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1. (1) The equality is true for n = 1, as both sides are equal to 1.
So suppose the equality is true for some positive n, i.e.

P (n) : 13 + 23 + · · ·+ n3 =
(n(n+ 1)

2

)2
.

We need to show that this implies the statement P (n+ 1) where each
n is replaced by n+ 1.
In order to do so, we add (n+ 1)3 on both sides, which gives

13 + 23 + · · ·+ n3 + (n+ 1)3 =
(n(n+ 1)

2

)2
+ (n+ 1)3 .

Now it remains to show that the RHS 1
4

(
n2(n + 1)2 + 4(n + 1)3

)
equals the right hand side of P (n) with n replaced by n + 1, i.e. to(

(n+1)2(n+2)2

2

)2
. Indeed, both terms equal 1

4

(
(n+ 1)2(n2 + 4(n+ 1)),

and we are done.

(2) This time the case n = 1 gives 1− 8 + 27 for the LHS, which is equal
to 20, while the RHS gives 22 · 5 which is indeed the same.
So suppose the equality is true for some positive n, i.e.

P (n) : 13 − 23 + 33 −+ · · · − (2n)3 + (2n+ 1)3 = (n+ 1)2(4n+ 1) .

We need to show that this implies the statement P (n+ 1).
Again, we check that the difference of the LHSs of P (n+ 1) and P (n),
i.e. (2n + 3)3 − (2n + 2)3, is the same as the difference of the RHSs,
i.e. (n+ 2)2(4n+ 5)− (n+ 1)2(4n+ 1).
By expanding into powers of n, we find 3(12n2 + 54n) + 33 − 3(8n2 +
24n)− 23 on the LHS, which amounts to 12n2 + 30n+ 19; on the RHS
we get 4n(n2 + 4n+ 4− n2 − 2n− 1) + 5n2 + 20n+ 20− n2 − 2n− 1),
i.e. 4n(2n + 3) + 4n2 + 18n + 19 which is easily seen to be the same
expression.

Taking the difference of the second equation for P (n) and P (n−1) we

find on the left n3, while on the right we get
(
n(n+1)

2

)2
−
(
n(n−1)

2

)2
,

a difference of two squares.

2. (a) For n = 1 we have 13 | 43 + 33 = 64 + 27 = 91, which is indeed true.
Suppose now we know that 13 divides 42n+1 + 3n+2 for some n. Then
we need to deduce from this that 13 divides 42n+3 + 3n+3.
Similar to the example done in the lectures we use the fact that a|b
and a|c inplies that a|b + c. In paerticular it suffices to show that
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13 divides the difference b between two successive members, i.e. b =
42n+3 + 3n+3 − (42n+1 + 3n+2). But

b = 42n+3 − 42n+1 + 3n+3 − 3n+2

= 42n+1(42 − 1) + 3n+2(3− 1)

= 42n+1(13 + 2) + 3n+2 · 2
= 42n+1 · 13 + 2(42n+1 + 3n+2)

and the latter expression is clearly divisible by 13 (the second term by
induction assumption).
Note that, with hindsight, a quicker proof results from using the
smaller member with a different multiple (here 3), i.e. using b′ =
42n+3 + 3n+3 − 3(42n+1 + 3n+2), as this would have canceled two of
the four terms, leaving b′ = 42n+1(42 − 3), the second factor of which
being obviously divisible by 13.

(b) For n = 1 we have 33n+1 +2n+1 = 34 +22 = 85 which is equal to 17 ·5,
hence indeed divisible by 5.
Suppose now we know that 5 divides 33n+1 + 2n+1 for some n. Then
we need to deduce from this that 5 divides 33n+4 + 2n+2.
Again we consider the difference of two successive expressions, i.e.
33n+4 + 2n+2 − (33n+1 + 2n+1); regrouping them, we write this as
33n+1(33 − 1) + 2(n + 1), and then write the factor 33 − 1 as 52 + 1,
hence 33n+1(33−1)+2(n+1) = 33n+1 ·52 +33n+1 +2n+1, of which the
first term clearly is divisible by 5 while the remaining sum is divisible
by 5 by our induction assumption. This proves the claim.

3. (a) If c | a and | b then a = ca1 and b = cb1s for some integer a1, b1. Then
ma+ nb = cma1 + cnb1 = c(ma1 + nb1) which proves the problem.

(b) We first discuss the case when at least one of a and b is zero: this
can only happen if both a and b are zero [[ since 0 does not divide any
non-zero number ]] , and in this case the claim is clear.
Now let a, b be non-zero. If a | b and b | a, then a = mb for some
b ∈ Z and b = na for some n ∈ Z. Hence a = m(na) = (mn)a [[ by
associativity of multiplication ]] and hence mn = 1. In particular m and
n divide 1, and the only divisors of 1 are 1 and −1.

4. (a) Simple solution: since all numbers involved are positive, we can simply
cancel a in the equation ac = abn for some n ∈ Z.

(b) This is not a valid statement: choose, for some a > 1, b = a3 and
c = a2.
Then b2 = a6 = c3 and in particular b2 | c3. But b = a3 - a2 = c (since
clearly a3 > a2 and since divisors are not greater than the number
which they divide).
(Note: Providing just an example b = 8, a = 4 will be enough for the
solution.)

(c) First Proof. We start by proving the result for coprime a and b. If
gcd(a, b) = 1 then one can represent 1 = ax+by for x, y ∈ Z. Squaring
this equality gives

1 = (ax)2 + 2abxy + (by)2 = a · (ax2 + 2bxy) + b2ẏ2.
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Therefore gcd(a, b2) = 1. By repeating the same argument we get
gcd(a2, b2) = 1.
Now put d = gcd(a, b); we are allowed to use 6a) which says here that,
since d | a and d | b, the integers a/d and b/d satisfy gcd(a/d, b/d) = 1.
From here we deduce gcd((a/d)2, (b/d)2) = 1, and applying Q.6a)
again, we find gcd(a2, b2) = d2.
Second proof (using FTA): if we factor a =

∏
p p

α(p) and b =
∏
p p

β(p),
where the product runs over all primes p, and all but finitely many ex-
ponents α(p), β(p) are zero, then note that gcd(a, b) =

∏
p p

min(α(p),β(p)).
Therefore

gcd(a, b)2 =
∏
p

p2min(α(p),β(p)) ,

while

gcd(a2, b2) =
∏
p

pmin(2α(p),2β(p)) .

But the latter two products agree since rmin(s, t) = min(rs, rt) for
any positive r, s, t.

(d) It is not true. For example, 3 - 4, 4 - 6 but 3|6.

5. (a) We use multiple times the fact that gcd(a, b) = gcd(a, b − qa) for
a, b, q ∈ Z (as a substitute for the not yet available Euclidean algo-
rithm).
Successive subtraction and possible swapping of roles gives

gcd(455, 1235) = gcd(455, 1235− 2 · 455) = gcd(455, 325)

= gcd(325, 455) = gcd(325, 455− 325) = gcd(325, 130)

= gcd(130, 325) = gcd(130, 325− 2 · 130) = gcd(130, 65)

= gcd(65, 130− 2 · 65) = gcd(65, 0) = 65 .

If we backtrace which multiples we have used then we can find integers
x and y such that 65 = 455x+1235y, as in the Euclidean algorithm: we
have used 65 = 325−2 ·130, 130 = 455−325 and 325 = 1235−2 ·455.
Successively substituting all these gives

65 = 325− 2 · (455− 325) = 3 · 325− 2 · 455 = 3 · (1235− 2 · 455)− 2 · 455

i.e., 65 = 3 · 1235− 8 · 455, and so x = −8, y = 3 do it.

(b) Exactly like (a), d = 211 and (x, y) = (4,−3) suffice.

6. a) Put g = gcd(an, bn) and d = gcd(a, b), then on one hand we have, for
some x, y ∈ Z, that g = anx+ bny = n(ax+ by), but also d | ax+ by,
so dn | g, and in particular dn ≤ g.
On the other hand, writing d = ax′+by′ implies that dn = anx′+bny′.
Now g|an, g|dn and therefore g|dn⇒ g ≤ dn. So finally we get g = dn.

Yet another proof, by induction on a + b: the statement is clear for
a = b = 1, since gcd(n, n) = n · 1.
Now suppose the statement is true for a, b ≥ 1 such that a+ b < k for
some integer k. Then we want to show it for k.



4 ENTC II, M’MAS 2014, SOLUTIONS 1

We can assume, up to swapping roles for a and b, that a ≤ b. Then,
putting b′ = b− a for which we have 0 ≤ b′ < b, we get

gcd(an, bn) = gcd(an, bn− an) = gcd(an, b′n) = n gcd(a, b′) ,

the latter equality by induction assumption. But then gcd(a, b′) =
gcd(a, b), and we are done.

b) Now suppose a, b and m are positive integers with m | a and m | b,
i.e. we write a = mr and b = ms for some integers r, s. Then we need
to show that m | gcd(a, b): for some integers x, y, we have

gcd(a, b) = ax+ yb = (mr)x+ (ms)b = m(rx+ sb) ,

hence m indeed divides gcd(a, b).

7. This question is somewhat of a challenge: following the hint, and simply
using x2 − 1 = (x+ 1)(x− 1) one gets

Fn − 2 = 22
n

− 1 = (22
n−1

+ 1)(22
n−1

− 1) = Fn−1(Fn−1 − 2) ,

and by induction one finds Fn − 2 =
∏n−1
j=0 Fj (note that F0 = 3 and hence

the process stops with F0 − 2 = 1).
Hence gcd(Fj , Fn) | 2 for any j = 0, . . . , n − 1. But since all the Fj are

odd (we add 1 to a non-trivial power of 2), that gcd must be 1.

8. Let’s prove this by induction on n: it is obvious for n = 1 (i.e. gcd(F0, F1) =
1). Suppose it is true for all k < n. Then we want to show it for n, i.e.
gcd(Fn−1, Fn) = 1.

But using a lemma from the lectures we get

gcd(Fn, Fn+1) = gcd(Fn, Fn+1 − Fn) ,

and the latter is simply equal to gcd(Fn, Fn−1), which by induction as-
sumption is 1.

9. (a) We can use the polynomial identity

xn − 1 = (xn−1 + xn−2 + · · ·+ x+ 1)(x− 1) ,

and plug in x = a for a ∈ Z.
(b) Using that, for a 6= 1 and any n ≥ 1, we have (from (a))

an − 1

a− 1
= an−1 + an−2 + · · ·+ a+ 1 ,

we can write the right hand side as

(an−1 − 1) + 1 + (an−2 − 1) + 1 + · · ·+ (a− 1) + 1 + 1 ,

and we find n terms 1 outside the parentheses. By (a), we know that
a−1 divides each term in parentheses, and we can use our Proposition
stating that gcd(c, b) = gcd(c, b − c) = · · · = gcd(c, b − qc) for any
b, c, q ∈ Z to get

gcd
(an − 1

a− 1
, a−1

)
= gcd

(
(an−1−1)+(an−2−1)+· · ·+(a−1)+n, a−1

)
= gcd(n, a−1)

(use that proposition with c = a−1, b = an−1
a−1 and q =

∑n−1
j=1

∑j−1
k=0 a

k).

10. (a) Note that there can not be two consecutive odd numbers. Therefore
one of the consecutive numbers is divisible by 2 and so is their product.
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(b) Note that each odd number is of the form b = 2k + 1 for some k ∈ Z.
Then b2 − 1 = (2k + 1)2 − 1 = 4k(k + 1). From the part (a) of the
problem we know that 2|k(k + 1) so finally 8|4k(k + 1).


