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(1) We want to choose n to have a nontrivial gcd with each of n+ 2, n+ 3, . . . ,
n + k. Noting that gcd(n, n + j) = gcd(n, j) for any j ∈ Z we can assure
this by simply demanding that gcd(n, j) = j for j = 2, . . . , k. A natural
candidate is n = 2 · 3 · · · k, i.e. n = k!.
But we can in fact take n to be the product m · (m+ 1) · · · (m+ k) of any
k successive positive integers, keeping in mind that the binomial coefficient(
m+k
k

)
= m·(m+1)···(m+k)

1·2···k for m ≥ 0 is an integer, hence k! divides such a
product.

(2) By the fundamental theorem of arithmetic a can be written as a = p1 ·
p2 · . . . pn for some prime numbers pi, and n ≥ 2. Assume witout loss of
generality that p1 ≤ pi for all i. Then we have that a ≥ pn1 ≥ p21. Hence
p1 ≤

√
a.

(3) Denote the ten consecutive numbers n, n+ 1, . . . , n+ 9.
•We note that g := gcd(n+ j, n+ k) = gcd(n+ j, k− j) ≤ |k− j| ≤ 9, so if
g > 1 then it must be divisible by one of the four primes 2, 3, 5 or 7, and
hence the same is true for n+ j (and n+ k).
• But there are at most nine numbers among those 10 which are divisible

by any of these 4 primes [[ there are precisely 5 even ones, which we can
immediately discard, and among the 5 remaining odd ones there are at
most two which are divisible by 3 and at most 1 each divisible by 5 or 7 ]] ,
so at least one of the n+ j has gcd not divisible by any of the four primes,
hence by the above must have a gcd equal to 1 with each of the other nine.
• Now use e.g. that gcd(a, b) = 1 and gcd(a, c) = 1 implies that

gcd(a, bc) = 1 (why?) to conclude that this n + j has gcd equal to 1
with the product of the other nine.

(4) Suppose
√
p ∈ Q. Then there exist a, b ∈ Z with gcd(a, b) = 1 such that√

p = a
b . Taking squares we get b2 = pa2. We now claim that b = 1.

Assume that b > 1, and let q be a prime that divides b. Since b|b2 and
b2 > a2 we have that q|a2, and since q is a prime we have that q|a. But
then we have that gcd(a, b) ≥ q. Contradiction. Hence we have b = 1.
But then we have that p = a2. But p is a prime hence we again derive a
contradiction.

(5) (a) We consider the number N := p1 · p2 · . . . · pn + 1. As in Euclid’s proof
we have that none of the pi’s divides N . By F.T.A. we have that there
exists q prime such that q|N . Hence we have that q > pn. In particular
q ≥ pn+1. On the other hand since q divides N we have that q ≤ N .
Hence we conclude that pn+1 ≤ p1 · p2 · . . . · pn + 1.

(b) We rewrite the statement as pn ≤ 22
n−1

and do induction on n. For
n = 1 it is clear true since 2 ≤ 2. We assume that it is true for all
integers up to n and prove it for n + 1. We have by the previous
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question and the induction assumption

pn+1 ≤ p1 ·p2 · . . . ·pn+1 ≤ 2 ·22 ·23 . . . 22
n−1

+1 = 21+2+22+...+2n−1

+1 = 22
n−1 +1.

But 1 ≤ 22
n−1

for all n ≥ 1 and hence we have that pn+1 ≤ 2 ·22n−1 =
22

n

.
(c) From the previous question we know that pn+1 ≤ 22

n

. Hence p1, p2
up to pn+1 are less than 22

n

(Note that the statement is true for n = 1
and for any n > 1 we have that pn+1 < 22

n

since it is odd.
(6) (a) The numbers of the form 3n+ 1 have either the form 6n+ 1 or 6n+ 4;

but the latter ones are always even and > 2, hence can never be prime.
(b) Show that the product of two integers of the form 3n + 1 is again of

that form [[ as (3n1 + 1)(3n2 + 1) = 3(n1n2 + n1 + n2) + 1 ]] . From this
we deduce that any integer which is the product of prime factors of the
form 3n+1 only cannot be of the form 3n+2. So by the Fundamental
Theorem of Arithmetic we have a prime decomposition of N = 3n+ 2
into prime factors, one of which is of type 3n or 3n+ 2. But the only
prime of type 3n is 3, and this does not divide N . (Why?)
Now suppose there is a finite (exhaustive) list {p1, . . . , pr} of primes of
the form 3n+ 2. Then take their product M = p1 · · · pr and consider
3M − 1 (which obviously is > 2). By the above considerations, there
must be at least one prime q of the form 3n + 2 dividing 3M − 1 =
3(M − 1) + 2. But any of the pj (j = 1, . . . , r) is coprime to 3M − 1,
and hence to q. This contradicts the assumption that our list was
exhaustive and proves the infinitude of primes of the form 3n+ 2.

(7) (a) For n/2 to be a square, all the exponents in a prime factorization of
n/2 have to be even, and so

n/2 = 22a232a352a5 · · · q2aq

for a2, a3, . . . , aq ≥ 0, where q is the largest prime dividing n.
Similarly, for n/3 to be a cube, all exponents divisible by 3 and so

n/3 = 23b233b353b5 · · · q3bq

for b2, b3, . . . , bq ≥ 0.

Due to the Fundamental Theorem of Arithmetic, the unique prime
decomposition implies

2a2 + 1 = 3b2 , 2a3 = 3b3 + 1 , 2a5 = 3b5 , . . .

For example, a2 = 1 = b2 and a3 = 2 and b3 = 1 and all the other aj
and bj zero will do it, i.e. n = 2334. Alternative solutions arise when
we multiply this by any 6th power (> 0).

(b) Extending the above idea with a fifth power n/5 = 25b235b355b5 · · · q5bq ,
we find n = 21531056 × a 30-th power.

(8) (a) It is the prime number 11.
(b) From question (2) we know that a composite number a has always

a prime divisor p such that p ≤
√
a. Since here all integers are less

than 100, the composite ones must have a prime factor not larger than√
100, namely 10. The largest prime smaller than 10 is 7. This is why
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the rest of the numbers have to be primes, since cannot contain any
prime factor, different from them, larger than 7.

(9) (a) Note that the polynomial x4+4 factors into (x2+2x+2)(x2−2x+2) (i.e.
as (y−2x)(y+2x) for y = x2+2, and so y2−(2x)2 = (x2+2)2−4x2 =
x4 + 4). Now check that the first factor is > 1 for any x ≥ 1, and the
second factor equals (x− 1)2 + 1, so is also > 1, unless x = 1.
This implies that x4 + 4 is composite for x > 1. (Clearly, it is a prime
for x = 1.)

(b) We show the contrapositive: if n is composite, then 2n − 1 is.
Write n = a · b for a, b > 1, then check that 2ab− 1 is divisible by (and

clearly not equal to) 2a−1, which is also> 1. Indeed 2ab−1
2a−1 = (2a)b−1

2a−1 =

1+2a+22a+. . . 2(b−1)a by using the identity xn−1
x−1 = 1+x+. . .+xn−1.

(c) We first show that for an integer of the form 2m · p for a prime p and
and m ∈ N the sum of its divisors is equal to (p+ 1)(2m+1 − 1).
We group the divisors d of 2m · p into two parts: the one for which p
divides d, and the ones which don’t. The latter ones are simply the
powers of 2 of exponent 0, 1,. . . , n, while the former are the same ones
multiplied by p.
Adding these up gives, for the first group, 1 + 2 + 22 + · · · + 2m =
2m+1−1, and p(2m+1−1) for the second, hence overall (p+1)(2m+1−1).
Now we consider the question. If the prime p is of the form 2n − 1,

then we look at N = p(p+1)
2 = (2n − 1)2n−1 = p · 2n−1. Applying the

above computation gives for the sum of all divisors of N the number
(p+ 1)(2n − 1) = 2n(2n − 1), hence the sum of all divisors of N other
than itself is indeed equal to
2n(2n − 1)− 2n−1(2n − 1) = 2n−1(2n − 1) = N .

(10) A few preparations: it is easy to read off the gcd of two numbers if we
have them in factored form: gcd(23 · 37 · 52 · 7, 25 · 32 · 713) = 23 · 32 · 7,
since we simply take the minimum of the respective exponents for all primes
involved.

In general (with pj primes and aj , bj ≥ 0) one can check (why?) that:

gcd
( r∏
j=1

p
aj
j ,

r∏
j=1

p
bj
j

)
=

r∏
j=1

p
min(aj ,bj)
j .

and

lcm
( r∏
j=1

p
aj
j ,

r∏
j=1

p
bj
j

)
=

r∏
j=1

p
max(aj ,bj)
j .

In particular if we write a =
∏r
j=1 p

αj

j , and b =
∏r
j=1 p

βj

j then we have

gcd(a, b)lcm(a, b) =

r∏
j=1

p
min(aj ,bj)
j ×

r∏
j=1

p
max(aj ,bj)
j =

r∏
j=1

p
min(aj ,bj)+max(aj ,bj)
j =

r∏
j=1

p
aj+bj
j = ab

(11)

gcd
( r∏
j=1

p
aj
j ,

r∏
j=1

p
bj
j ,

r∏
j=1

p
cj
j

)
=

r∏
j=1

p
min(aj ,bj ,cj)
j .
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lcm
( r∏
j=1

p
aj
j ,

r∏
j=1

p
bj
j ,

r∏
j=1

p
cj
j

)
=

r∏
j=1

p
max(aj ,bj ,cj)
j .

(a) Let a =
∏r
j=1 p

αj

j , b =
∏r
j=1 p

βj

j , c =
∏r
j=1 p

γj
j . Then

gcd(a, b, c) =

r∏
j=1

p
min(αj ,βj ,γj)
j

and

gcd(gcd(a, b), c) =

r∏
j=1

p
min(min(αj ,βj),γj)
j .

These two expressions coincide since min(α, β, γ) = min(min(α, β), γ).
The equality with gcd(a, gcd(b, c)) is proved in the same way.

(b)

lcm(a, b, c) · gcd(ab, bc, ca) =

r∏
j=1

p
max(αj ,βj ,γj)
j ·

r∏
j=1

p
min(αj+βj ,βj+γj ,αj+γj)
j

Denote by sj := αj + βj + γj . Then αj + βj = sj − γj , αj + γj =
sj − βj and βj + γj = sj −αj . Without loss of generality assume that
max(αj , βj , γj) = αj . Then min(sj − αj , sj − βj , sj − γj) = sj − αj
and therefore the sum of the min and max written above is always sj .
Finally we have

lcm(a, b, c) · gcd(ab, bc, ca) =

r∏
j=1

p
max(αj ,βj ,γj)+min(αj+βj ,αj+γj ,βj+γj)
j =

=

r∏
j=1

p
αj+βj+γj
j = abc.


