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Conway’s Army Aim

Reach target x above the line.

Start

Place as many pegs as you 
like, anywhere below the line.

Legal moves

Jump left/right or up/down 
into empty hole, with capture.
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Level 1 2 pegs

Level 2 4 pegs

Level 3 8 pegs

Level 4 ?

Level 1 2 pegs

Level 2 4 pegs

Level 3 8 pegs

Level 4 20 pegs!

Minimum number of pegs required
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Conway’s Game of Life



John Horton Conway

(1937–2020)

Claim. It is impossible to reach level 5 (or higher) 
with a finite number of pegs. 



Proof?
1. Create a polynomial to encode the board position.

Label all other holes by xd, 
where d is “taxicab distance” 
from target. 

Label target hole 1 (= x0).x0
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To encode a position, add 
the terms for the 
corresponding pegs.



x2

x3

x3x4
p(x) = x2 + 2x3 + x4

x3x4

x1

p(x) = x+ x3 + x4

x1

x2

p(x) = x+ x2

e.g.

p(x) = 1

x0



a) “Positive jump” - towards target.

2. Analyse the effect of the possible moves.

x3

x4

x5

pnew(x)� pold(x) = x3 � x4 � x5



a) “Positive jump” - towards target.

2. Analyse the effect of the possible moves.

xd-1
xd

xd-2

pnew(x)� pold(x) = xd�2 � xd�1 � xd

= xd�2
�
1� x� x2)



b) “Negative jump” - away from target.

xd xd+1 xd+2

pnew(x)� pold(x) = xd+2 � xd+1 � xd

= xd
�
x2 � x� 1

�



c) “Neutral jump” - remain same distance from target.

xd-1 xd xd

pnew(x)� pold(x) = �xd�1



Positive jump:

pnew(x)� pold(x) = �xd�1

Negative jump:

Neutral jump:

pnew(x)� pold(x) = xd�2
�
1� x� x2

�

pnew(x)� pold(x) = xd
�
x2 � x� 1

�



3. Choose a helpful value of x.

Positive jump:

pnew(x⇤)� pold(x⇤) = �xd�2
⇤

�
x2
⇤ + x⇤ � 1

�
= 0

x2
⇤ + x⇤ � 1 = 0

Choose                       so total            never increases.x = x⇤ > 0 p(x⇤)

Negative jump:
pnew(x⇤)� pold(x⇤) = xd

⇤
�
x2
⇤ � x⇤ � 1

�

= xd
⇤
�
x2
⇤ + x⇤ � 1� 2x⇤

�

= �2xd+1
⇤ < 0

pnew(x⇤)� pold(x⇤) = �xd�2
⇤

�
x2
⇤ + x⇤ � 1

�
= 0

= �2xd+1
⇤ < 0

pnew(x⇤)� pold(x⇤) = �xd�1
⇤ < 0

Neutral jump:
pnew(x⇤)� pold(x⇤) = �xd�1

⇤ < 0



x2
⇤ + x⇤ � 1 = 0 =) x =

�1±
p
1 + 4

2

Positive root:

x =

p
5� 1

2
= 0.618 . . .
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Aside: the golden ratio

x2
⇤ + x⇤ � 1 = 0















4. Calculate the value of an infinite starting position.

p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .

x5

p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .
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p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .
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p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .

x8

x8

x8

x8

x8

x8

x8

p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .



p(x) = x5 + 3x6 + 5x7 + 7x8 + . . .

= x5
�
1 + 3x+ 5x2 + 7x3 + . . .

�

S = 1 + 3x+ 5x2 + 7x3 + . . .

“arithmetic-geometric series”



S = 1 + 3x+ 5x2 + 7x3 + . . .

xS = x+ 3x2 + 5x3 + 7x4 + . . .

= 1 + 2
�
x+ x2 + x3 + . . .

�

= 1 +
2x

1� x

=
1 + x

1� x
S =

1 + x

(1� x)2

S � xS = (1� x)S = 1 + 2x+ 2x2 + 2x3xS = x+ 3x2 + 5x3 + 7x4 + . . .



Now put in our value of x:

p(x) = x5S =
x5(1 + x)

(1� x)2

x2
⇤ + x⇤ � 1 = 0

x2
⇤ = 1� x⇤

=) x⇤(x⇤ + 1) = 1

p(x⇤) = 1

So the infinite starting configuration has



5. Put everything together.

We need to reach the target                   .p(x⇤) = 1

Any finite start must have                  , since it has fewer 
pegs than the infinite configuration with                  .

p(x⇤) < 1
p(x⇤) = 1

Since no move can increase          , we can never reach 
level 5 with a finite number of pegs!

p(x⇤)

Q.E.D.



Why does this argument fail for levels 1, 2, 3, 4?

The infinite starting configuration has                  . p(x⇤) > 1

e.g. level 4:

p(x) = x4S =
x4(1 + x)

(1� x)2

p(x⇤) =
1

x⇤
= 1.618 . . .



Infinite number of pegs



Infinite number of pegs

Simon Tatham & Geoff Taylor



Adding diagonal jumps

Maximum possible is level 8 (needs 123 pegs):
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Calculating minimum numbers of pegs…

e.g. level 2.
Largest possible values with

x2

x3

x3 x3

2 pegs:

3 pegs:

4 pegs:

So minimum number of pegs 
is at least 4.


