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(1) (a) Since gcd(3, 11) = 1, we can write 1 = 3a+ 11b for some a, b ∈ Z, and
then 7a for any such a solves the problem [[ 1 = 3 · 4 + 11 · (−1), x ≡
7 · 4 ≡ 6 (mod 11) ]] .

(b) Again we have:

1 = 13 · 2− 5 · 5; x ≡ −15 ≡ 11 (mod 13).

(2) (a) Apply the Euclidean Algorithm.

2011 = 3 · 663 + 22;

663 = 30 · 22 + 3;

22 = 7 · 3 + 1.

Therefore gcd(663, 2011) = 1 and the linear congruence is solvable.
The solution can be found as follows

1 = 22− 7 · 3 = 22− 7 · (663− 30 · 22)

= 211 · 22− 7 · 663 = 211 · 2011− 640 · 663.

Finally

x ≡ 151 · (−640) ≡ 1899 (mod 2011).

(b) Note that 3|1857, 3|2013 but 3 - 209. Therefore gcd(1857, 2013) - 209
and the congruence does not have solutions.

(3) (a) By a proposition from the lectures, since gcd(2,m) = 1 (by assump-
tion), the “natural” complete set of residues modulo m, given by
{0, 1, . . . ,m − 1}, when multiplied by 2, has still this property (of
being complete).

(b) It is enough to prove that two integers in this set belong to the same
class modulo m. We take 1 and m − 1. Since m > 2 we have that
(m − 1)2 ≡ (−1)2 ≡ 1 (mod m). Hence the set is not a complete set
of residues modulo m.

(4) Let n ∈ N bigger than 1 and write n = pk1
1 p

k2
2 . . . pkr

r with pi 6= pj for i 6= j,
and ki > 1. The we observe that the positive divisors of n are given by
pa1

1 pa2
2 . . . par

r with 0 ≤ ai ≤ ki for i = 1, 2, . . . , r. Then we observe that
τ(n) = (k1 +1)(k2 +1) . . . (kr +1) since this is the number of total divisors.

For σ(n) we claim that σ(n) =
∏r

i=1
p
ki+1

i −1

pi−1 . Indeed if we consider the

product

(1 + p1 + p2
1 + . . .+ pk1

1 )(1 + p2 + p2
2 + . . .+ pk2

2 ) . . . (1 + pr + p2
r + . . .+ pkr

r )
1
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then every positive divisor of n appear once and only once as a term in the
expansion of this product. In particular this product equals to σ(n). Using
the geometric series we can write every term in this product as

1 + pi + p2
i + . . .+ pki

i =
pki+1
i − 1

pi − 1
,

and hence our claim follows. Using now these formulas it is easy to show
that the functions are multiplicative. Indeed let us consider m,n ∈ N with
gcd(m,n) = 1. If one ofm or n is equal to one, it is clear since τ(1) = σ(1) =

1. Hence we take m,n > 1. We moreover write n = pk1
1 p

k2
2 . . . pkr

r with pi 6=
pj for i 6= j, ki > 1, and m = qe11 q

e2
2 . . . qess with qi 6= qj for i 6= j, ei > 1.

Since gcd(m,n) = 1 we have that pi 6= qj for all i, j. In particular we have

that nm = pk1
1 p

k2
2 . . . pkr

r q
e1
1 q

e2
2 . . . qess . Using the formulas above we have

τ(n)τ(m) = (k1 + 1)(k2 + 1) . . . (kr + 1)(e1 + 1)(e2 + 1) . . . (es + 1). But also
τ(nm) = (k1+1)(k2+1) . . . (kr+1)(e1+1)(e2+1) . . . (es+1), and hence τ is

multiplicative. Similarly we have σ(n)σ(m) =
∏r

i=1
p
ki+1

i −1

pi−1 ·
∏s

i=1
q
ei+1

i −1

qi−1 .

But we also have σ(nm) =
∏r

i=1
p
ki+1

i −1

pi−1 ·
∏s

i=1
q
ei+1

i −1

qi−1 , and hence also σ

is multiplicative.

They are not completely multiplicative. For example for p a prime we
have τ(p2) = 3 but τ(p)τ(p) = 2 · 2 = 4 6= 3. Similarly we have σ(p2) =
1 + p+ p2, and σ(p)σ(p) = (1 + p)(1 + p) = 1 + 2p+ p2 6= σ(p2).

(5) We start by observeing that for m,n ∈ N with gcd(m,n) = 1 every positive
divisor d of mn is of the form d1d2 where d1|m and d2|n, and d1, d2 positive,
and gcd(d1, d2) = 1. We consider the function F (n) =

∑
0<d|n f(d). Let

m,n positive integers with gcd(m,n) = 1. We then have

F (mn) =
∑

0<d|mn

f(d) =
∑

0<d1|m,0<d2|n,gcd(d1,d2)=1

f(d1d2).

Using the multiplicativity of f we have that f(d1d2) = f(d1)f(d2), and
hence

F (mn) =

 ∑
0<d1|m

f(d1)

 ∑
0<d2|n

f(d2)

 = F (m)F (n).

Hence F is multiplicative.

We can conclude again that τ and σ are multiplicative by writing τ(n) =∑
0<d|n 1 and σ(n) =

∑
0<d|n d. Since the functions f1(n) = 1 and f2(n) =

n are obviously multiplicative so is also τ and σ.
(6) (a) Using the formula ϕ(n) = n

∏
p|n(1− p−1), we get

ϕ(275) = 275 · 4
5 ·

10
11 = 200.

(b) In this case, we can also use the simple formula for prime powers
ϕ(27) = 27 − 26 = 26(= 64).

(c) Above formula again gives
ϕ(404) = 404 · 1

2 ·
100
101 = 200,

i.e. the same value as for (i), despite their rather different prime
decompositions.
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(7) (a) For ϕ(n) odd, say n = pk1
1 · · · pkr

r we get

ϕ(n) = pk1−1
1 (p1 − 1) · · · pkr−1

r (pr − 1) .

If any pj (1 ≤ j ≤ r) is odd, then pj − 1 is even, and so ϕ(n) is.
Therefore n must be of the form n = 2k, and we have

ϕ(2k) =

{
2k−1 k ≥ 1

1 k = 0

which is odd only if k = 1 (i.e. for n = 2) and for k = 0 (i.e. for
n = 1).

(b) For n = pk1
1 · · · pkr

r (where the pj (j = 1, . . . , r) denote different primes)
we can write

ϕ(n) = pk1
1 · · · pkr

r

(
1− 1

p1

)
· · ·
(

1− 1

pr

)
and so the condition ϕ(n) = n/2 boils down to satisfying the equation

1

2
=

(
1− 1

p1

)
· · ·
(

1− 1

pr

)
.

Clearly, 2 has to occur as one of the prime factors pj [[ multiply both
sides by 2p1 · · · pr to get an equation among integers and then apply
a result [due to Euklid] from an early lecture ]] . Hence, putting p1 = 2
we find

1

2
=

1

2

(
1− 1

p2

)
· · ·
(

1− 1

pr

)
.

But this is only possible if no other prime on the RHS occurs, since
each factor (1 − 1/pj) (j = 2, . . . , r) would make the product on the
right smaller than the number on the left.
Conclusion: n has to be divisible by 2, and no other prime divides n.
Hence the set of all n such that ϕ(n) = n/2 is given by {2k | k ≥ 1}.

(c) Similarly, the condition ϕ(n) = n/3 boils down to

1

3
= (1− 1

p1
) · · · (1− 1

pr
) .

Using the same argument as before, 3 has to occur as one of the prime
factors pj . Hence we can put p1 = 3 (note that we do not order the pj
here) and write

1

3
=

(
1− 1

3

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
=

2

3

(
1− 1

p2

)
· · ·
(

1− 1

pr

)
.

Multiplying both sides by 3/2, we obtain the equation

1

2
=

(
1− 1

p2

)
· · ·
(

1− 1

pr

)
which is essentially the one dealt with in the previous case.
Conclusion: both 3 and 2 must occur as prime factors, and this is
indeed sufficient (check!).
Hence the set of n with ϕ(n) = n/3 is given by {2k · 3` | k, ` ≥ 1}.
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(8) (a) We know from Fermat’s Little Theorem that, since gcd(9, 67) = 1, we
have

a66 ≡ 1 (mod 67) .

By taking higher powers we get

(a66)k ≡ 1 (mod 67) any k ≥ 0 .

Now 728 = 11 · 66 + 2, so we find

9728 = 911·66+2 ≡ (966)11 · 92 ≡ 92 ≡ 14 (mod 67) .

So a = 14.
(b) Sine 6 and 10 are not coprime then Fermat Little Theorem (together

with Euler Theorem) is not applicable. On the other hand just note
that

62 ≡ 6 (mod 10); 63 ≡ 6 (mod 10), . . . ...

6n ≡ 6n−1 · 6 ≡ 6 (mod 10)

for every positive integer n. Therefore the last digit of 6166 is 6.
(c) Since ϕ(10) = 4 then by Euler Theorem we have 74 ≡ 1 (mod 10).

Then if we divide 777 by 4 with the remainder (i.e. 777 = 4k+ r) then
we get

7777

≡ 74k+r ≡ (74)k · 7r ≡ 7r (mod 10).

In order to find r we need to calculate 777 (mod 4). Euler Theorem
in this case gives us 72 ≡ 1 (mod 4) and therefore

777 ≡ 7 ≡ 3 (mod 4).

Finally

7777

≡ 73 ≡ 3 (mod 10).

(9) (a) By Fermat’s Little Theorem, we know that, for any x with gcd(x, 29) =
1, we have x28 ≡ 1 (mod 29), as 29 is prime. Hence also (x28)3 ≡ 1
(mod 29) and so x86 ≡ x3·28 · x2 ≡ x2 (mod 29).
In order to solve x2 ≡ 6 (mod 29), it suffices to check that 2 · 29 + 6 =
82, so the congruence transforms to

x2 ≡ 82 (mod 29).

By subtracting 82 from both sides we get 29|(x − 8)(x + 8) which in
view of primality of 29 implies 29|(x− 8) or 29|(x+ 8). Finally we get

x ≡ ±8 ≡ 8, 21 (mod 29).

(b) For any integer x we have x13 ≡ x (mod 13).
Hence x39 = (x13)3 ≡ x3 (mod 13). Therefore we get

x3 − 23 = (x− 2) · (x2 + 2x+ 4) ≡ 0 (mod 13).

In other words 13|(x− 2)(x2 + 2x+ 4). From here we get either x ≡ 2
(mod 13) or x2 + 2x + 4 ≡ 0 (mod 13). For the last congruence we
just write it as

(x+ 1)2 ≡ 10 ≡ 36 (mod 13).
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By the same arguments as in part (a) the solution to the last congru-
ence is x+ 1 ≡ ±6 (mod 13). So the final answer is

x ≡ 2, 5, 6 (mod 13).

(10) Fermat says: for any prime p and any integer a with gcd(a, p) = 1 [[ don’t
forget! ]] we have

ap−1 ≡ 1 (mod p) .

(a) Let a = 7 and m = 1734251; we find gcd(a,m) = 1.
If m were prime, then the right hand side would have to be 1 (which
it isn’t). Hence we can indeed conclude that m is composite.

(b) Yes: suppose p = 64027 were a prime, then ϕ(p) = p − 1 = 64026,
and by Fermat any a with 0 < a < p (which hence clearly satisfies
gcd(a, p) = 1) would have to satisfy a64026 ≡ 1 (mod 64027). Obvi-
ously, 29670 is not congruent 1 (mod 64027), and hence 64027 cannot
be prime.

(c) Clearly gcd(2, 52633) = 1, so by Fermat we get that if 52633 is prime,
then indeed 252632 ≡ 1 (mod 52633). But it does not tell us anything
about the converse, so we cannot conclude from Fermat alone that
52633 is prime. Indeed, it isn’t (one factor is 7, the others 73, 103).

(11) We have to assume n > 4, since obviously (4− 1)! = 6 is not congruent 0
(mod 4).
Let n be composite, then n = ab for some a, b > 1. Clearly both a and b
are also smaller than n.
If a 6= b, then it is evident that they both occur as factors of (n− 1)! in the
obvious way, so n divides the latter.
If a = b > 2, we have 2a < ab and both a and 2b(= 2a) occur as different
factors of (n− 1)!, and in particular the latter is divisible by n = ab.

(12) By Wilson’s Theorem for the prime p, we get

1 · 2 · · ·
(
p− 1

2

)
︸ ︷︷ ︸

first half

·
(
p+ 1

2

)
·
(
p+ 3

2

)
· · · (p− 1)︸ ︷︷ ︸

second half

≡ −1 (mod p) ,

and each factor of the second half complements precisely one factor of the
first half to p, so we can pair them off to

1(p− 1)︸ ︷︷ ︸ · 2(p− 2)︸ ︷︷ ︸ · · ·
(
p− 1

2

)(
p− p− 1

2

)
︸ ︷︷ ︸ .

But since p− j ≡ −j (mod p), we can write this expression as

12 · 22 · · ·
(
p− 1

2

)2

· (−1)(p−1)/2

(each product j(p− j) is ≡ −j2 (mod p), hence contributes a minus sign).
Now since p ≡ 3 (mod 4), (p−1)/2 is odd and so (−1)(p−1)/2 = −1, and

we find (
p− 1

2

)
!
2

≡ 1 (mod p) .

Finally, for an odd prime p the only two numbers modulo p whose square
is +1 are given by 1 and −1, hence

(
p−1

2

)
! ≡ ±1 (mod p).
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(13) (a) We write 1 = a · 5 + b · 11 with a = −2 and b = 1. Hence

3 = 3 · (−2) · 5 + 3 · 11 ,

7 = 7 · (−2) · 5 + 7 · 11 .

Define x = 7 · (−2) · 5 + 3 · 11 = −37 ≡ 18 (mod 55). This solves the
congruence by the algorithm in the proof of the Chinese Remainder
Theorem.
Check indeed that 18 ≡ 3 (mod 5) and 18 ≡ 7 (mod 11).
In fact, any number 18 + 55k, with k ∈ Z, solves the simultaneous
congruence.

(b) We write 1 = a · 37 + b · 87 with a = 40 and b = −17. (E.g., use
Euclidean algorithm.). Hence

3 = 3 · 40 · 37 + 3 · (−17) · 87 ,

1 = 40 · 37 + (−17) · 87 .

Define x = 40·37+3·(−17)·87 = 1480−3·1479 = 1−2·1479 = −2957.
This does it. A positive solution is e.g. 262.

(c) We define n = 7 · 12 · 13 = 1092, and N1 = 12 · 13 = 156, N2 =
7 · 13 = 91 and N3 = 7 · 12 = 84. We solve the congruences 156x1 ≡ 1
(mod 7), 91x2 ≡ 1 (mod 12), and 84x3 ≡ 1 (mod 13). This can be
done using the Euclidean algorithm as we have seen in the lectures,
and in exercises (1) and (2). Solutions are x1 = −3, x2 = −5, and
x3 = −2. Hence a solution to our system is given by

x = −3 · 156 · 5 + (−5) · 91 · 3 + (−2) · 84 · 8 = −5049 ≡ −681 ≡ 411 (mod 1092).

(14) We consider the system x ≡ 3 (mod 17), x ≡ 10 (mod 16) and x ≡ 0
(mod 15). We can solve it as in the previous question.


