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The equality is true for n = 1, as both sides are equal to 1.
So suppose the equality is true for some positive n, i.e.

n(n+1) ) 2
— )
We need to show that this implies the statement P(n + 1) where each

n is replaced by n + 1.
In order to do so, we add (n + 1)3 on both sides, which gives

P(n): 13—|—23—|—~--—|—n3:<

1)1 2
M) +(n+1).
2
Now it remains to show that the RHS 1(n*(n + 1)? + 4(n + 1)3)
equals the right hand side of P(n) with n replaced by n + 1, i.e. to

2 2 2
(%) . Indeed, both terms equal 1((n+1)2(n? +4(n+ 1)),
and we are done.

This time the case n = 1 gives 1 — 8 + 27 for the LHS, which is equal
to 20, while the RHS gives 22 - 5 which is indeed the same.
So suppose the equality is true for some positive n, i.e.

PB-2543 -4 (2P +2n+ 1) =(n+1)*An+1).

We need to show that this implies the statement P(n + 1).

Again, we check that the difference of the LHSs of P(n+1) and P(n),
ie. (2n+ 3)® — (2n + 2)3, is the same as the difference of the RHSs,
ie. (n+2)?(An+5) — (n+1)%(4n +1).

By expanding into powers of n, we find 3(12n? + 54n) + 33 — 3(8n? +
24n) — 23 on the LHS, which amounts to 12n2 + 30n + 19; on the RHS
we get 4n(n? +4n+4 —n? —2n — 1)+ 5n% +20n + 20 — n? — 2n — 1),
ie. 4n(2n + 3) + 4n? + 18n + 19 which is easily seen to be the same
expression.

13+23+---+n3+(n+1)3=(

Taking the difference of the second equation for P(n) and P(n—1) we

2 2
find on the left n3, while on the right we get (%) - (%) ,

a difference of two squares.

For n = 1 we have 13 | 4% + 3% = 64 + 27 = 91, which is indeed true.

Suppose now we know that 13 divides 42*+! + 37*2 for some n. Then

we need to deduce from this that 13 divides 4273 + 37 +3,

Similar to the example done in the lectures we use the fact that alb

and alc inplies that alb + ¢. In paerticular it suffices to show that
1
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13 divides the difference b between two successive members, i.e. b =
42n+3+3n+3 _ (42n+1 +3n+2). But

b — 42n+3 _ 42n+1 4 3n+3 _ 3n+2
— 42n+1(42 _ 1) + 371,—‘,—2(3 _ 1)
= 4T (1342) + 322
— 42n+1 . 13 4 2(42n+1 =+ 3n+2)

and the latter expression is clearly divisible by 13 (the second term by
induction assumption).

Note that, with hindsight, a quicker proof results from using the
smaller member with a different multiple (here 3), i.e. using b =
42n+3 4 gnt3 _ 3(42n+L 4 37+2) a5 this would have canceled two of
the four terms, leaving b’ = 42" +1(42 — 3), the second factor of which
being obviously divisible by 13.

For n = 1 we have 33"+1 427+l = 34 4 92 — 85 which is equal to 17-5,
hence indeed divisible by 5.

Suppose now we know that 5 divides 33"*+! + 27+! for some n. Then
we need to deduce from this that 5 divides 3374 4 2n+2,

Again we consider the difference of two successive expressions, i.e.
33+t 4 oon+2 _ (33n+l 4 ontl)s regrouping them, we write this as
33n+1(3% — 1) + 2(n + 1), and then write the factor 3% — 1 as 52 + 1,
hence 3%"1(3% —1)4+2(n 4 1) = 33n+1.52 4 337+ L 2741 of which the
first term clearly is divisible by 5 while the remaining sum is divisible
by 5 by our induction assumption. This proves the claim.

If ¢| a and | b then a = ca; and b = ¢bys for some integer ay,b;. Then
ma + nb = cmay + cnby = ¢(may + nby) which proves the problem.
We first discuss the case when at least one of @ and b is zero: this
can only happen if both a and b are zero [since 0 does not divide any
non-zero number]|, and in this case the claim is clear.

Now let a, b be non-zero. If a | b and b | a, then a = mb for some
b € Z and b = na for some n € Z. Hence a = m(na) = (mn)a [by
associativity of multiplication]and hence mn = 1. In particular m and
n divide 1, and the only divisors of 1 are 1 and —1.

Simple solution: since all numbers involved are positive, we can simply
cancel a in the equation ac = abn for some n € Z.

This is not a valid statement: choose, for some a > 1, b = a® and
c=a’

Then b? = a8 = ¢3 and in particular b | ¢®. But b = a® { a®> = ¢ (since
clearly a® > a? and since divisors are not greater than the number
which they divide).

(Note: Providing just an example b = 8, a = 4 will be enough for the
solution.)

First Proof. We start by proving the result for coprime a and b. If
ged(a, b) = 1 then one can represent 1 = ax+by for 2,y € Z. Squaring
this equality gives

1= (az)? + 2abxy + (by)? = a - (ax® + 2bzy) + b2



ged (455, 1235)

ENTC II, M'MAS 2014, SOLUTIONS 1 3

Therefore ged(a,b?) = 1. By repeating the same argument we get
ged(a?,b?) = 1.

Now put d = ged(a, b); we are allowed to use 6a) which says here that,
since d | a and d | b, the integers a/d and b/d satisty ged(a/d,b/d) = 1.
From here we deduce ged((a/d)?, (b/d)?) = 1, and applying Q.6a)
again, we find ged(a?,b?) = d>.

Second proof (using FTA): if we factor a =[], p*®) and b = IL, PP,
where the product runs over all primes p, and all but finitely many ex-
ponents a(p), B(p) are zero, then note that ged(a, b) =[], prin(a(®).fp),
Therefore

ged(a, b) b Hp2 min(a(p), B(p))

p

while
ged(a?,b?) = [ prine®):200))
p

But the latter two products agree since rmin(s,t) = min(rs,rt) for
any positive r, s, t.
It is not true. For example, 314,416 but 3|6.

We use multiple times the fact that ged(a,b) = ged(a,b — ga) for

a,b,q € Z (as a substitute for the not yet available Euclidean algo-

rithm).

Successive subtraction and possible swapping of roles gives

ged(455,1235 — 2 - 455) = ged (455, 325)

= ged(325,455) = ged (325,455 — 325) = ged(325, 130)

= ged(130,325) = ged (130,325 — 2 - 130) = ged(130, 65)
ged(65,130 — 2 - 65) = ged(65,0) = 65.

If we backtrace which multiples we have used then we can find integers
x and y such that 65 = 455x+1235y, as in the Euclidean algorithm: we
have used 65 = 325 —2-130, 130 = 455 — 325 and 325 = 1235 —2-455.
Successively substituting all these gives

65 =325 —2- (455 — 325) = 3-325 — 2455 =3 (1235 — 2 - 455) — 2 - 455

6.

(b)
a)

i.e., 66 =3-1235 — 8455, and so x = —8, y = 3 do it.
Exactly like (a), d = 211 and (z,y) = (4, —3) suffice.

Put g = ged(an, bn) and d = ged(a, b), then on one hand we have, for
some x,y € Z, that g = anx + bny = n(az + by), but also d | ax + by,
so dn | g, and in particular dn < g.

On the other hand, writing d = ax’ 4 by’ implies that dn = anz’+bny'.
Now glan, g|dn and therefore g|dn = g < dn. So finally we get g = dn.

Yet another proof, by induction on a + b: the statement is clear for
a="b=1, since ged(n,n) =n- 1.

Now suppose the statement is true for a,b > 1 such that a +b < k for
some integer k. Then we want to show it for k.
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We can assume, up to swapping roles for a and b, that a < b. Then,
putting b’ = b — a for which we have 0 < b’ < b, we get
ged(an, bn) = ged(an, bn — an) = ged(an, b'n) = nged(a, '),

the latter equality by induction assumption. But then ged(a,b’) =
ged(a, b), and we are done.

b) Now suppose a, b and m are positive integers with m | a and m | b,
i.e. we write a = mr and b = ms for some integers r, s. Then we need
to show that m | ged(a,b): for some integers z, y, we have

ged(a, b) = ax 4+ yb = (mr)x + (ms)b = m(ra + sb),
hence m indeed divides ged(a, b).
This question is somewhat of a challenge: following the hint, and simply
using 22 — 1 = (x + 1)(z — 1) one gets
F,—2=2"" 1=+ —1)=F,_1(F,_1 — 2),
and by induction one finds F,, — 2 = H;:& F}; (note that Fy = 3 and hence
the process stops with Fy —2 = 1).

Hence ged(F;, Fy,) | 2 for any j =0,...,n — 1. But since all the F}; are
odd (we add 1 to a non-trivial power of 2), that gcd must be 1.

. Let’s prove this by induction on n: it is obvious for n = 1 (i.e. ged(Fp, Fy) =

1). Suppose it is true for all & < n. Then we want to show it for n, i.e.
ged(Fp_1, Fy) = 1.
But using a lemma from the lectures we get

ng(Fny Fn+1) = ng(Fn, Foy1— Fn) )
and the latter is simply equal to ged(F,, F,,—1), which by induction as-
sumption is 1.
(a) We can use the polynomial identity

2" —1=(z" 142"+ 1)(z—1),
and plug in z = a for a € Z.

(b) Using that, for a # 1 and any n > 1, we have (from (a))

a”—1

:a"_1+a"_2+~-~+a+17
a—1

we can write the right hand side as
(@ ') 4+1+ @ ?=1)+1+ - +(a—1)+1+1,

and we find n terms 1 outside the parentheses. By (a), we know that
a—1 divides each term in parentheses, and we can use our Proposition
stating that ged(c,b) = ged(c,b —¢) = --+ = ged(e,b — gc) for any
b,c,q € Z to get

ged (ail, a—l) =ged ((@"'=1)+(a"*~1)+ - +(a—1)+n,a—1) = ged(n, a—1)

(use that proposition with ¢ = a—1,b = =L and ¢ = Z;le ch;é ab).

a—1

(a) Note that there can not be two consecutive odd numbers. Therefore
one of the consecutive numbers is divisible by 2 and so is their product.
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(b) Note that each odd number is of the form b = 2k + 1 for some k € Z.
Then b2 — 1 = (2k + 1)2 — 1 = 4k(k + 1). From the part (a) of the
problem we know that 2|k(k + 1) so finally 8|4k(k + 1).



