

An outflow equilibrium model for the solar corona

Prof. Anthony Yeates with Dr Oliver Rice

UK SWSE Mtg, Exeter, 10-Sep-2024

Magnetic models are needed to extrapolate from solar surface observations to the inner heliospheric boundary.	ıe

Magnetic models are needed to extrapolate from solar surface observations to the inner heliospheric boundary.

e.g. SWEEP pipeline [SWIMMR/S4]

► Current operational forecasts use the PFSS (Potential Field Source Surface) model.

► cf. full MHD modelling.

We modified PFSS to include a solar wind outflow. Rice & Yeates, *ApJ* **932**, 57 (2021)

- ► We modified PFSS to include a solar wind outflow. Rice & Yeates, ApJ 932, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- We modified PFSS to include a solar wind outflow.
- Rice & Yeates, *ApJ* **932**, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- We modified PFSS to include a solar wind outflow.
- Rice & Yeates, *ApJ* **932**, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- We modified PFSS to include a solar wind outflow.
- Rice & Yeates, *ApJ* **932**, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- We modified PFSS to include a solar wind outflow.
- Rice & Yeates, *ApJ* **932**, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- We modified PFSS to include a solar wind outflow.
- Rice & Yeates, *ApJ* **932**, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- We modified PFSS to include a solar wind outflow.
- Rice & Yeates, *ApJ* **932**, 57 (2021)
- An axisymmetric outflow still allows fast numerical solution.

- Advantage 2: reduces (albeit doesn't fully resolve) the "open flux problem".

- Advantage 2: reduces (albeit doesn't fully resolve) the "open flux problem".

Advantage 2: reduces (albeit doesn't fully resolve) the "open flux problem".

$$\mathbf{v} \times \mathbf{B} = \mathbf{0}$$
 $\mathbf{v} - v_{\text{out}}(r)\hat{\mathbf{r}} = \frac{\mathbf{J} \times \mathbf{B}}{v_0 B^2}$

$$\textbf{J} = \nabla \times \textbf{B}$$

Similar to the PFSS model,

$$abla \cdot \mathbf{B} = 0$$

Similar to the PFSS model,

$$abla \cdot \mathbf{B} = 0$$
 $abla \cdot \left(\mathbf{f} \nabla \psi \right) = 0$

Mathematical details...

Look for "magneto-frictional" equilibria of the form

Similar to the PFSS model,

– unique solution since f > 0

Similar to the PFSS model,

$$abla \cdot \mathbf{B} = 0$$
 $abla \cdot \left(\mathbf{f} \nabla \psi \right) = 0$

– unique solution since f > 0

• Depends on the dimensionless "Reynolds number" $\mu = R_{\odot} \nu_0 v_{\text{out}}(r_0)$