that a2 6≡ 1 (mod 23)
and a11 6≡ 1 (mod 23).
For a = 2 we have 211 ≡ 1 (mod 23). So 2 is not a primitive root.
For a = 3 we also have 311 ≡ 1 (mod 23). We do not need to check
a = 4 since 4 = 22 and 2 is not a primitive root. The next candidate
is 5:

52 ≡ 2 (mod 23), 511 ≡ 22 (mod 23).

Therefore 5 answers the question.
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(8) (a) Suppose first that k ≡ 0 (mod ordn(a)). Then we can write k =
mordn(a) for some integer m. Then we have

ak ≡ amordn(a) ≡ (aordn(a))m ≡ 1m ≡ 1 (mod n).

For the other direction, assuming that ak ≡ 1 (mod n) using the di-
vision with remainder we write k = qordn(a) + r with q ∈ Z and
0 ≤ r < ordn(a). But then we have that 1 ≡ ak ≡ aqordn(a)ar ≡
(aordn(a))qar ≡ ar (mod n). Hence ar ≡ 1 (mod n), and 0 ≤ r <
ordn(a). Hence r = 0, and so k ≡ 0 (mod n).

(b) We define d := gcd(b, ordn(a)). Then we may write b = b1d and
ordn(a) = kd. with gcd(b1, k) = 1. Then we have

(ab)k ≡ (ab1d)ordn(a)/d ≡ (aordn(a))b1 ≡ 1 (mod n).

From this and (a) above we conclude that ordn(ab)|k. On the other
hand we have that

abordn(a
b) ≡ (ab)ordn(a

b) ≡ 1 (mod n),

and hence again by (a) we have ordn(a)|bordn(ab). That is kd|b1dordn(ab)
or equivalently k|b1ordn(ab). But gcd(k, b1) = 1 and hence k|ordn(ab).
Hence we can conclude that ordn(ab) = k = ordn(a)/d.

(9) Since 22
n+1 − 1 = (22

n

+ 1)(22
n − 1) we have that 22

n+1 ≡ 1 (mod Fn).
Hence the order of 2 modulo Fn is not larger than 2n+1. But since we
assume that Fn is a prime, we have that

ϕ(Fn) = Fn − 1 = 22
n

,

and it is easy to see that 22
n

> 2n+1 for n > 1. Hence the order of 2 modulo
Fn is smaller than ϕ(Fn). Hence 2 is not a primitive root modulo Fn.

(10) (a) We write d = gcd(ϕ(m), ϕ(n)). By Question 7(a) in Problem Sheet 3
we know that both < varphi(m) and ϕ(n) are even since m,n > 2, and
hence d ≥ 2. Moreover by Question 10 in Problem Sheet 2 we have that

bd = ϕ(m)ϕ(n). In particular we have that b = ϕ(m)ϕ(n)
d ≤ ϕ(m)ϕ(n)

2 .
(b) We have by using Eulers Theorem that

ab ≡ (aϕ(m))ϕ(n)/d ≡ 1ϕ(n)/d ≡ 1 (mod m),

and

ab ≡ (aϕ(n))ϕ(m)/d ≡ 1ϕ(m)/d ≡ 1 (mod n)

(c) We have shown that ab ≡ 1 (mod m) and ab ≡ 1 (mod n), and since
gcd(n,m) = 1 we have also that ab ≡ 1 (mod nm). But by (a) we have

that b ≤ ϕ(m)ϕ(n)
2 = ϕ(nm)

2 < ϕ(nm). And this hold for all a ∈ Z with
gcd(a,mn) = 1. In particular there exist no primitive root modulo nm
with n,m > 2 and gcd(n,m) = 1.

(11) (a) We get the following table
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I(a) 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

(b) We solve 13x ≡ 6 (mod 17) by working with index calculus: the equa-
tion is transformed to

I(13) + I(x) ≡ I(6) (mod ϕ(17)) ,
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i.e.,
4 + I(x) ≡ 15 (mod 16) ,

hence I(x) = 11, for which we read off from the above table x = 7.
[Check gives 13 · 7 = 91 ≡ 6 (mod 17), indeed.]

(c) Similarly, we solve 5x7 ≡ 7 (mod 17) by applying I to both sides and
using the rules of index calculus: we get

I(5) + 7I(x) ≡ I(7) (mod 16) ,

hence (using I(5) = 5 and I(7) = 11)

7I(x) ≡ 6 (mod 16) .

Noting that 7 is its own inverse modulo 16 (as 7 · 7 ≡ 1 (mod 16)), we
need to find x such that I(x) = 42 ≡ 10 (mod 16), whence x = 8.
[Check gives 5 · 87 = 5 · 221 ≡ 5 · 25 = 160 (mod 17), and we only need
to check that 153(= 160− 7) is indeed divisible by 17.]


