Numerical Analysis II — Lecture Notes

Anthony Yeates
Durham University

March 12, 2018

aI

% hy Slose
E%gg malue Emsljgmg dem

2
| ummgma Newbon's ZMat] & - Lagrange wadrature USEM jreany
need 5. Wribing 'converges foce :f’ ;P’“‘““““'* funct |on§’§E~ e vom
operabions _ derivatives P"’s'“'“‘-‘m"m’jefbaS|s convergence Oformula seres

ené’ri"“i“’?ﬁ"“i%““""’e"‘ Sinear Called e S, qgggg
example e firie] Ta r 2
w.mnlserpo b8 O 3 b"angmar e [T

g pOIgggﬁmlalstbnn-Cobas
& "conbinuols &3 . t me thod Q_unlqyef
metho

=) Gaussian fowdng brlxmsebiég

: pomb |nl:-erpolablng 5
diff plvol.'nlng iﬁa form tm&mmhs Moreover

direct

e
rule

Solvil
zeliminabion

"g
solubion
se

%

arichmetic 8
g different £
malmces lew'rsqms

Wm‘

il
- g
iberakive

compuae 3

Contents

0 What is numerical analysis? 4
0.1 Direct or iterative methods? 4
0.2 Courseoutline 6

1 Floating-point arithmetic 7
1.1 Fixed-pointnumbers Lo 7
1.2 Floating-point numbers Lo 7
1.3 Significant figures 9
1.4 Rounding error 9
1.5 Lossofsignificance 10
2 Polynomial interpolation 12
2.1 Taylorseries 12
2.2 Polynomial interpolation 15
23 Lagrangeform 16
2.4 Newton/divided-difference form o000 18
2.5 Interpolationerror. 21
2.6 Convergence and the Chebyshevnodes 23
2.7 Derivative conditions Lo 26
3 Differentiation 29
3.1 Higher-order finite differences Lo 0oL 30
3.2 Roundingerror 31
3.3 Richardson extrapolation 32
4 Nonlinear equations 35
41 Interval bisection 35
4.2 Fixed pointiteration 37
43 Ordersof convergence 39
44 Newton’smethod 40
4.5 Newton’s method for systems 43
4.6 Aitken acceleration Lo o 44
4.7 Quasi-Newtonmethods 46

Numerical Analysis Il - ARY 2 2017-18 Lecture Notes

5 Linear equations

5.1
5.2
5.3
54
55
5.6
5.7
5.8

Triangular systems
Gaussian elimination
LU decomposition
Pivoting e
Vector norms e
Matrix NOrms e e e e e e e e e
Conditioning

Tterative methods

6 Least-squares approximation

6.1
6.2
6.3
6.4
6.5

Orthogonality
Discrete least squares
QR decomposition
Continuous least squareso

Orthogonal polynomials,

7 Numerical integration

7.1
7.2
7.3
7.4

Newton-Cotes formulae
Composite Newton-Cotes formulae
Exactness e,

Gaussian quadratureo

49
49
51
52
55
57
58
62
63

68
68
69
72
74
76

Numerical Analysis Il - ARY 3 2017-18 Lecture Notes

0 What is numerical analysis?

Numerical analysis is the study of algorithms
for the problems of continuous mathematics.

(from The definition of numerical analysis, L. N. Trefethen)

The goal is to devise algorithms that give quick and accurate answers to mathematical problems
for scientists and engineers, nowadays using computers.

The word continuous is important: numerical analysis concerns real (or complex) variables, as
opposed to discrete variables, which are the domain of computer science.

0.1 Direct or iterative methods?

Some problems can be solved by a finite sequence of elementary operations: a direct method.

Example — Solve a system of simultaneous linear equations.

0 R 1.00 2.00 |\ {x} _ (0.00 S5 G . liminati
1 2.00 -3.14) \y] = |1.00 aussian elimination. . .

Even in this simple example, we hit upon one problem: = is a transcendental number that

x + 2y
2x — 7y

can’t be represented exactly in a computer with finite memory. Instead, we will see that the
computer uses a floating-point approximation, which incurs rounding error.

In direct methods, we only have to worry about rounding error, and computational time/memory.
But, unfortunately, most problems of continuous mathematics cannot be solved by a finite al-
gorithm.

Example — Evaluate sin(1.2).
We could do this with a Maclaurin series:

(1.2)° s (1.2 (1.2) s

sin(1.2) = 1.2 —
3! 5! 7!

To 8 decimal places, we get the partial sums

1.2

0.912
0.932736
0.93202505
0.93203927
0.93203908
0.93203909

This is an iterative method — keep adding an extra term to improve the approximation. Iterative
methods are the only option for the majority of problems in numerical analysis, and may
actually be quicker even when a direct method exists.

» The word “iterative” derives from the latin iterare, meaning “to repeat”.

Numerical Analysis Il - ARY 4 2017-18 Lecture Notes

Even if our computer could do exact real arithmetic, there would still be an error resulting
from stopping our iterative process at some finite point. This is called truncation error. We
will be concerned with controlling this error and designing methods which converge as fast
as possible.

Example — The famous V2 tablet from the Yale Babylonian Collection (photo: Bill Cassel-
man, http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html).

This is one of the oldest extant mathematical diagrams, dated approximately to 1800-1600 BC.
The numbers along the diagonal of the square approximate V2 in base 60 (sexagesimal):

24 51 10
+ — = 1.41421296 to 9 s.f.

1+ —+—
60 602 603

This is already a good approximation to the true value V2 = 1.41421356 — much better than
could be achieved by ruler and pencil measurements!

» The other numbers on the tablet relate to the calculation of the diagonal length for a square

of side 30, which is

25 35
30V2 ~ 42 + 2= 4+ =2
60 602

Example — Iterative method for V2.
It is probable that the Babylonians used something like the following iterative method. Start
with an initial guess xo = 1.4. Then iterate the following formula:

1.4142857. ..
1.414213564 . ..

Xk 1 X1
Xk41 = — + — -
2 xk X2

» This method is also known as Heron’s method, after a Greek mathematician who described
it in the first century AD.

» Notice that the method converges extremely rapidly! We will explain this later in the course
when we discuss rootfinding for nonlinear equations.

Numerical Analysis Il - ARY 5 2017-18 Lecture Notes

0.2

Course outline

In this course, we will learn how to do many common calculations quickly and accurately. In

particular:

AR o

7.

Floating-point arithmetic (How do we represent real numbers on a computer?)
Polynomial interpolation (How do we represent mathematical functions on a computer?)
Numerical differentiation (How do we calculate derivatives?)

Nonlinear equations (How do we find roots of nonlinear equations?)

Linear equations (How do we solve linear systems?)

Least-squares approximation (How do we find approximate solutions to overdetermined
systems?)

Numerical integration (How do we calculate integrals?)

One area we won’t cover is how to solve differential equations. This is such an important topic
that it has its own course Numerical Differential Equations III/IV.

Numerical Analysis Il - ARY 6 2017-18 Lecture Notes

1 Floating-point arithmetic

How do we represent numbers on a computer?

Integers can be represented exactly, up to some maximum size.

Example — 64-bit integers.
If 1 bit (binary digit) is used to store the sign +, the largest possible number is

1x22 +1x27+ . +1x2'+1x2°=2%—1.

» In Python, this is not really a worry. Even though the maximum size of a normal (32-bit)
integer is 2°! — 1, larger results will be automatically promoted to “long” integers.

By contrast, only a subset of real numbers within any given interval can be represented exactly.

1.1 Fixed-point numbers

In everyday life, we tend to use a fixed point representation
x =x(didy---dy_y.dy---dy)g, where d,....d, €{0,1,...,-1}. (1.1)

Here f is the base (e.g. 10 for decimal arithmetic or 2 for binary).

Example — (10.1); = 1x 2! +0x2° + 1x 271 = 2.5,

If we require that d; # 0 unless k = 2, then every number has a unique representation of this
form, except for infinite trailing sequences of digits f — 1.

Example — 3.1999 .. = 3.2.
1.2 Floating-point numbers
Computers use a floating-point representation. Only numbers in a floating-point number sys-
tem F C R can be represented exactly, where
F = {i (O.dldz M 'dm)ﬁﬁe | ﬁ, d,,e € Z, O S dl S ﬂ - 1, emln S e S emax}. (1.2)

Here (0.dyd; - - - dp)p is called the fraction (or significand or mantissa), f3 is the base, and e is
the exponent. This can represent a much larger range of numbers than a fixed-point system
of the same size, although at the cost that the numbers are not equally spaced. If d; # 0 then
each number in F has a unique representation and F is called normalised.

Example — Floating-point number system with f = 2, m = 3, epin = —1, emax = 2.

” . ov zr-ﬂm..
=

>
L TN AT I T I W N | I I | |
A et ') 1 T
0 ?}iliéii 2 % 3 W
S, 1
i 4%
2x¢tra

Numerical Analysis Il - ARY 7 2017-18 Lecture Notes

» Notice that the spacing between numbers jumps by a factor § at each power of . The
largest possible number is (0.111),2% = (% + i + %)(4) = % The smallest non-zero number is

(0.100),27 = 1(3) = 1.

Example — IEEE standard (1985) for double-precision (64-bit) arithmetic.
Here f = 2, and there are 52 bits for the fraction, 11 for the exponent, and 1 for the sign. The
actual format used is

i(l.dl s d52)228_1023 = i(0.1d1 s d52)228_1022, e = (6162 o 611)2.

When f = 2, the first digit of a normalized number is always 1, so doesn’t need to be stored
in memory. The exponent bias of 1022 means that the actual exponents are in the range —1022
to 1025, since e € [0,2047]. Actually the exponents —1022 and 1025 are used to store +0 and
+0o respectively.

The smallest non-zero number in this system is (0.1);271%%! ~ 2.225 x 1072% and the largest
number is (0.1---1);2!1%%% ~ 1.798 x 103%. » IEEE stands for Institute of Electrical and Elec-
tronics Engineers. This is the default system in Python/numpy. The automatic 1 is sometimes
called the “hidden bit”. The exponent bias avoids the need to store the sign of the exponent.

Numbers outside the finite set F cannot be represented exactly. If a calculation falls below the
lower non-zero limit (in absolute value), it is called underflow, and usually set to 0. If it falls
above the upper limit, it is called overflow, and usually results in a floating-point exception.

» e.g. in Python, 2.0* *1025 leads to an exception.

> e.g. Ariane 5 rocket failure (1996). The maiden flight ended in failure. Only 40 seconds
after initiation, at altitude 3700m, the launcher veered off course and exploded. The cause
was a software exception during data conversion from a 64-bit float to a 16-bit integer. The
converted number was too large to be represented, causing an exception.

» In IEEE arithmetic, some numbers in the “zero gap” can be represented using e = 0, since
only two possible fraction values are needed for +0. The other fraction values may be used
with first (hidden) bit 0 to store a set of so-called subnormal numbers.

The mapping from R to F is called rounding and denoted fl(x). Usually it is simply the nearest
number in F to x. If x lies exactly midway between two numbers in F, a method of breaking
ties is required. The IEEE standard specifies round to nearest even — i.e., take the neighbour
with last digit 0 in the fraction. » This avoids statistical bias or prolonged drift.

Example — Our toy system from earlier.
I
% %
TR R

| % 3 - 1
P W 27 (0.110),2

(0.100),2" (0.101)2"

= (1.001); has neighbours 1 = (0.100),2" and 2 = (0.101);2', so is rounded down to 1.

?1 = (1.011); has neighbours % = (0.101),2! and % = 0.110),2%, so is rounded up to %

2
8
1

Numerical Analysis Il - ARY 8 2017-18 Lecture Notes

» e.g. Vancouver stock exchange index. In 1982, the index was established at 1000. By
November 1983, it had fallen to 520, even though the exchange seemed to be doing well. Ex-
planation: the index was rounded down to 3 digits at every recomputation. Since the errors
were always in the same direction, they added up to a large error over time. Upon recalcula-
tion, the index doubled!

1.3 Significant figures

When doing calculations without a computer, we often use the terminology of significant fig-
ures. To count the number of significant figures in a number x, start with the first non-zero
digit from the left, and count all the digits thereafter, including final zeros if they are after the
decimal point.

Example — 3.1056, 31.050, 0.031056, 0.031050, and 3105.0 all have 5 significant figures (s.f.).

To round x to n s.f,, replace x by the nearest number with n s.f. An approximation X of x is
“correct to n s.f” if both X and x round to the same number to n s.f.

1.4 Rounding error

If |x| lies between the smallest non-zero number in F and the largest number in F, then
fl(x) = x(1 +9), (1.3)

where the relative error incurred by rounding is

() - x|

|x|

6] = (1.4)

» Relative errors are often more useful because they are scale invariant. E.g., an error of 1
hour is irrelevant in estimating the age of this lecture theatre, but catastrophic in timing your
arrival at the lecture.

Now x may be written as x = (0.did; - - -)3f¢ for some e € [emin, emax], but the fraction will
not terminate after m digits if x ¢ F. However, this fraction will differ from that of fl(x) by at
most % B™, so

() -xl < 3p7"F° = 18ISz (1.5)

Here we used that the fractional part of |x| is at least (0.1)s = f~*. The number ey = 3™ is
called the machine epsilon (or unit roundoff), and is independent of x. So the relative rounding
error satisfies

6] < em. (1.6)

» Sometimes the machine epsilon is defined without the factor % For example, in Python,
print(np.finfo(np.float64) .eps).

» The name “unit roundoff” arises because 1~ is the distance between 1 and the next number
in the system.

Numerical Analysis Il - ARY 9 2017-18 Lecture Notes

191-3 _

Example — For our system with f = 2, m = 3, we have ey = = ;. For IEEE double

1
3
— %.21—53 — 2—53 ~

2
precision, we have f = 2 and m = 53 (including the hidden bit), so ey
1.11 x 107,

When adding/subtracting/multiplying/dividing two numbers in F, the result will not be in F
in general, so must be rounded.

Example — Our toy system again (f = 2, m = 3, epnin = —1, émax = 2).
Let us multiply x = g and y = % We have

35 _ 1 1 1 _
xy_a_§+§+a—(0.100011)2.

This has too many significant digits to represent in our system, so the best we can do is round
the result to fl(xy) = (0.100), = %

» Typically additional digits are used during the computation itself, as in our example.

For o = 4+, —, X, +, IEEE standard arithmetic requires rounded exact operations, so that

firoy) = (xoy)(1 +3), 18] < ex. (1.7)

1.5 Loss of significance

You might think that (1.7) guarantees the accuracy of calculations to within ey, but this is true
only if x and y are themselves exact. In reality, we are probably starting from x = x(1 + J;)
and § = y(1 + &;), with |91], |92] < em. In that case, there is an error even before we round the
result, since

xxg=x(1+06) xy(1+5) (1.8)
= (Hy)(H%z&z). (1.9)

If the correct answer x + y is very small, then there can be an arbitrarily large relative error
in the result, compared to the errors in the initial ¥ and §. In particular, this relative error can
be much larger than ey. This is called loss of significance, and is a major cause of errors in
floating-point calculations.

Example — Quadratic formula for solving x? — 56x + 1 = 0.
To 4 s.f.,, the roots are

x1 =284+ V783 =55.98, x9=28—-V783 =0.01786.
However, working to 4 s.f. we would compute V783 = 27.98, which would lead to the results
X1 = 55.98, x93 =0.02000.

The smaller root is not correct to 4 s.f., because of cancellation error. One way around this is
to note that x? — 56x + 1 = (x — x1)(x — x3), and compute x, from x; = 1/x;, which gives the
correct answer.

Numerical Analysis Il - ARY 10 2017-18 Lecture Notes

» Note that the error crept in when we rounded V783 to 27.98, because this removed digits
that would otherwise have been significant after the subtraction.

Example — Evaluate f(x) = ¥ — cos(x) — x for x very near zero.
Let us plot this function in the range —5x 10™® < x < 5X 107® - even in IEEE double precision
arithmetic we find significant errors, as shown by the blue curve:

, 5 le=15

0.5-

0.0-

The red curve shows the correct result approximated using the Taylor series

x2 x3 xz x4
fO)={1+x+—+—=+... |- |1-—=+——...|—x
2! 3! 2! 4!

x3

~xt+ =,
6

This avoids subtraction of nearly equal numbers.
» We will look in more detail at polynomial approximations in the next section.
Note that floating-point arithmetic violates many of the usual rules of real arithmetic, such as

(a+b)+c=a+ (b+c).

Example — In 2-digit decimal arithmetic,

f1[(5.9 +5.5) + 0.4] = fI[fl(11.4) + 0.4] = f1(11.0 + 0.4) = 11.0,
f1[5.9 + (5.5 +0.4)| =11[5.9+5.9] =1(11.8) = 12.0.
Example — The average of two numbers.

In R, the average of two numbers always lies between the numbers. But if we work to 3
decimal digits,

5.01 +5.02 f1(10.03 10.0
ﬂ(al): (10.03) _ 100 _ o

2 2 2

The moral of the story is that sometimes care is needed.

Numerical Analysis Il - ARY 11 2017-18 Lecture Notes

2 Polynomial interpolation

How do we represent mathematical functions on a computer?

If f is a polynomial of degree n,
f(x) =pu(x) =ap+ arx + ...+ apx", (2.1)

then we only need to store the n + 1 coeflicients ay, ..., a,. Operations such as taking the
derivative or integrating f are also convenient. The idea in this chapter is to find a polynomial
that approximates a general function f. For a continuous function f on a bounded interval,
this is always possible if you take a high enough degree polynomial:

Theorem 2.1 (Weierstrass Approximation Theorem, 1885). For any f € C([0,1]) and any
€ > 0, there exists a polynomial p(x) such that
_ < €.
max |f(x) ~p(x)| < e

» This may be proved using an explicit sequence of polynomials, called Bernstein polynomials.
The proof is beyond the scope of this course, but see the extra handout for an outline.

If f is not continuous, then something other than a polynomial is required, since polynomials
can’t handle asymptotic behaviour.

» To approximate functions like 1/x, there is a well-developed theory of rational function
interpolation, which is beyond the scope of this course.

In this chapter, we look for a suitable polynomial p, by interpolation — that is, requiring
pPn(x;) = f(x;) at a finite set of points x;, usually called nodes. Sometimes we will also require
the derivative(s) of p, to match those of f. In Chapter 6 we will see an alternative approach, ap-
propriate for noisy data, where the overall error | f (x) — p,(x)| is minimised, without requiring
pn to match f at specific points.

2.1 Taylor series

A truncated Taylor series is (in some sense) the simplest interpolating polynomial since it uses
only a single node xy, although it does require p, to match both f and some of its derivatives.

Example — Calculating sin(0.1) to 6 s.f. by Taylor series.
We can approximate this using a Taylor series about the point x; = 0, which is

2o X

sin(x) =x— —+ —— — +
31 507!

This comes from writing

f(x) :a0+a1(x—xo)+a2(x—xo)2+...,

Numerical Analysis Il - ARY 12 2017-18 Lecture Notes

then differentiating term-by-term and matching values at x;:

£ (x0) = ao,
f'(x0) = ai,
1" (x0) = 2az,
[(x0) = 3(2)as,

1" (x0) 1" (x0)
= f(x) = f(x0) + f'(x0)(x = xo) + T(X—xo)z + 31 (x—x0)* +....
So
lterm =— f(0.1) = 0.1,

0.13

2terms = f(0.1) 0.1 — - = 0.099833.. .,
0.1> o1

3 terms — f(O.l) ~0.1—- T + m = 0.09983341....

The next term will be —0.17/7! ~ =1077/10% = —1071°, which won’t change the answer to 6 s.f.

» The exact answer is sin(0.1) = 0.09983341.

Mathematically, we can write the remainder as follows.

Theorem 2.2 (Taylor’s Theorem). Let f be n + 1 times differentiable on (a,b), and let f™ be
continuous on [a, b]. If x, xo € [a, b] then there exists & € (a, b) such that

noofk) (n+1)
foy = 3 L0 @)

(x _ X())n+1.
L (n+1)!

(x - xo)k +

The sum is called the Taylor polynomial of degree n, and the last term is called the Lagrange
form of the remainder. Note that the unknown number ¢ depends on x.

Example — We can use the Lagrange remainder to bound the error in our approximation.
For f(x) = sin(x), we found the Taylor polynomial ps(x) = x — x%/3! + x°/5!, and f7)(x) =

—sin(x). So we have
xo)7

£ () = ps(x)| =

for some ¢ between x(and x. For x = 0.1, we have

‘f(”({f)
7! (=

1

[£0.1) = ps(0.1)] = o

(0.1)|fP ()] for some & € [0,0.1].
Since ‘ FO(&)| = | sin(&)| < 1, we can say, before calculating, that the error satisfies

|£(0.1) = ps(0.1)| < 1.984 x 1071,

Numerical Analysis Il - ARY 13 2017-18 Lecture Notes

» The actual error is 1.983 X 107!, so this is a tight estimate.

Since this error arises from approximating f with a truncated series, rather than due to round-
ing, it is known as truncation error. Note that it tends to be lower if you use more terms [larger
n], or if the function oscillates less [smaller f"*!) on the interval (xo, x)].

» Much of this course will be concerned with truncation error, since this is a property of the
numerical algorithm and independent of the floating-point arithmetic used.

Error estimates like the Lagrange remainder will play an important role in this course, so it is
important to understand where it comes from. The number & will ultimately come from Rollé’s
theorem, which is a special case of the mean value theorem from 1H calculus;

Theorem 2.3 (Rolle). If f is continuous on [a, b] and differentiable on (a, b), with f (a) = f(b) =
0, then there exists £ € (a,b) with f'(£) = 0.

Proof of Lagrange remainder (Theorem 2.2). The argument goes as follows:
1. Define the “auxilliary” function
g(t) = £(t) = pa(t) = M(t = x0)""",

where p, is the Taylor polynomial. By construction, this function satisfies

g(x0) = f(x0) = palxo) — M(0)™*! =0,
g (x0) = f'(x0) = pp(x0) = (n+ 1)M(0)" =0,
9" (x0) = f"(x0) = pjj (x0) — n(n + 1)M(0)" " =0,

9" () = £ (o) = pi” (x0) = (n + 1)IM(0) = 0.
2. By a cunning choice of M, we can make g(x) = 0 too. Put
f(x) = palx)
(x — xo)n+1 >
then g(x) = f(x) — pn(x) — M(x — x0)"*! = 0.
3. Since g(x) = g(x) = 0 and x # xo, Rolle’s theorem implies that there exists &, between

M =

xo and x such that g’(&) = 0. But we already know that ¢’(x) = 0, so ¢’ has two distinct
roots and we can apply Rolle’s theorem again. Hence there exists &; between x; and &,
such that g” (&) = 0. We can keep repeating this argument until we get £,+; = & such
that g™ (§) = 0.

4. We can differentiate g(t) to see that

n+1

dtn+l

g" () = @) - i) - [t =x0)™| = FU D () = M(n + 1)

Substituting & and our chosen M gives
f (x) = pn(x)

(n+1) _ r(n+1)
9 = [0 ~ T

which rearranges to give the formula in Theorem 2.2.

——~(n+1)!

O

Numerical Analysis Il - ARY 14 2017-18 Lecture Notes

2.2 Polynomial interpolation

The classical problem of polynomial interpolation is to find a polynomial

n

pu(x) =ap+aix+ ... +apx" = Z apx* (2.2)
k=0
that interpolates our function f at a finite set of nodes {xy, x1, . . . , X, }. In other words, p,(x;) =

f(x;) at each of the nodes x;. Since the polynomial has n + 1 unknown coeflicients, we expect
to need n + 1 distinct nodes, so let us assume that m = n.

Example — Linear interpolation (n = 1).

Here we have two nodes xy, x1, and seek a polynomial p; (x) = ao + a;x. Then the interpolation

conditions require that

{Pl(xo) satax=fG) o aflo) xfba) | fon) - fe)

p1(x1) = ap + a1x1 = f(x1) X1 — X X1 — Xo

For general n, the interpolation conditions require

a, + aixg + azxg + . o+ oapx] = f(xo0),
2 n
ap + aixy 4+ axx{ + ... + ax! = f(x1),
! o . (23)
ap + apxp, + axx? + ... o+ apx® = f(xn),
so we have to solve ,
Xo X5 o X5\ [4 f(x0)
2 n
X X x| aq f(x1)
- A=l (2.4)
1 x, x2 xn) \an f(xn)
This is called a Vandermonde matrix. The determinant of this matrix (problem sheet) is
det(A) =]_[(x; — X)), (2.5)
0<i<j<n

which is non-zero provided the nodes are all distinct. This establishes an important result,
where $, denotes the space of all real polynomials of degree < n.

Theorem 2.4 (Existence/uniqueness). Given n+1 distinct nodes x, x1, . . . , X, there is a unique
polynomial p, € P, that interpolates f(x) at these nodes.

We may also prove uniqueness by the following elegant argument.

Uniqueness part of Theorem 2.4. Suppose that in addition to p, there is another interpolating
polynomial g, € #,. Then the difference r, := p, — g, is also a polynomial with degree < n.
But we have

(%) = pn(xi) — qu(xi) = f(xi) — f(x;) =0 fori=0,...,n,

Numerical Analysis Il - ARY 15 2017-18 Lecture Notes

so rp(x) has n + 1 roots. From the Fundamental Theorem of Algebra, this is possible only if
rn(x) = 0, which implies that g, = p. -

» An alternative way to prove existence is to construct the interpolant explicitly, as we will
do in Section 2.3.
Note that the unique polynomial through n + 1 points may have degree < n.

» This happens when gy = 0 in the solution to (2.4).

Example — Interpolate f(x) = cos(x) with p, € $; at the nodes {0, 7, 7}.

We have xo = 0, x; = 7, x2 = 7, 50 f(x0) = 1,f(x1) = 0,f(x2) = —1. Clearly the unique
interpolant is a straight line p,(x) =1 — %x.

If we took the nodes {0, 27, 47}, we would get a constant function py(x) = 1.

One way to compute the interpolating polynomial would be to solve (2.4), e.g. by Gaussian
elimination. However, we will see (next term) that this is not recommended. In practice, we
choose a different basis for p,. There are two common choices, due to Lagrange and Newton.

» The Vandermonde matrix arises when we write p, in the natural basis {1, x,x?%, .. .}.

2.3 Lagrange form

This uses a special basis of polynomials {{,} in which the interpolation equations reduce to
the identity matrix. In other words, the coefficients in this basis are just the function values,

palx) = > Fl)le(x). (2.6)
k=0

Numerical Analysis Il - ARY 16 2017-18 Lecture Notes

Example — Linear interpolation again.

We can re-write our linear interpolant to separate out the function values:

— X
P = - flow) + - fa).
\-\/—-’ \-ﬁ/-o’
fo(x) fl(x)

Then £, and ¢, form the necessary basis. In particular, they have the property that

1 ifi=o, 0 ifi=o0,
€°(xi):{o ifi=1 gl(xi):{l ifi=1

For general n, the n + 1 Lagrange polynomials are defined as a product

X — Xj
e (x) =]_[L (2.7)
=0 Xk — .X'j
Jj#k

By construction, they have the property that

lex) = {1 ifi=k (2.)

0 otherwise.

From this, it follows that the interpolating polynomial may be written as (2.6).

» By Theorem 2.4, the Lagrange polynomials are the unique polynomials with property (2.8).
Example — Compute the quadratic interpolating polynomial to f(x) = cos(x) with nodes
{~%,0, %} using Lagrange polynomials.

The Lagrange polynomials of degree 2 for these nodes are

foix) = FTE) X&)
’ (x0 = x1) (x50 — x2) .z
(x —x0)(x —x2) (x+5)(x-7%
t1(x) = (x1 — x0) (%1 — x3) —z.z ,
(x —x0)(x —x1) x(x+ %)
lo(x) = (x3 — x0) (2 — x1) .z .

So the interpolating polynomial is

p2(x) = fxo)lo(x) + f(x1)li(x) + f(x2)Ca(x)
=18 (x—%)—?(x+%)(x—z)+@%x(x+%) = 8 (H -1+t

The Lagrange polynomials and the resulting interpolant are shown below:

Numerical Analysis Il - ARY 17 2017-18 Lecture Notes

: 0-

:

| -2-

3 -3 — fix)

! — pa(x)

l —4- |

1.0 1.5 -3 -2 -1 0 1 2 3

T X

» Lagrange polynomials were actually discovered by Edward Waring in 1776 and rediscovered
by Euler in 1783, before they were published by Lagrange himself in 1795.

The Lagrange form of the interpolating polynomial is easy to write down, but expensive to
evaluate since all of the {4 must be computed. Moreover, changing any of the nodes means
that the {x must all be recomputed from scratch, and similarly for adding a new node (moving

to higher degree).

2.4 Newton/divided-difference form

It would be easy to increase the degree of p, if

Pni1(x%) = pu(x) + gns1(x), where gpi1 € Pri1. (2.9
From the interpolation conditions, we know that
Gn+1(xi) = prr1(xi) — pn(xi) = f(xi) = f(xi) =0 fori=0,...,n, (2.10)
= gn+1(x) = ane1(x = x0) -+ (x — x). (2.11)
The coefficient a,; is determined by the remaining interpolation condition at x,1, so

f(xn+1) — Pn (xn+1)

(xn+1 - xo) o (Xne1 — xn)

pn(xn+l) + gn+l(xn+1) = f(xn+l) S an+1 = (2~12)

The polynomial (x — xp)(x — x1) - - - (x — x,,) is called a Newton polynomial. These form a new

basis
k—1

no(x) =1, ni(x) = l_[(x —-x;) fork > 0. (2.13)

Jj=0
» Proving that this is truly a basis is left to the Problem Sheet.
The Newton form of the interpolating polynomial is then

n

Pn(x) = Z agni(x), a = f(xo), a = f (k) — pr—1(xx)

P (k= x0) -+ (k= Xk—1)

fork > 0. (2.14)

Notice that ax depends only on xy, . . . X, SO we can construct first ay, then ay, etc.

Numerical Analysis Il - ARY 18 2017-18 Lecture Notes

It turns out that the gy are easy to compute, but it will take a little work to derive the method.
We define the divided difference f[xo, X1, . .., xk] to be the coefficient of x* in the polynomial
interpolating f at nodes xy, . . ., xx. It follows that

flxo.x1,. .., xx] = a, (2.15)

where ay is the coefficient in (2.14).

Example — Using (2.14), we find

flxo]l = a0 = f(x0), (2.16)
Flroxa] = a1 = fCa) =polxr) _ flx) —ao _ flal - f[xo]_ (2.17)
X1 — Xo X1 — Xo X1 — Xo

So the first-order divided difference f[xy,x;] is obtained from the zeroth-order differences
fxo0], fx1] by subtracting and dividing, hence the name “divided difference”.

Example — Continuing, we find

f(x2) = p1(x2) fx2) = ag — ai(xz — xo)

(32 = x0) (x2 — x1) - (32 = x0) (x2 — x1)
- o1 flxe] = flxa] flaa] = flxo] _ 1 [x1, x2] f[xo,xl]
X2 — Xo X2 — X1 X1 — Xo X2 — Xo
(2.18)
So again, we subtract and divide. In general, we have the following.
Theorem 2.5. For k > 0, the divided differences satisfy
f[xl',xl'+1, o, xl'+k] — f[xi+1’ e 7xi+k] - f[xi’ oo ’xi-l-k—l]) (219)

Xi+k — Xi

Proof. Without loss of generality, we relabel the nodes so that i = 0. So we want to prove that

flxrs oo Xk] —f[xo,...,xk_l].

f[xO,X1, cee ,Xk] = (220)
Xk — Xo
The trick is to write the interpolant with nodes x, . . ., x; in the form
(k= x)gr—1(x) + (x — x0)gr—1(x)
Pr(x) = , (2.21)
Xk — Xo
where qx_1 € P_; interpolates f at the subset of nodes xg, x1,...,xr—1 and Gx—1 € Pi-1

interpolates f at the subset x1, x5, ..., xk. If (2.21) holds, then matching the coefficient of xk
on each side will give (2.20), since, e.g., the leading coeflicient of gx_1 is f[xo, ..., xx—1]. To see
that py may really be written as (2.21), note that

Pr(x0) = gr-1(x0) = f(x0), (2.22)

Pre(xk) = Geo1(xk) = f(xx), (2.23)
(e = Xi) g1 (i) + (i = %0)Gr-1(xi) _ Fx) fori=1,....k—1. (2.24)
Xk — Xo

Pr(xi) =

Since py agrees with f at the k + 1 nodes, it is the unique interpolant in Pk (Theorem 2.4). O

Numerical Analysis Il - ARY 19 2017-18 Lecture Notes

Theorem 2.5 gives us our convenient method, which is to construct a divided-difference table.

Example — Nodes {—1,0, 1,2} and data {5, 1, 1, 11}. We construct a divided-difference table
as follows.

X0 =-1 flxol =5

flxo,x1] = -4
x1=0 flxal=1 flxo, x1,x2] = 2

flx,x2] =0 flxo,x1,%x2,x3] = 1
x5 = 1 flx] =1 flx1,x2,x3] =5

flxz,x3] =10

x3=2 flx] =11

The coeflicients of the ps lie at the top of each column, so

p3(x) = flxo]l + flxo0, x1](x — x0) + f[x0, %1, x2](x — x0) (x — x1) + f[x0, x1, %2, %3] (X — x0) (x — x1) (x — x2)
=5—-4(x+1)+2x(x+1) +x(x+1)(x—1).

Now suppose we add the extra nodes {—2, 3} with data {5,35}. All we need to do to compute
ps is add two rows to the bottom of the table — there is no need to recalculate the rest. This

gives
-1 5
—4
0 1 2
0 1
11 5 -=
10 13 0
2 11 u ¥
6 12
3 5
2 9 6
-2 5 2
6
3 35

The new interpolating polynomial is

ps(x) = ps(x) — 1—12x(x +1)(x—=1)(x —2).

» Notice that the x> coefficient vanishes for these particular data, meaning that they are con-
sistent with f € P;.

» Note that the value of f[xy, x1, ..., xx] is independent of the order of the nodes in the table.
This follows from the uniqueness of py.

» Divided differences are actually approximations for derivatives of f (cf. Chapter 3). In the
limit that the nodes all coincide, the Newton form of p,(x) becomes the Taylor polynomial.

Numerical Analysis Il - ARY 20 2017-18 Lecture Notes

2.5 Interpolation error

The goal here is to estimate the error | f(x) — p,(x)| when we approximate a function f by a
polynomial interpolant p,. Clearly this will depend on x.

Example — Quadratic interpolant for f(x) = cos(x) with {-%,0, Z}.

From Section 2.3, we have p,(x) = 16 (L - 1) x% + 1, so the error is

% \ 2

cos(x) — & (i - l)x2 - 1'.

2 2

|f (%) = p2(x)| =

This is shown here:

).0200-

3.0175 - — |f(x) = p2(x)|
).0150-
).0125-
).0100-
).0075-
).0050-
).0025-
).0000-

-1.0 -0.5 0.0 0.5 1.0
X

Clearly the error vanishes at the nodes themselves, but note that it generally does better near
the middle of the set of nodes — this is quite typical behaviour.

We can adapt the proof of Taylor’s theorem to get a quantitative error estimate.

Theorem 2.6 (Cauchy). Let p, € P, be the unique polynomial interpolating f(x) at then + 1
distinct nodes xg, x1,...,Xx, € [a,b], and let f be continuous on [a,b] with n + 1 continuous
derivatives on (a, b). Then for each x € [a, b] there exists & € (a, b) such that

fE)

f(x) = pulx) = m(x — x0)(x = x1) - (x — xn).

» This looks similar to the error formula for Taylor polynomials (Theorem 2.2). But now the
error vanishes at multiple nodes rather than just at x,.

» From the formula, you can see that the error will be larger for a more “wiggly” function,
where the derivative f**1 is larger. It might also appear that the error will go down as the
number of nodes n increases; we will see in Section 2.6 that this is not always true.

» As in Taylor’s theorem, note the appearance of an undetermined point ¢. This will prevent
us knowing the error exactly, but we can make an estimate as before.

Numerical Analysis Il - ARY 21 2017-18 Lecture Notes

Proof of Theorem 2.6. We follow a similar idea as for the Lagrange remainder in Theorem 2.2.

1. Define the “auxilliary” function

g(t) = £(&) = pu(®) - M| [(2 - x0).
i=0

By construction, this function satisfies
g(xi) = f(x;) = pu(x;)) =0 for i=0,...,n.

2. By a cunning choice of M, we can make g(x) = 0 too. Put

f(x) = pn(x)
?o(x xl)

then g(x) = f(x) = pa(x) = M T2y (x = x;) = 0.

3. Since ¢g(t) has n + 2 distinct roots, Rolle’s theorem implies that there are n + 1 distinct

M =

points where ¢’(t) = 0. But then we can apply Rolle’s theorem again to see that there
are n distinct points where g”(t) = 0. Continuing to apply Rolle’s theorem in this way,
we end up with a single point ¢ = £ where g"*V (¢) = 0.

4. Repeatedly differentiating g(t) gives

n+1 n

g V@) = FU0) - p (0 - M [

i=0
Substituting & and our chosen M gives
f&x) —pn(x)
—————(n
i= 0(x - xi)

which rearranges to give the formula in Theorem 2.6.

gmIE) = £ -

Example — Quadratic interpolant for f(x) = cos(x) with {-%,0, %}
For n = 2, Theorem 2.6 says that

®)
f(x) = pa(x) = ! 6(§)x(x +) x-7) = %sin(f)x(x +%)(x—7%), forsomeé e [-7, 7]
For an upper bound on the error at a particular x, we can just use | sin(¢)| < 1 and plug in x.

To bound the maximum error within the interval [-1, 1], let us maximise the polynomial

w(x) = x(x + §)(x — 7). We have w'(x) = 3x% — ’f—z so turning points are at x = iﬁ.
We have

Z) = z

w(— 4\/_) 0.186. W(4\/§)

So our error estimate for x € [-1,1] is

=-0.186..., w(-1)=-0383..., w(1)=0.383....

£ (x) — p2(x)] < £(0.383) = 0.0638.

From the plot earlier, we see that this bound is satisfied (as it has to be), although not tight.

Numerical Analysis Il - ARY 22 2017-18 Lecture Notes

2.6 Convergence and the Chebyshev nodes

You might expect polynomial interpolation to converge as n — oco. Surprisingly, this is not the
case if you take equally-spaced nodes x;. This was shown by Runge in a famous 1901 paper.

Example — The Runge function f(x) = 1/(1 + 25x?) on [-1,1].
Here are illustrations of p, for increasing n:

1.0 n=3 ‘ | 1.0 - n=7
0.8 . 0.8
0.6 . 0.6
0.4- B 0.4-
0.2 . 0.2
0.0 ‘ ‘ ‘ i 0.0 | ‘ ‘ i
~1.0 -05 0.0 0.5 1.0 ~1.0 -05 0.0 0.5 1.0
x x
10 n=11 ‘ n=15
2.0
0.8
1.5-
0.6
1.0
0.4
0.5
0.2
0.0
7 N,
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
x xr

Notice that the p, is converging to f in the middle, but diverging more and more near the ends,
even within the interval [xy, x,,]. This is called the Runge phenomenon.

» A full mathematical explanation for this divergence usually uses complex analysis — see
Chapter 13 of Approximation Theory and Approximation Practice by L.N. Trefethen (SIAM,
2013). For a more elementary proof, see http://math.stackexchange.com/questions/775405/.

The problem is (largely) coming from the polynomial

n

w(x) = l_[(x —x). (2.25)

i=0
We can avoid the Runge phenomenon by choosing different nodes x;.

» If we are forced to keep equally-spaced nodes, then the best option is to use a piecewise
interpolant made up of lower-degree polynomials.

Numerical Analysis Il - ARY 23 2017-18 Lecture Notes

Since the problems are occurring near the ends of the interval, it would be logical to put more
nodes there. A good choice is given by taking equally-spaced points on the unit circle |z| = 1,
and projecting to the real line:

1.2-
1.0-
0.8-
0.6
0.4-

0.2 -

0.0 -

_02 -
-1.0 -0.5 0.0 0.5 1.0
€T

The points around the circle are

2j+)

9= ST

j=0,...,n,

so the corresponding Chebyshev nodes are

(2j + D)

, j=0,...,n. 2.26
2(n+1) J (2.26)

Xj = COs

» Note that the order of the points is decreasing in x. This doesn’t matter for any of our
interpolation methods.

Example — The Runge function f(x) = 1/(1 + 25x?) on [-1, 1] using the Chebyshev nodes.

), x1 = cos(), x, = cos($), x3 = cos(F).

For n = 3, the nodes are x; = cos(

Below we illustrate the resulting interpolant for n = 15:

n=15

0.8-
0.6-
0.4-
0.2-

0.0- | : T T -
-1.0 -0.5 0.0 0.5 1.0
T

Compare this to the example with equally spaced nodes.

Numerical Analysis Il - ARY 24 2017-18 Lecture Notes

In fact, the Chebyshev nodes are, in one sense, an optimal choice. To see this, we first note
that they are zeroes of a particular polynomial.

(2j+1)7

2t D)] forj =0,...,n arezeroes of the Chebyshev

Lemma 2.7. The Chebyshev points x; = cos [
polynomial

Tus1(t) == cos [(n +1) arccos(t)]

» The Chebyshev polynomials are denoted T, rather than C, because the name is transliterated
from Russian as “Tchebychef” in French, for example.

» Technically, these are Chebyshev polynomials of the first kind. The second kind are denoted
Uy,(t) and defined by the recurrence Uy(t) = 1, Ui (t) = 2t, Uy41(t) = 2tUn(t) — Uy—1(2).

» Chebyshev polynomials have many uses because they form an orthogonal basis for #, with
weight function (1 —t2)~/2 (next term). They (first kind) are solutions to the ODE (1 —t2)T" —
tT" + n’T = 0.

Proof. There are two things to prove here. Firstly that our x; are zeroes of this function, and
secondly that it is a polynomial (not obvious!).

To see that T,,41(x;) = 0, just put them in for j = 0,...,n:

Ths1(xj) = cos [(n + l)(ZZZr:-—:i;T = cos ((_/ + %)n) =0.

To see that T,, € $,, we will work by induction. Firstly, note that
To(t) = cos[0] =1 € Py, and Ti(t) = cos [arccos(t)] =teP.
Now

Tus1(t) + Ty—1(t) = cos [(n + 1)9] + cos [(n - 1)9] where 6 = arccos(t),
= cos(nf) cos(0) — sin(nf) sin(0) + cos(nd) cos(0) + sin(nd) sin(H),
= 2 cos(nb) cos 9,

= 2tTy,(t).

This gives the recurrence relation

T (t) = 2tTy(t) — Ty1 (2). (2.27)
It follows that T;,;; is a polynomial of degree n + 1. O
In choosing the Chebyshev nodes, we are choosing the error polynomial w(x) := [, (x —x;)

to be T,41(x)/2". (This normalisation makes the leading coefficient 1, from (2.27).) This is a
good choice because of the following result.

Theorem 2.8 (Chebyshev interpolation). Letxo, X1, . . ., Xp, € [—1, 1] bedistinct. Thenmax[_ 1] |[w(x)]
is minimized if
1
w(x) = ET,,H(x),

where Ty,,1(x) is the Chebyshev polynomial T,1(x) = cos ((n +1) arccos(x)).

Numerical Analysis Il - ARY 25 2017-18 Lecture Notes

Before we prove it, look at the first few Chebyshev polynomials T,4:

1.0-

0.5-

0.0-

—-0.5-

-1.0-

0.5

The trigonometric nature of T,,;; means that it oscillates between +1, so |w(x)| will not “blow
up” near the ends of the interval. This is the underlying idea of the proof.

Proof. Note that p(t) = 27"T,41(t) is a monic polynomial (leading coefficient 1) with correct
degree n + 1 and distinct roots. It attains its maximum absolute value at the n + 2 points
tj = cos (%), where p(t;) = 27"(-1).

Now assume there is another monic polynomial g € P,,; such that max(_; 17 |q(¢)| < max(_q,17 [p(¢)I.
Define the difference r(t) = p(t) — q(t), which is in $, since p and q are both monic. Then

>0 ifjeven,

r(t;) = p(tj) — q(t) {< 0 ifjodd.

By the intermediate value theorem, r must have n + 1 zeroes, but r € , sor = 0. Hence g = p
and w := p minimises max{_y 1] [w|. O

Having established that the Chebyshev polynomial minimises the maximum error, we can see
convergence from the fact that
F" D @)l £)]

(n+1)
POl Ny < L2

) =Pl = =07, T 2(n+ 1) 2" (n+ 1)1

If the function is well-behaved enough that |f"*V(x)| < M for some constant whenever
x € [—1, 1], then the error will tend to zero as n — oo.

2.7 Derivative conditions

A variant of the interpolation problem is to require that the interpolant matches one or more
derivatives of f at each of the nodes, in addition to the function values.

» This is sometimes called osculating (“kissing”) interpolation.

Numerical Analysis Il - ARY 26 2017-18 Lecture Notes

» We already saw the Taylor polynomial, which is an extreme case with many derivative
conditions but only one node.

As an example, we consider Hermite interpolation, where we look for a polynomial that matches
both f’(x;) and f(x;) at the nodes x; = xo, . . ., x,. Since there are 2n + 2 conditions, this sug-
gests that we will need a polynomial of degree 2n + 1.

Theorem 2.9 (Hermite interpolation). Given n + 1 distinct nodes xy, X1, . . . , X, there exists a
unique polynomial pyy 1 € Pans1 that interpolates both f(x) and f'(x) at these points.

Proof. 1. Uniqueness. The proof is similar to Theorem 2.4. Suppose that both py,+1 and gzp+1
are polynomials in $,,; that interpolate both f and f” at the nodes. Then the difference
Ton+1 := P2n+1 — Q2n+1 1S also in Pap4q. But we have

ont1(Xi) = Pans1(Xi) — qans1(xi) = f(x;) — f(x;) =0 fori=0,...,n,
Tona1(Xi) = Ponet (Xi) = Qoney (i) = f/(xi) — f'(x;) =0 fori=0,...,n,

so each node is a root of ry,+1 of multiplicity > 2. Therefore ry,4+; has 2n + 2 roots, so by the
Fundamental Theorem of Algebra rs,4+1(x) = 0, which implies that g, = py.

2. Existence. The simplest way to see that such a polynomial exists is to construct a basis
analogous to the Lagrange basis, so that we can write

n

Pansi(x) =) (FEOR) + £ (ki) (2:29)

k=0
where h; and flk are basis functions in P, that satisfy

hi(g) = &k, M) = 0,

hi(x;) = 0, i (x;) S (2.29)

Let’s try and construct h; and hy using the Lagrange basis functions £ (x), which satisfy
tk(xj) = 6. To get the correct degree, try writing

he(x) = () (ae(x —xe) + bi), he(x) = €2(x) (@ (x — xe) +). (2.30)

The coefficients ag, by, dx, l;k need to be chosen to match the conditions (2.29). We have

he(xp) =1 = b =1,

M) =0 = 2606 (x) + arli(xi) =0 = ap = —20,(xp),
flk(xk) =0 == l;k =0,

B =1 = alifq)=1 = d=1.

Hence the Hermite basis functions are

he(x) = (1 —2(x - xk)f'k(xk))f,i(x), (2.31)
A (x) = (x — x) (). (2.32)
O

Numerical Analysis Il - ARY 27 2017-18 Lecture Notes

Example — Hermite interpolant for f(x) = sin(x) with {0, Z}.
We have xo = 0, x; = 7 and f(x0) =0, f(x1) = 1, f'(x0) = 1, f'(x1) = 0, s0

p3(x) = f(xo)ho(x) + f'(x0)ho(x) + f(x1)h1(x) + f(x1) 1 (x) = ho(x) + hi(x).

The Lagrange polynomials are

X — X1
)= T r=1-2x, b=r—r= =)=

So

h) = (1= 20 = 2)6@) 600 = 262G - 20, holx) = (v = 2 () = x(1 - 2,

and we get
p3(x) =x(1 - %x)2 + %x2(3 - %x).
2
' /\‘\
0
—1-
2.
-3 — f(z)
— pa(@)
-4 !
-3 -2 -1 0 1 2 3
xI

A similar error estimate can be derived as for normal interpolation, and analogous interpolants
can be found for different sets of derivative conditions (see the problems).

» The Hermite interpolant can also be calculated using a modified divided-difference table.

» A surprising connection (for those taking Algebra II): both the original and Hermite inter-
polating polynomials can be viewed as the Chinese Remainder Theorem applied to polynomial
rings. See the Wikipedia page on Chinese Remainder Theorem for details.

Numerical Analysis Il - ARY 28 2017-18 Lecture Notes

3 Differentiation
How do we differentiate functions numerically?

The definition of the derivative as

f(xo +h) = f(x0)

f'(x) = lim : , (3.1)
suggests an obvious approximation: just pick some small finite h to give the estimate
, (xo + h) — f(x0)
Py ~ TEEDZIE), 2

For h > 0 this is called a forward difference (and, for h < 0, a backward difference). It is an
example of a finite-difference formula.

|
| |
[|
| |
Xe Xo+h
Of course, what we are doing with the forward difference is approximating f”(x,) by the slope

of the linear interpolant for f at the nodes xy and x; = xy + h. So we could also have derived
(3.2) by starting with the Lagrange form of the interpolating polynomial,

Flo) + 270 iy + L)

Xo — X1 X1 — Xo 2

X — X1 X — Xo

fx) = (x = x0) (x — x1) (3.3)

for some ¢ € [xg, x1]. Differentiating — and remembering that £ depends on x, so that we need
to use the chain rule — we get

£ =)+)+ D x - —x + E (E) s -x,

(3.4)

— f/(xo) - W +f”(§)?' (3'5)
Equivalently,

f,(xO) — f(xO + h})l _f(XO) _f//(g)g. (36)

This shows that the truncation error for our forward difference approximation is —f”(£)h/2,

for some & € [xg,x9 + h]. In other words, a smaller interval or a less “wiggly” function will
lead to a better estimate, as you would expect.

Numerical Analysis Il - ARY 29 2017-18 Lecture Notes

Another way to estimate the truncation error is to use Taylor’s theorem 2.2, which tells us that

fxo+h) = f(xo) +hf (x0) + hz—fﬂz(f)

for some & between x, and xj + h. (3.7)
Rearranging this will give back (3.6).

Example — Derivative of f(x) = log(x) at x, = 2.
Using a forward-difference, we get the following sequence of approximations:

h Forward difference Truncation error
1 0.405465 0.0945349

0.1 0.487902 0.0120984

0.01 0.498754 0.00124585

0.001 0.499875 0.000124958

Indeed the error is linear in h, and we estimate that it is approximately 0.125h when h is small.
This agrees with (3.6), since f”(x) = —x 2, so we expect — " (£)/2 ~ %.

Since the error is linearly proportional to h, the approximation is called linear, or first order.

3.1 Higher-order finite differences

To get a higher-order approximation, we can differentiate a higher degree interpolating poly-
nomial. This means that we need more nodes.

Example — Central difference.
Take three nodes xy, x; = xo + h, and x, = x + 2h. Then the Lagrange form of the interpolating
polynomial is

_ (x=x)(x = xp) (x = x0) (x — x2) (x — x0) (x — x1)
T = G =) ™ G) Y =) - Y
+ ! 355) (3 = x0) (x = x1) (x = x2).
Differentiating, we get
, B 2X — X1 — X3 2X — Xp — X3 2X — Xp — X1
fx = (0 — x1)(x0 — xz)f(XO) " (31 = x0) (x1 — x2)) + (32 = x0) (x2 — x1)f(XZ)
444 (4)
LD =))+ =)=)+ T () 6 e e .
x
Now substitute in x = x; to evaluate this at the central point:
, _ X1 — X 2X1 — Xo — X2 X1 — Xo
S = (%0 — x1) (x0 — xz)f(XO) " (31 = x0) (x1 — xz)f(X1) +(x2 — xo)(x2 — xl)f(XZ)
+ ! 6(5) (x1 = x0) (x1 — x2),
—h h 17"
= ﬁf()(g) + 0+ ﬁf()(z) — %hz
_ St - fCa-h) f7E),,
- 2h 6

Numerical Analysis Il - ARY 30 2017-18 Lecture Notes

This is called a central difference approximation for f”(x;), and is frequently used in practice.

To see the quadratic behaviour of the truncation error, go back to our earlier example.

Example — Derivative of f(x) = log(x) at x = 2.

h Forward difference Truncation error Central difference Truncation error
1 0.405465 0.0945349 0.549306 -0.0493061

0.1 0.487902 0.0120984 0.500417 -0.000417293
0.01 0.498754 0.00124585 0.500004 -4.16673e-06
0.001 0.499875 0.000124958 0.500000 -4.16666e-08

The truncation error for the central difference is about 0.04k%, which agrees with the formula
since f"(£) ~ 2/2° = ; when h is small.

3.2 Rounding error

The problem with numerical differentiation is that it involves subtraction of nearly-equal num-
bers. As h gets smaller, the problem gets worse.

To quantify this for the central difference, suppose that we have the correctly rounded values
of f(x1 £ h), so that

lfxa+h)] =0 +8)f(a+h), A[f(x1=h)]=(1+8)f(x-h), (3.8)

where |11, |02] < em. Ignoring the rounding error in dividing by 2h, we then have that

f(x1) - fI[f (x1 + h)]z—hﬂ[f(xl - h)]‘ _ ’_f”;(f) h2 _ o1 f(x1 + h)z—h52f(x1 —h (3.9)
< |fm6(§)|h2+€M|f(xl+h)|2';1|f(xl_h)l (3.10)
PR F7E+ M max (8], (3.11)
T 6 [xi—hxi+h] h [xi—hxi+h] o

The first term is the truncation error, which tends to zero as h — 0. But the second term is the
rounding error, which tends to infinity as h — 0.

Example — Derivative of f(x) = log(x) at x = 2 again.
Here is a comparison of the terms in the above inequality using Python (the red points are the
left-hand side), shown on logarithmic scales. To estimate the maxima, I just took & = 2.

Numerical Analysis Il - ARY 31 2017-18 Lecture Notes

" -- rounding
i - truncation
e—e actual

10 107 10%° 10° 10* 10° 107 10! 10°
h

You see that once h is small enough, rounding error takes over and the error in the computed
derivative starts to increase again.

3.3 Richardson extrapolation

Finding higher-order formulae by differentiating Lagrange polynomials is tedious, and there
is a simpler trick to obtain higher-order formulae, called Richardson extrapolation.

We begin from the central-difference formula. Since we will use formulae with different A, let

f(x1 + h) — f(x1 - h) .

us define the notation

Dy, := 3.12
h o7 (3.12)
Now use Taylor’s theorem to expand more terms in the truncation error:
7 " (4) (5)
Fla£h) = fx) + F(x)h+ 2 ;xl)hz oL 3(f‘1)h3 oL 4("‘1) phad 5('x1)h5 +O(K). (3.13)
Substituting into (3.12), the even powers of h cancel and we get
Dy = l(Zf’(x e 2) 4 2O e o)) (3.14)
" 2n ! Y6 120 '
h? ht p
= f/Ca) + £ +f<5>(x1)ﬁ +O(h°). (3.15)

» You may not have seen the big-Oh notation. When we write f(x) = O(g(x)), we mean

lim Lf ()l <M< oo
x=0 |g(x)|

So the error is O(h®) if it gets smaller at least as fast as h® as h — 0 (essentially, it contains no
powers of h less than 6).

» The leading term in the error here has the same coefficient h?/6 as the truncation error we
derived earlier, although we have now expanded the error to higher powers of h.

Numerical Analysis Il - ARY 32 2017-18 Lecture Notes

The trick is to apply the same formula with different step-sizes, typically h and h/2:

. h? ht

Dy = f'(x1) + f" (1) + f(S)(xl)% +O(h°), (3.16)

2 4

— £ 177 (5) o 6
Dpjz = f'(x1) + f @ﬂyw)+f @O%Um)+OM). (3.17)
We can then eliminate the h? term by simple algebra:

22 h*

Dy — 2°Dypjy = =3f"(x1) + (1 - ?) f<5>(x1)ﬁ +O(h°), (3.18)
22Dy — D , h*

= D= T =) = O n) g + O(K). (3.19)

The new formula D;ll) is 4th-order accurate.

Example — Derivative of f(x) = log(x) at x = 2 (central difference).

h Dy, Error D;ll) Error

1.0 0.5493061443 0.04930614433 0.4979987836 0.00200121642
0.1 0.5004172928 0.0004172927849 0.4999998434 1.565994869¢e-07
0.01 0.5000041667 4.166729162e-06 0.5000000000 1.563887908e-11

0.001 0.5000000417 4.166661505e-08 0.5000000000 9.292566716e-14

In fact, we could have applied this Richardson extrapolation procedure without knowing the
coefficients of the error series. If we have some general order-n approximation

Dy = f'(x) + Ch" + O(h™), (3.20)
then we can always evaluate it with h/2 to get
Dpjo = f'(x) + C; +O(h") (3.21)
and then eliminate the h" term to get a new approximation
D\ = 2'11;’;{;__11)’1 = f'(x) + O(W"™). (3.22)

» The technique is used not only in differentiation but also in Romberg integration and the
Bulirsch-Stoer method for solving ODEs.

» There is nothing special about taking h/2; we could have taken h/3 or even 2h, and modified
the formula accordingly. But h/2 is usually convenient.

Furthermore, Richardson extrapolation can be applied iteratively. In other words, we can now

combine D}(ll) and D;ll/)z to get an even higher order approximation D,(lz), and so on.

Example — Iterated Richardson extrapolation for central differences.
From

D'V = f(x)) + Cih* + O(K°),

: h'
Dy, = f'(x1) + Cig + O(K),

Numerical Analysis Il - ARY 33 2017-18 Lecture Notes

we can eliminate the h* term to get the 6th-order approximation

4y(D) (1)
D@ .— 2 Dh/z - D,

ho 24

» Lewis Fry Richardson (1881-1953) was from Newcastle and an undergraduate there. He was
the first person to apply mathematics (finite differences) to weather prediction, and was ahead
of his time: in the absence of electronic computers, he estimated that 60 000 people would be
needed to predict the next day’s weather!

Numerical Analysis Il - ARY 34 2017-18 Lecture Notes

4 Nonlinear equations
How do we find roots of nonlinear equations?

Given a general equation

fx) =0, (4.1)
there will usually be no explicit formula for the root(s) x., so we must use an iterative method.
Rootfinding is a delicate business, and it is essential to begin by plotting a graph of f(x), so

that you can tell whether the answer you get from your numerical method is correct.

Example — f(x) = + —a, fora > 0.

£

i)

¥,X
=a

Clearly we know the root is exactly x, = %, but this will serve as an example to test some of
our methods.

4.1 Interval bisection

If f is continuous and we can find an interval where it changes sign, then it must have a root
in this interval. Formally, this is based on

Theorem 4.1 (Intermediate Value Theorem). If f is continuous on [a, b] and c lies between f(a)
and f(b), then there is at least one point x € [a, b] such that f(x) = c.

If f(a)f(b) < 0, then f changes sign at least once in [a, b], so by Theorem 4.1 there must be a
point x, € [a, b] where f(x.) = 0.

We can turn this into the following iterative algorithm:

Algorithm 4.2 (Interval bisection). Let f be continuous on [ay, by], with f(ay) f(by) < 0.

e At each step, set my = (ax + by)/2.
e If f(ar)f(my) > O then set ary1 = Mg, b1 = by, otherwise set a1 = ak, bgr1 = my.

Example — f(x) =)16 - 0.5.

1. Try ag = 1, by = 3 so that f(ag) f (by) = 0.5(—0.1666) < 0.
Now the midpoint is my = (1 +3)/2 = 2, with f(mg) = 0. We are lucky and have already
stumbled on the root x, = mg = 2!

Numerical Analysis Il - ARY 35 2017-18 Lecture Notes

2. Suppose we had tried ag = 1.5, by = 3, so f(ag) = 0.1666 and f(by) = —0.1666, and again

f(ao)f(b()) < 0.
Now my = 2.25, f(mg) = —0.0555. We have f(ao) f (mo) < 0, so we set a; = ap = 1.5 and

by = my = 2.25. The root must lie in [1.5, 2.25].

Now m; = 1.875, f(m;) = 0.0333, and f(a;)f(my) > 0, so we take a; = m; = 1.875,
by = by = 2.25. The root must lie in [1.875, 2.25].

We can continue this algorithm, halving the length of the interval each time.

Since the interval halves in size at each iteration, and always contains a root, we are guaranteed
to converge to a root provided that f is continuous. Stopping at step k, we get the minimum
possible error by choosing my as our approximation.

Example — Same example with initial interval [-0.5,0.5].

l\(ﬁ'(x)

.
&"
' not conhinous
R

In this case f(ao)f(by) < 0, but there is no root in the interval.

The rate of convergence is steady, so we can pre-determine how many iterations will be needed
to converge to a given accuracy. After k iterations, the interval has length

by — aol
Ibe = al = —— (4.2)
so the error in the mid-point satisfies
by — aol
Imie = . < =5 (4.3)

In order for |my; — x.| < 8, we need n iterations, where

log [by — ag| —log(d
<8 = loglby—ap|—(n+1)log(2) <log(é) = n=> 0g 1bo — aol — log()_1_

log(2)
(4.4)

|bo — aol
2n+1

Example — With ay = 1.5, by = 3, as in the above example, then for § = eyy = 1.1 X 10710 we
would need

log(1.5) — log(1.1 x 1071¢)

-1 — n > 53 iterations.
log(2)

» This convergence is pretty slow, but the method has the advantage of being very robust (i.e.,
use it if all else fails...). It has the more serious disadvantage of only working in one dimension.

Numerical Analysis Il - ARY 36 2017-18 Lecture Notes

4.2 Fixed point iteration

This is a very common type of rootfinding method. The idea is to transform f(x) = 0 into the
form g(x) = x, so that a root x, of f is a fixed point of g, meaning g(x.) = x.. To find x,, we
start from some initial guess xj and iterate

Xk+1 = g(xXk) (4.5)
until |xg;1 — x¢| is sufficiently small. For a given equation f(x) = 0, there are many ways to
transform it into the form x = g(x). Only some will result in a convergent iteration.
Example — f(x) = x* — 2x — 3.
Note that the roots are —1 and 3. Consider some different rearrangements, with x, = 0.

(a) g(x) = V2x + 3, gives xx — 3 [to machine accuracy after 33 iterations].

(b) g(x) =3/(x — 2), gives xx — —1 [to machine accuracy after 33 iterations].

(c) g(x) = (x* - 3)/2, gives xx — —1 [but very slowly!].

(d) g(x) = x* — x — 3, gives x; — 0.

(e) g(x) = (x* +3)/(2x — 2), gives xx — —1 [to machine accuracy after 5 iterations].

If instead we take x, = 42, then (a) and (b) still converge to the same roots, (c) now diverges,
(d) still diverges, and (e) now converges to the other root x; — 3.

In this section, we will consider which iterations will converge, before addressing the rate of
convergence in Section 4.3.

One way to ensure that the iteration will work is to find a contraction mapping g, which is a
map L — L (for some closed interval L) satistying

l9(x) = g(y)| < Alx —y| (4.6)

for some A < 1 and for all x, y € L. The sketch below shows the idea:

Tk Tk+1

Tk—1 Tk

Theorem 4.3 (Contraction Mapping Theorem). Ifg is a contraction mapping on L = [a, b], then

1. There exists a unique fixed point x,. € L with g(x,) = x..
2. For any x € L, the iteration xx+1 = g(xx) will converge to x, ask — oo.

Proof. To prove existence, consider h(x) = g(x)—x. Sinceg : L — Lwe have h(a) = g(a)—a > 0
and h(b) = g(b) — b < 0. Moreover, it follows from the contraction property (4.6) that g is
continuous (think of “e€§”), therefore so is h. So Theorem 4.1 guarantees the existence of at
least one point x, € L such that h(x,) = 0, i.e. g(x,) = x..

Numerical Analysis Il - ARY 37 2017-18 Lecture Notes

For uniqueness, suppose x, and y. are both fixed points of g in L. Then

e = gl = 190e) = g(ya)| < Al =yl < | =l (4.7)

which is a contradiction.

Finally, to show convergence, consider
. = X1l = 19() — 9@l < A — el < ... < A, = xq. (48)

Since A < 1, we see that x; — x, as k — oo. O

» Theorem 4.3 is also known as the Banach fixed point theorem, and was proved by Stefan
Banach in his 1920 PhD thesis.

To apply this result in practice, we need to know whether a given function g is a contraction
mapping on some interval.

If g is differentiable, then Taylor’s theorem says that there exists & € (x, y) with
9 =9) +g O 1) = 19t -9 < (maxlg(Ol)lx-yl. @)

Soif(a)g: L — Land (b) |g’'(x)| < Mforall x € L with M < 1, then g is a contraction mapping
on L.

Example — Iteration (a) from previous example, g(x) = V2x + 3.
Here ¢ = (2x + 3)7/2, so we see that |¢/(x)| < 1 for all x > —1.

For g to be a contraction mapping on an interval L, we also need that g maps L into itself. Since
our particular g is continuous and monotonic increasing (for x > —%), it will map an interval
[a, b] to another interval whose end-points are g(a) and g(b). For example, g(—%) = V2 and
g(4) = V11, so the interval L = —%, 4] is mapped into itself. It follows by Theorem 4.3 that (1)
there is a unique fixed point x, € [—%, 4] (which we know is x, = 3), and (2) the iteration will
converge to x, for any xq in this interval (as we saw for xy = 0).

In practice, it is not always easy to find a suitable interval L. But knowing that |g’(x.)| < 1 is
enough to guarantee that the iteration will converge if x; is close enough to x..

Theorem 4.4 (Local Convergence Theorem). Let g and g’ be continuous in the neighbourhood
of an isolated fixed point x,. = g(x.). If |g’(x.)| < 1 then there is an interval L = [x. — §, x, + J]
such that xx+1 = g(xx) converges to x,. whenever xy € L.

Proof. By continuity of ¢’, there exists some interval L = [x, — §, x. +] with § > 0 such that
|g’(x)| < M for some M < 1, for all x € L. Now let x € L. It follows that

5. — g(x)| = g(xx) — g(x)| < M|x. — x| < |xe — x| <6, (4.10)

so g(x) € L. Hence g is a contraction mapping on L and Theorem 4.3 shows that x; — x,. O

Numerical Analysis Il - ARY 38 2017-18 Lecture Notes

Example — Iteration (a) again, g(x) = V2x + 3.

Here we know that x, = 3, and |¢'(3)| = L <1, so Theorem 4.4 tells us that the iteration will

3
converge to 3 if x is close enough to 3.

Example — Iteration (e) again, g(x) = (x* + 3)/(2x — 2).
Here we have

/(x) x?—2x-3
X) = ——,
9 2(x —1)2

so we see that g’(—1) = ¢’(3) = 0 < 1. So Theorem 4.4 tells us that the iteration will converge
to either root if we start close enough.

» As we will see, the fact that g’(x.) = 0 is related to the fast convergence of iteration (e).

4.3 Orders of convergence

To measure the speed of convergence, we compare the error |x. — xj4+1| to the error at the
previous step, |x. — xi|.

Example — Interval bisection.
Here we had |x, — mp,1] < %lx* — my|. This is called linear convergence, meaning that we have

| — Xk41] < Alxy — xx| for some constant A < 1.

Example — Iteration (a) again, g(x) = V2x + 3.
Look at the sequence of errors in this case:

Xk

13 — x|

13 — xk|/13 — Xp—1]

0.0000000000
1.7320508076
2.5424597568
2.8433992885
2.9473375404
2.9823941860
2.9941256440

3.0000000000
1.2679491924
0.4575402432
0.1566007115
0.0526624596
0.0176058140
0.0058743560

0.4226497308
0.3608506129
0.3422665304
0.3362849319
0.3343143126
0.3336600063

We see that the ratio [x, — xx|/|x. — xx—1| is indeed less than 1, and seems to be converging to

A= % So this is a linearly convergent iteration.

Example — Iteration (e) again, g(x) = (x* + 3)/(2x — 2).

Now the sequence is:

Xk

|(—=1) — xxl

[(=1) — xi|/1(=1) — x|

0.0000000000

-1.5000000000
-1.0500000000
-1.0006097561
-1.0000000929

1.0000000000
0.5000000000
0.0500000000
0.0006097561
0.0000000929

0.5000000000
0.1000000000
0.0121951220
0.0001523926

Again the ratio |x, — xx|/|x. — xx_1| is certainly less than 1, but this time we seem to have

A — 0as k — oo. This is called superlinear convergence, meaning that the convergence is in

some sense “accelerating”.

Numerical Analysis Il - ARY

39 2017-18 Lecture Notes

In general, if x; — x. then we say that the sequence {xy} converges linearly if

Xs — X)
im Tl 0 i o<a<t, (4.11)
k—co [xy — x|
If A = 0 then the convergence is superlinear.
» The constant A is called the rate or ratio.

» Clearly superlinear convergence is a desirable property for a numerical algorithm.

Theorem 4.5. Let g’ be continuous in the neighbourhood of a fixed point x,. = g(x.), and suppose
that xi.+1 = g(xx) converges to x, as k — co.

1. If|g’(x.)| # O then the convergence will be linear with rate A = |g’(x.)|.
2. If1g’(xs)| = 0 then the convergence will be superlinear.

Proof. By Taylor’s theorem, note that

X = X1 = g(x) = glxx) = glx) = [g(x) + g’ (&) (k= x.) | = g (&) (e — xk) (4.12)
for some & between x, and xi. Since x; — x., we have & — x, as k — oo, so

lim |x>x< - xk+1|

=1li ! =g’ (x:)]. 4.1
Pk Py lim lg°(e)l = 1g' () (4.13)

This proves the result.]

Example — Iteration (a) again, g(x) = V2x + 3.

We saw before that ¢’'(3) = %, so Theorem 4.5 shows that convergence will be linear with

A=19'03)| = % as we found numerically.
Example — Iteration (e) again, g(x) = (x* + 3)/(2x — 2).
We saw that ¢’(—1) = 0, so Theorem 4.5 shows that convergence will be superlinear, again

consistent with our numerical findings.

Although it is of limited practical importance in Numerical Analysis, we can further classify
superlinear convergence by the order of convergence, defined as

a:sup{ﬁ: limM<OO}.

4.14
k—eo |x, — x| (414

For example, « = 2 is called quadratic convergence and o = 3 is called cubic convergence,
although for a general sequence « need not be an integer (e.g. the secant method below).

4.4 Newton’s method

This is a particular fixed point iteration that is very widely used because (as we will see) it
usually converges superlinearly.

Numerical Analysis Il - ARY 40 2017-18 Lecture Notes

Graphically, the idea of Newton’s method is simple: given xi, draw the tangent line to f at
X = X, and let x;11 be the x-intercept of this tangent. So

SO | p) = = L
Xk+1 — Xk f (xk)

. (4.15)

» In fact, Newton only applied the method to polynomial equations, and without using cal-
culus. The general form using derivatives (“fluxions”) was first published by Thomas Simpson
in 1740. [See “Historical Development of the Newton-Raphson Method” by T.J. Ypma, SIAM
Review 37, 531 (1995).]

Another way to derive this iteration is to approximate f(x) by the linear part of its Taylor
series centred at x:

0~ flxeer) =~ fx) + f7 () (Ker — xk).- (4.16)

The iteration function for Newton’s method is
@
frx)’
so using f(x.) = 0 we see that g(x.) = x.. To assess the convergence, note that
_ PO = f) f7) _ f) (%)
[f"(x)]? [f"(x)]?

So if f’(x.) # 0, Theorem 4.4 shows that the iteration will converge for x, close enough to x.

g(x) =x (4.17)

g(x)=1 = ¢'(x:) =0 if f'(x.) #0. (4.18)

Moreover, since g’(x,) = 0, Theorem 4.5 shows that this convergence will be superlinear.

Example — Calculate a™! using f(x) =)1(—afora> 0.
Newton’s method gives the iterative formula

1
P a

k 2
Xky1 = Xk — = 2xp — axy.

From the graph of f, it is clear that the iteration will converge for any x, € (0,a™!), but will
diverge if xy is too large. With a = 0.5 and x, = 1, Python gives

Numerical Analysis Il - ARY 41 2017-18 Lecture Notes

Xk |2 — x| 12 — xiel /12 — x—1] 12 = x| /12 = x|
1.0 1.0 - -

1.5 0.5 0.5 0.5
1.875 0.125 0.25 0.5
1.9921875 0.0078125 0.0625 0.5
1.999969482 3.051757812e-05 0.00390625 0.5
2.0 4.656612873-10 1.525878906e-05 0.5
2.0 1.084202172e-19 2.328396437¢e-10 0.5

In 6 steps, the error is below €y: pretty rapid convergence! The third column shows that the
convergence is superlinear. The fourth column shows that |x, — xx.1|/|x. — xx|? is constant,
indicating that the convergence is quadratic (order a = 2).

» Although the solution é is known exactly, this method is so efficient that it is sometimes

used in computer hardware to do division!

In practice, it is not usually possible to determine ahead of time whether a given starting value
xo will converge.

» A robust computer implementation should catch any attempt to take too large a step, and
switch to a less sensitive (but slower) algorithm (e.g. bisection).

However, it always makes sense to avoid any points where f’(x) = 0.

Example — f(x) = x*> — 2x + 2.

Here f’(x) = 3x% — 2 so there are turning points at x = i\/g where f’(x) = 0, as well as a
single real root at x, ~ —1.769. The presence of points where f’(x) = 0 means that care is
needed in choosing a starting value x.

If we take xo = 0, then x; = 0 — f(0)/f"(0) = 1, but then x, = 1 — f(1)/f’(1) = 0, so the
iteration gets stuck in an infinite loop:

-1

-2 - | } } ! I ! -
-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

T
Other starting values, e.g. xo = —0.5 can also be sucked into this infinite loop! The correct
answer is obtained for x; = —1.0.

Numerical Analysis Il - ARY 42 2017-18 Lecture Notes

» The sensitivity of Newton’s method to the choice of x is beautifully illustrated by applying
it to a complex function such as f(z) = z°> — 1. The following plot colours points z, in the
complex plane according to which root they converge to (1, e7'/3, or e=27!/3)

& o0
£ |
] S
- .
-1.0 - . . . :
-1.0 -0.5 0.0 0.5 1.0
Re(z)

The boundaries of these basins of attraction are fractal.

4.5 Newton’s method for systems

Newton’s method generalizes to higher-dimensional problems where we want to find x € R™
that satisfies f(x) = 0 for some function f : R™ — R™.

To see how it works, take m = 2 so that x = (x1,x2)" and f = [fi(x), fa(x)]". Taking the
linear terms in Taylor’s theorem for two variables gives

0
0~ fl(xk+1) ~ fl(xk) + a_fl (xl,k+1 - xl,k) + (xz,k+1 - Xz,k), (4.19)
X1y, 0xy X
0 0
0= fo(xk+1) = foxg) + a_fz (X141 — X1k) + of (X241 — X2k)- (4.20)
X1 Xk (')x2 Xk

In matrix form, we can write

(0) _ (ﬁ <xk)) . (aﬁ/axl (x) aﬁ/ax2<xk>) (xl,kﬂ - xl,k) (421)
0 f2(xx) 0f2/0x1(x) 0fa)0x2(xk)) \ X241 — X2k) '

The matrix of partial derivatives is called the Jacobian matrix J(x), so (for any m) we have

0= f(xg)+ J(xk)(xps1 — k). (4.22)

To derive Newton’s method, we rearrange this equation for x4,
JO) (X1 —xk) = =f(xx) = X = x5 = T (xi) f (). (4.23)

Numerical Analysis Il - ARY 43 2017-18 Lecture Notes

So to apply the method, we need the inverse of J.

» If m =1, then J(xx) = g—{(xk), and J~! = 1/J, so this reduces to the scalar Newton’s method.

Example — Apply Newton’s method to the simultaneous equations xy — y> — 1 = 0 and
x%y + y — 5 = 0, with starting values x, = 2, yo = 3.
The Jacobian matrix is

= [, T2

2xy x*+1

1 x2+1 3y°—x
y(x? +1) —2xy(x -3y*) \=2xy y |

) = J'(xy) =

The first iteration of Newton’s method gives

x\ _ (2 1 5 25| (-22) _ (1.55555556
yi) 3 " 35)—122-27) \-12 3\ 10]~ {(2.06666667) °

Subsequent iterations give
x2)\ _ [1.54720541 x3\ _ [1.78053503 x4\ [1.952843 x5\ _ (1.99776297
yo) \1.47779333)° \ys) \1.15886481) > \ys) 11.02844269)° \ys/ 11.00124041)°

so the method is converging accurately to the root x,. = 2, y. = 1, shown in the following plot:

6
4-
2,
> 0
_2
-4 — ay—y*—1=0
— Zyty—5=0
-6 - |
-10 -5 0 5 10
X

» By generalising the scalar analysis (beyond the scope of this course), it can be shown that
the convergence is quadratic for x, sufficiently close to x., provided that J(x.) is non-singular

(i.e., det[J(x.)] # 0).

» In general, finding a good starting point in more than one dimension is difficult, particularly
because interval bisection is not available.

4.6 Aitken acceleration

This is a simple trick for accelerating the convergence of a linearly convergent sequence {x},

which (we recall) satisfies
|26 — Xk41l _

lim —— 2kl) (4.24)

k—oo [x. — x|

Numerical Analysis Il - ARY 44 2017-18 Lecture Notes

If we had exactly
|2 — Xpeq1] =, (4.25)
|x>k - xkl

then we could just take two neighbouring iterates and extrapolate directly to the answer,

_ Xk+1 — Axk

. = : 4.26
=) (4.26)

with no need for any further iteration. Alternatively, we could use two successive iterations
to eliminate A:

X — Xk+2 Xs — Xk+1

= = (%0 — Xper2) (6 — xk) = (X — Xps1)” (4.27)
Xy — Xk+1 Xy — Xk
= XpwaXk — (Xkra + Xk)Xe = X0, | — 2Xps1%s (4.28)
— 52 2
Xk+2X| — X X, - X
— Xy = k+1 = x1 — (k+1 k) . (4.29)
Xk+2 = 2Xk+1 + Xk Xk+2 — 2Xk+1 + Xk

The idea of Aitken acceleration is that, even when the ratio between successive errors is not
precisely constant, the extrapolation (4.29) may still get closer to x. than a single step (or even
several steps) of the iteration. The idea is to replace every third iterate by

2
(Xk41 — X%)
Xk+2 — 2Xk+1 + Xk

X+ = Xje = (4.30)

» You may see the forward difference notation Axy := xr41 — Xk, and A’xy := A(Axy).

» The method was introduced by Alexander Aitken in 1926. He worked in Edinburgh, and at
Bletchley Park during WWIL

Example — f(x) = % — 0.5 with g(x) = x + %f(x).

First we verify that this is a valid iteration. It is clear that g(2) = 2, and ¢'(x) = 1 + %(_é)’
so ¢g'(2) = 0.984375, so by Theorem 4.4 the iteration will converge to x, = 2 if we start close
enough. Since ¢’(2) is non-zero, convergence is linear.

But since ¢g’(2) is almost 1, we expect convergence to be slow. In Python, we get (to 7 s.f.):

X0 =1.5

X1 = 1.510417
xy; = 1.520546
x5 = 1.530400

x4 = 1.539989

Xg18 = 1.999999

It takes 818 iterations to reduce the error to 107°.

Numerical Analysis Il - ARY 45 2017-18 Lecture Notes

Now we apply Aitken acceleration, and find the following

X0 = 1.5
x1 = 1.510417
xy = 1.520546

A

Xy = x0— (x1 — x0)?/(x2 — 2x1 + x) = 1.8776042
x5 = 1.8796413
xs = 1.8816423

A

Ry =Xy — (3 — %2)%/ (x4 — 223 + X2) = 1.9926343

A

xg = 2.000000

The error has reduced to 10~° with only 8 evaluations of g.
» Aitken acceleration must be implemented with caution, as rounding error can affect A%xy.

When the original sequence {x;} comes from xy,1; = g(xx), we can write

(Xps1 — fk)z

Xjer1 = Xk = - (4.31)
Xkv2 — 2Xk41 + Xk
(9G0) - 2)° A (9G0) — %)
k- = = # - L (432)
9(9(xk)) = 29 (%) + i (9(9(20) - g(20)) = (9(2e) = 1)

Now suppose we are solving f(x) = 0 with the iteration function g(x) = x + f(x). Then
f2 ()
F(FGR) + %) = £G)

K1 = X — (4.33)

This is called Steffensen’s method.

» This has the advantage of not requiring f”, yet may be shown to converge quadratically
for Xy close enough to x. [proof omitted]. On the other hand, it does require two function
evaluations per step.

4.7 Quasi-Newton methods

A drawback of Newton’s method is that the derivative f”(xx) must be computed at each itera-
tion. This may be expensive to compute, or may not be available as a formula. Instead we can
use a quasi-Newton method
J)

g
where gy is some easily-computed approximation to f”(xy).

X1 = Xk — (4.34)

Example — Steffensen’s method:

F(F) +xi) = f(xe)
f(xx) '
This has the form }(f (xi + h) = f(x)) with h = f(xc).

9k =

Numerical Analysis Il - ARY 46 2017-18 Lecture Notes

Steffensen’s method requires two function evaluations per iteration. But once the iteration
has started, we already have two nearby points x;_1, x¢, so we could approximate f’(x) by a
backward difference

f k) = f(xp-1) f) (e = xk-1)

gk = - Xk+1 = Xk

Xk — Xk1) = flam)

This is called the secant method, and requires only one function evaluation per iteration (once

(4.35)

underway). The name comes from its graphical interpretation:

xV

569
» The secant method was introduced by Newton.

Example — f(x) = % - 0.5.
Now we need two starting values, so take xy = 0.25, x; = 0.5. The secant method gives:

ko xk |2 — xp| /1% — X1l
2 0.6875 0.75

3 101562 0.75

4 1354 0.65625

5 1.68205 0.492188

6 1.8973 0.322998

7 1.98367 0.158976

8 199916 0.0513488

Convergence to € is achieved in 12 iterations. Notice that the error ratio is decreasing, so the
convergence is superlinear.

The secant method is a two-point method since xy+; = g(Xk—1, Xx). So Theorems 4.4 and 4.5 do
not apply.

» In general, one can have multipoint methods based on higher-order interpolation.

Theorem 4.6. If f'(x.) # 0 then the secant method converges for xo, x; sufficiently close to x.,
and the order of convergence is (1 + V/5)/2 = 1.618. . ..

» This illustrates that orders of convergence need not be integers, and is also an appearance
of the golden ratio.

Proof. To simplify the notation, denote the truncation error by

£k 1= Xx — X (4.36)

Numerical Analysis Il - ARY 47 2017-18 Lecture Notes

Expanding in Taylor series around x,, and using f (x*) =0, gives

Flon) = =f Gees + L : L+ 06, 437)

) = =f"(x)ex + f” ,3 + O(ez). (4.38)

So using the secant formula (4.35) we get

—f (e + EELeE + O(e))
Ek+1 = &k — (Ek - gk—l) f“(x*) 9 9 3 ’ (439)
_f,(x*)(fk - gk—l) + 2 (gk - Ek—l) + O(Ek_l)

, [l 2 3
—f"(x:)er + +0
= — f (X)gk e 2 €k (5) , (4.40)
—f(x) + S5 (e + ex1) + O(e])

- l—fk +3 kf”(x*)/f' x) +O(e k)2 ’ (4.41)
1= 5(ex + e-0) f7 () / () + O(gg_y)

_ L L) 17 (%) 2
=&+ |—e + 27 (x0) g +O0(e) 1+ (e + gk_l)Zf'(x*) +0(e_)) | » (4.42)
f/’(x* f//(x)
=& — & + 2 (x sk 2 (x sk(gk +ep1) + O(gk D (4.43)
//(x)
= 2f’()ekek 1 +O(£k D- (4.44)
This is similar to the corresponding formula for Newton’s method, where we have
()
Eky1 = 2f’ *) I€+O(€k)

Equation (4.44) tells us that the error for the secant method tends to zero faster than linearly,
but not quadratically (because e;_1 > &).

To find the order of convergence, note that ex;; ~ exex—1 suggests a power-law relation of the
form

p 1 -pBla
f7 (%) 1/ f (x*
= |ep_q|* | = ® 4.45
lex| = lex-l 277 lek—1] = lexl 2P () (4.45)
Putting this in both sides of (4.44) gives
y (a=p)/
|ex | fre) = || ra)/a fr) [P (4.46)
2f"(x.) 2f"(x.)
Equating powers gives
1+ 1+ V5 - 1
o = a — 0 = \/_, IB: a ﬂ — ﬁ: @ = —. (447)
o4 2 o4 a+l «o
It follows that y
_ 1 o
11 |x* xk+1| — 1 |€k+1| — f (x*) , (4.48)
k—oo |x>k - xk|“ k—o0 |€k|(x 2f’(x*)
so the secant method has order of convergence a.]

Numerical Analysis Il - ARY 48 2017-18 Lecture Notes

5 Linear equations

How do we solve a linear system numerically?

Linear systems of the form

axy + apxy + ... + ampxp, = bl,
az1xy + azx; + ... + dgXpy = bz,

(5.1)
amxi + amxy + ... + awxp, = by

occur in many applications (often with very large n). It is convenient to express (5.1) in the
matrix form
Ax = b, (5.2)
where A is an n X n square matrix with elements a;;, and x, b are n X 1 vectors.
We will need some basic facts from linear algebra:
AT is the transpose of A, so (a');j = aji.
Ais symmetricif A= AT.
A is non-singular iff there exists a solution x € R” for every b € R".
A is non-singular iff det(A) # 0.
A is non-singular iff there exists a unique inverse A~! such that AA™ = A™1A = 1.

AN e

It follows from fact 5 that (5.2) has a unique solution iff A is non-singular, given by x = A™!b.
In this chapter, we will see how to solve (5.2) both efficiently and accurately.

» Although this seems like a conceptually easy problem (just use Gaussian elimination!), it
is actually a hard one when n gets large. Nowadays, linear systems with n = 1 million arise
routinely in computational problems. And even for small n there are some potential pitfalls,

as we will see.

» If A is instead rectangular (m X n), then there are different numbers of equations and un-
knowns, and we do not expect a unique solution. Nevertheless, we can still look for an ap-
proximate solution — this will be considered in Section 6.

Many algorithms are based on the idea of rewriting (5.2) in a form where the matrix is easier
to invert. Easiest to invert are diagonal matrices, followed by orthogonal matrices (where
Al = AT). However, the most common method for solving Ax = b transforms the system to
triangular form.

5.1 Triangular systems

If the matrix A is triangular, then Ax = b is straightforward to solve.

A matrix L is called lower triangular if all entries above the diagonal are zero:

Iy 0 - 0
L=l B2 ot (5.3)

. c. 0

Ly oo oo L

Numerical Analysis Il - ARY 49 2017-18 Lecture Notes

The determinant is just
det(L) = Lilyo -+ - Inn, (5.4)

so the matrix will be non-singular iff all of the diagonal elements are non-zero.

Example — Solve Lx = b for n = 4.
The system is

Lhi 0 0 0)\/x b Lixi = by,
Iy Ly 0 0 |[x _ b, ly1x1 + lyoxy = by,
Iy I3y Iz 0 ||x3 bs l31x1 + l32%5 + I33x3 = b3,

lyy Lo Ll L) \x4 by lynxy + Lioxy + lysxs + laaxy = by.

We can just solve step-by-step:

_ b _ by — L1x; _ by — I31x1 — 322 _ by — ly1x1 — lyaxs — lyzxs
=7 Xo=—7F> X3= > X4 = .
h

This is fine since we know that [y, [z, l33, l44 are all non-zero when a solution exists.

X1

L, I3 m

In general, any lower triangular system Lx = b can be solved by forward substitution

j—1
bj = Xy LikXk

xj = » , j=1,...,n. (5.5)
Similarly, an upper triangular matrix U has the form
Uipx U2 - Uin
S 5
0 0wy

and an upper-triangular system Ux = b may be solved by backward substitution

bj = 2oy Wik
x; = T, j=n.l (5.7)
Ujj

To estimate the computational cost of forward substitution, we can count the number of
floating-point operations (+, —, X, +).

Example — Number of operations required for forward substitution.
Consider each x;. We have

j =1 — 1division
j =2 — 1division + [1 subtraction + 1 multiplication]
j =3 — 1division + 2 X[1 subtraction + 1 multiplication]

j =n — 1division + (n — 1) X[1 subtraction + 1 multiplication]

So the total number of operations required is

n

Zn:(1+2(j—1))=2Zn:j—21:n(n+1)—n:n2.
=1

j:] j=1

Numerical Analysis Il - ARY 50 2017-18 Lecture Notes

So solving a triangular system by forward (or backward) substitution takes n® operations.
» We say that the computational complexity of the algorithm is n®.

» In practice, this is only a rough estimate of the computational cost, because reading from
and writing to the computer’s memory also take time. This can be estimated given a “memory
model”, but this depends on the particular computer.

5.2 Gaussian elimination

If our matrix A is not triangular, we can try to transform it to triangular form. Gaussian elimina-
tion uses elementary row operations to transform the system to upper triangular form Ux = y.
Elementary row operations include swapping rows and adding multiples of one row to another.

They won’t change the solution x, but will change the matrix A and the right-hand side b.

Example — Transform to upper triangular form the system

X1+ 2x,+x3=0, 1 2 1 0
X1 — 2Xp + 2x3 = 4, A=|1 -2 2|, b=14].
2x1 + 12x9 — 2x3 = 4. 2 12 -2 4

Stage 1. Subtract 1 times equation 1 from equation 2, and 2 times equation 1 from equation 3,
so as to eliminate x; from equations 2 and 3:

X1+ 2x,+x3 =0, 1 2 1 0
—dx, + x5 = 4, AD =lo =4 1| pP=[4]|, my=1, msy=2
8x, — 4x3 = 4. 0 8 -4 4

Stage 2. Subtract —2 times equation 2 from equation 3, to eliminate x, from equation 3:

X1+ 2xp+x3=0, 1 2 1 0
—dxy + x3 = 4, A =fo -4 1| B =[4], mgy=-2
—2x3 = 12. 0 0 =2 12
Now the system is upper triangular, and back substitution gives x; = 11, x, = —%, x3 = —6.

We can write the general algorithm as follows.

Algorithm 5.1 (Gaussian elimination). Let AV = A and b)) = b. Then for each k from 1 to
n — 1, compute a new matrix AV and right-hand side pF+D) by the following procedure:
1. Define the row multipliers
(k)
Lik

(k)’
A

Mik = i=k+1,...,n.
2. Use these to remove the unknown xy from equations k + 1 to n, leaving

akD = g0 _ mika(k) pk+t

k K.
ij ij ki Y)=@)—mm%% Lj=k+1,...,n.

The final matrix A™ = U will then be upper triangular.

Numerical Analysis Il - ARY 51 2017-18 Lecture Notes

This procedure will work providing a) # 0 for every k. (We will worry about this later.)
What about the computational cost of Gaussian elimination?

Example — Number of operations required to find U.

Computing A®*V requires:

e« n—(k+1)+1=n-kdivisions to compute m;.

« (n — k)? subtractions and the same number of multiplications to compute a(]kH)

So in total A%*D requires 2(n — k)? + n — k operations. Overall, we need to compute A+ for
k=1,...,n—1, so the total number of operations is

3
,_.

N= (Zn +n—(4n+1)k+2k2)—n(2n+1)21—(4n+1)2k+22k2

1

>~
Ul

Recalling that

=
S

k= %n(n +1), Z k* = %n(n +1)(2n+1),
we find
N=n@2n+1)(n-1) - %(4n +1)(n—1)n+ %(n - 1)ni2n-1) = §n3 —1p2 1y

So the number of operations required to find U is O (n®).

» It is known that O(n®) is not optimal, and the best theoretical algorithm known for inverting
a matrix takes O (n?72863%) operations (although this is not practically useful). But it remains
an open conjecture that there exists an O(n®*¢) algorithm, for € arbitrarily small.

5.3 LU decomposition

In Gaussian elimination, both the final matrix U and the sequence of row operations are de-
termined solely by A, and do not depend on b. We will see that the sequence of row operations
that transforms A to U is equivalent to left-multiplying by a matrix F, so that

FA=U, Ux=Fb. (5.8)

To see this, note that step k of Gaussian elimination can be written in the form

1 0 .. i e 0
0
Alk+1) _ F(k)A(k), b(k+1) — F(k)b(k), where F) .— 1
—Mpt1k
0 --- Mg e 0 1
(5.9)

Multiplying by F*) has the effect of subtracting m;; times row k from row i, fori = k+1,...,n

Numerical Analysis Il - ARY 52 2017-18 Lecture Notes

» A matrix with this structure (the identity except for a single column below the diagonal) is
called a Frobenius matrix.

Example — You can check in the earlier example that

1 0 0\/1 2 1 1 2 1
F(l)A:(l 1 o)(1 —2 2):(11(1) —2-1(2) 21(1)):(
-2 0 1/\2 12 -2/ \2-2(1) 12-2(2) -2-2(1)

1 2 1 1 2 1 1 2 1
0 -4 1]|=|0 -4 1 =lo -4 1|=4® =U.
0 8 -4/ \0 8+2(-4) -4+2(1) 0 0 -2

U=AM = pli-)pn-2) g4 (5.10)

O O =
|
OO%[\D
[= -

N
_/
Il

S

It follows that

Now the F) are invertible, and the inverse is just given by adding rows instead of subtracting:

1 0 e e e 0
0)
Foy =] h . (5.11)
Mgy, IR
0 Mp k 0 1
So we could write
A= (FO)YF@Hy=1 .. (r-Dy-1y, (5.12)

Since the successive operations don’t “interfere” with each other, we can write

1 0 e - 0
ma1 1

(F(l))—l(F(Z))—l . (F(n—l))—l = ms1 M3z 1 e = L. (5.13)
ma1 My My3 e :

Mp1 Mp2 Mp3 -+ Mpp-1 1
Thus we have established the following result.

Theorem 5.2 (LU decomposition). Let U be the upper triangular matrix from Gaussian elimi-
nation of A (without pivoting), and let L be the unit lower triangular matrix (5.13). Then

A=1LU.

Numerical Analysis Il - ARY 53 2017-18 Lecture Notes

» Unit lower triangular means that there are all 1’s on the diagonal.

» Theorem 5.2 says that Gaussian elimination is equivalent to factorising A as the product of
a lower triangular and an upper triangular matrix. This is not at all obvious from Algorithm
5.1! The decomposition is unique up to a scaling LD, D™'U for some diagonal matrix D.

The system Ax = b becomes LUx = b, which we can readily solve by setting Ux = y. We first
solve Ly = b for y, then Ux = y for x. Both are triangular systems.

Moreover, if we want to solve several systems Ax = b with different b but the same matrix,
we just need to compute L and U once. This saves time because, although the initial LU fac-
torisation takes O(n®) operations, the evaluation takes only O(n?).

» This matrix factorisation viewpoint dates only from the 1940s, and LU decomposition was
introduced by Alan Turing in a 1948 paper (Q. J. Mechanics Appl. Mat. 1, 287). Other common
factorisations used in numerical linear algebra are QR (which we will see later) and Cholesky.

Example — Solve our earlier example by LU decomposition.

1 2 1 X1 0
1 -2 2|lx]|=|4].
2 12 -2/ \x; 4

We apply Gaussian elimination as before, but ignore b (for now), leading to

1 2 1
U=|0 -4 1
0 0 =2

As we apply the elimination, we record the multipliers so as to construct the matrix

1 0 0
L=|1 1 0].
2 =21
Thus we have the factorisation/decomposition
1 2 1 1 0 0\/1 2 1
1 -2 2 |=|1 1 O0J]|0 -4 1.
2 12 -2 2 =2 1/\0 0 -2

With the matrices L and U, we can readily solve for any right-hand side b. We illustrate for
our particular b. Firstly, solve Ly = b:

1 0 0)\/fy 0
1 1 Of|ly2|=14 = y1=0, y=4-y1=4, ys=4-2y; + 2y, =12.
2 =2 1)/\ys 4

Notice that y is the right-hand side b® constructed earlier. Then, solve Ux = y:

1 2 1 X1 0
0 —4 1 xy| =14 = Xx3 = —0, xzz—i(4—x3):—§

PE X1 :—ZXZ—X3: 11.
0 0 -=-2/\x3 12

Numerical Analysis Il - ARY 54 2017-18 Lecture Notes

5.4 Pivoting

Gaussian elimination and LU factorisation will both fail if we ever hit a zero on the diagonal.
But this does not mean that the matrix A is singular.

Example — The system

Ll
N =

0 30 3
2 00 =|2
0 01 1

=

3

obviously has solution x; = x; = x3 = 1 (the matrix has determinant —6). But Gaussian

(1)
11

avoid the problem by changing the order of the equations to get the equivalent system

elimination will fail because a;; = 0, so we cannot calculate my; and ms;. However, we could

8 R
N =

2 00 2
0 30 =|(3].
0 0 1 1

=

3

Now there is no problem with Gaussian elimination (actually the matrix is already upper tri-
angular). Alternatively, we could have rescued Gaussian elimination by swapping columns:

8RR
_ DN

300 3
0 2 0 =|(2].
0 0 1 1

>
w

Swapping rows or columns is called pivoting. It is needed if the “pivot” element is zero, as in
the above example. But it is also used to reduce rounding error.

(%) () =)

1. Using Gaussian elimination with exact arithmetic gives

Example — Consider the system

my = -10%, a2 =2+10%, bP =1+10"

So backward substitution gives the solution

1+ 10* 1-2x, . 1+ 10*
X9 = = 0.9999, X1 = =107 11—
2 + 104

10
S = = 0.9998.
2+ 104 an 2+ 104

2. Now do the calculation in 3-digit arithmetic. We have
myy = f1(-10%) = —10%, @) = 12+ 10H)=10*, B =A(1 + 10%)= 10",
Now backward substitution gives
10* s
x :ﬂ(1_04) =1, x :ﬂ(10 (1—1)): 0.

The large value of my; has caused a rounding error which has later led to a loss of sig-
nificance during the evaluation of x;.

Numerical Analysis Il - ARY 55 2017-18 Lecture Notes

3. We do the calculation correctly in 3-digit arithmetic if we first swap the equations,
-1 2 X1\ _ 1
107 1) \xp) ~ \1)°

myy = (=107 = =107, &) =fla+ 10" =1, b =f(1+107 =1,

Now,

and)
Xy = ﬂ(I) 1w =fl(=[1-201)]) = 1.

Now both x; and x; are correct to 3 significant figures.

So pivoting is used to avoid large multipliers m;x. A common strategy is partial pivoting, where
(k)
ik

(for k < i < n) to the diagonal position a,(i). This dramatically improves the stability of

we interchange rows at the kth stage of Gaussian elimination to bring the largest element a

Gaussian elimination.
» Gaussian elimination without pivoting is unstable: rounding errors can accumulate.

» The ultimate accuracy is obtained by full pivoting, where both the rows and columns are
swapped to bring the largest element possible to the diagonal.

(k)

» If it is not possible to rearrange the columns or rows to remove a zero from position a;,’,

then A is singular.

If pivoting is applied, then the effect of Gaussian elimination is to produce a modified LU

factorisation of the form
PA = LU, (5.14)

where P is a permutation matrix. This is a matrix where every row and column has exactly one
non-zero element, which is 1.

» The permutation matrices form a (sub)group, so a product of permutation matrices equals
another, different, permutation matrix.

In this case, we solve Ly = Pb then Ux = y.

Example — Consider again the system

2 =
[NCRE

0 30 3
2 00 =|(2].
0 0 1 1

<

3

To swap rows 1 and 2, we can left-multiply A by the permutation matrix
0 10 2 00 2
P=]1 0 0 = PA=|0 3 0f, Pb=|3].
0 0 1 0 01 1
Now we find the LU factorisation of PA, which is easy in this case:

PA=LU where L=

S O =
S = O

0 2 00
0], U=(0 3 0f.
1 0 01

Numerical Analysis Il - ARY 56 2017-18 Lecture Notes

Since LUx = Pb, we can then solve for x in two steps:

2 2x1 2 1
Ly=Pb = y=|3], Ux=y = [3x|=|3 = x=|1
1 X3 1 1

5.5 Vector norms

To measure the error when the solution is a vector, as opposed to a scalar, we usually summa-
rize the error in a single number called a norm.

A vector norm on R" is a real-valued function that satisfies

lx +yll < |lx|| +|lyll forevery x,y € R", (N1)
llax|| = || ||x]| for every x € R" and every a € R, (N2)
lx|]] =0 foreveryx € R"and||x]|=0 = x =0. (N3)

Property (N1) is called the triangle inequality.

Example — There are three common examples:
1. The £5-norm

lIxllz =

n
Z xi = VxTx.
k=1

This is just the usual Euclidean length of x.
2. The ¢;-norm

n

el =) Il

k=1
This is sometimes known as the taxicab or Manhattan norm, because it corresponds to
the distance that a taxi has to drive on a rectangular grid of streets to get to x € R,
3. The {.-norm

.....

This is sometimes known as the maximum norm.
We leave the proofs that these satisfy (N1)-(N3) to the problem sheet.

» The norms in the example above are all special cases of the £,-norm,

n 1/p
lxll, = (Z |xk|f’) ,
k=1

which is a norm for any real number p > 1. Increasing p means that more and more emphasis
is given to the maximum element |xg|.

Numerical Analysis Il - ARY 57 2017-18 Lecture Notes

Example — Consider the vectors @ = (1,-2,3)",b = (2,0,-1)",and ¢ = (0,1,4) 7.
The ¢;-, {,—, and {.-norms are

lali =1+2+3=6 |bli =2+0+1=3 lleli=0+1+4=5

lall; =V1+4+9~3.74 ||blo=V4+0+1~2.24 ||, =V0+1+16=4.12

[lallo = max{1,2,3} =3 ||bll = max{2,0,1} =2 ||¢]lco = max{0,1,4} = 4.

Notice that, for a single vector x, the norms satisfy the ordering ||x||; > ||x|l2 > ||x|lc, but that

vectors may be ordered differently by different norms.

Example — Sketch the “unit circles” {x € R*: ||x||, = 1} for p = 1,2, co.
14 14 14 I
I 2

oo

5.6 Matrix norms

We also use norms to measure the “size” of matrices. Since the set R™" of n X n matrices with
real entries is a vector space, we could just use a vector norm on this space. But usually we
add an additional axiom.

A matrix norm is a real-valued function || - || on R™" that satisfies:
|A+ BJ|| < ||All +||B|| for every A,B € R™", (M1)
leAll = |a| ||All for every A € R™" and every a € R, (M2)
Al > 0 forevery Ae R™"and ||A]l =0 = A=0, (M3)
IAB|| < ||A]|||B]| for every A, B € R™". (M4)

The new axiom (M4) is called consistency.

» We usually want this additional axiom because matrices are more than just vectors. Some
books call this a submultiplicative norm and define a “matrix norm” to satisfy just (M1), (M2),
(M3), perhaps because (M4) only works for square matrices.

Example — If we treat a matrix as a big vector with n? components, then the £;-norm is called
the Frobenius norm of the matrix:

IAllF =

This norm is rarely used in numerical analysis because it is not induced by any vector norm
(as we are about to define).

Numerical Analysis Il - ARY 58 2017-18 Lecture Notes

The most important matrix norms are so-called induced or operator norms. Remember that
A is a linear map on R", meaning that it maps every vector to another vector. So we can
measure the size of A by how much it can stretch vectors with respect to a given vector norm.
Specifically, if || - ||, is a vector norm, then the induced norm is defined as

llAxll,

|All, := sup = max [|Ax|l,. (5.15)
xz0 lxll, lxl,=1

To see that the two definitions here are equivalent, use the fact that || - ||, is a vector norm. So
by (N2) we have

[l Ax|l,
sup =

x#0 ”x”p x#0

= sup I|Ay||p=nglllagc1 1Ayl (5.16)
-

Ixllpll, pyi,=1

» Usually we use the same notation for the induced matrix norm as for the original vector
norm. The meaning should be clear from the context.

A:(g (1)).

In the £,-norm, a unit vector in R? has the form x = (cos ,sin)7, so the image of the unit

Example — Let

circle is
sin 0
Ax = (3 cos 9) :
This is illustrated below:
3_
2,
1-
> 0

—1-
—2-

-3- | \ | ; | \ |

-3 -2 -1 0 1 2 3

X

The induced matrix norm is the maximum stretching of this unit circle, which is

. 1/2 1/2
[|All; = max ||Ax]||; = max (sin? 0 + 9 cos® 8) = max (1 + 8 cos? 9) = 3.
[x[l2=1 0 0

Theorem 5.3. The induced norm corresponding to any vector norm is a matrix norm, and the
two norms satisfy ||Ax|| < [|Allllx]|| for any matrix A € R™" and any vector x € R".

Numerical Analysis Il - ARY 59 2017-18 Lecture Notes

Proof. Properties (M1)-(M3) follow from the fact that the vector norm satisfies (N1)-(N3). To
show (M4), note that, by the definition (5.15), we have for any vector y € R" that

| Ayl
1Al > =22 1Ayl < ANyl (5.17)
llyll
Taking y = Bx for some x with ||x|| = 1, we get
|ABx|| < [|Alll[Bx]|| < [|A[lllB]|. (5.18)

This holds in particular for the vector x that maximises ||ABx]||, so

IABJ| = max lABx|| < [lA[HIIBII. (5.19)

O
It is cumbersome to compute the induced norms from their definition, but fortunately there
are some very useful alternative formulae.

Theorem 5.4. The matrix norms induced by the {1-norm and {s-norm satisfy

lAll; = max E laijl, (maximum column sum)
J=1,...n &

|Allc = max E lajl. (maximum row sum)
i=1,...,n —

Proof. We will prove the result for the ¢;-norm and leave the {,-norm to the problem sheet.
Starting from the definition of the {; vector norm, we have

n

lAx]l = > Zayx] < Z Z gl] = Z 11 Z a. (5.20)

i=1|j= i=1 j=1
If we let
c= max Z laijl, (5.21)
then
|[Ax[l; < cllx[li = Al <. (5.22)

Now let m be the column where the maximum sum is attained. If we choose y to be the vector
with components yx = g, then we have ||Ay||; = c. Since ||y||; = 1, we must have that

[max lAx]l: > Ayl =c = Al = c. (5.23)
=1

The only way to satisfy both (5.22) and (5.23) is if ||Al|; = c. O

Example — For the matrix

-7 3 -1
A=|2 4 5
-4 6 0

Numerical Analysis Il - ARY 60 2017-18 Lecture Notes

we have
l|All; = max{13,13,6} = 13, [|Allco = max{11,11,10} = 11.

What about the matrix norm induced by the {;-norm? This turns out to be related to the
eigenvalues of A. Recall that A € C is an eigenvalue of A with associated eigenvector u if

Au = Au. (5.24)
We define the spectral radius p(A) of A to be the maximum |A| over all eigenvalues A of A.

Theorem 5.5. The matrix norm induced by the {;-norm satisfies

1All2 = /p(ATA).

» As a result this is sometimes known as the spectral norm.

Example — For our matrix

we have
. (0 3\ (0o 1) (9 0
AA_(lO 3 00 \o 1)°
We see that the eigenvalues of ATA are A = 1,9, so ||A]l; = V9 = 3 (as we calculated earlier).

Proof. We want to show that

”rr|1|ax |Ax||; = max{+/|A| : A eigenvalue of ATA}. (5.25)
X 2=1

For A real, AT A is symmetric, so has real eigenvalues A; < A, < ... < A, with corresponding
orthonormal eigenvectors uy, . ..,u, in R". (Orthonormal means that ujTuk = Jjk.) Note also

that all of the eigenvalues are non-negative, since

uATAu; [|Auy 2

ATAul = /11”1 &S Al = - = 2
u,u ||u1||2

(5.26)

So we want to show that ||A|l; = VA,. The eigenvectors form a basis, so every vector x € R"
can be expressed as a linear combination x = 37 axuy. Therefore

n n n n
||A)('||22 =x"ATAx = x" Z oAy = Z ajujT Z oAUy = Z Otz)tk, (5.27)
k=1 =1 k=1 k=1

where the last step uses orthonormality of the uy. It follows that

n

1Ax|} < A,) af. (5.28)
k=1

But if [|x|l; = 1, then [|x[|} = ¥}_, @ = 1, so [|Ax||; < A,. To show that the maximum of
||Ax||22 is equal to A,,, we can choose x to be the corresponding eigenvector x = u,. In that
case, a1 = ... = atp—1 = 0 and a,, = 1, so [|Ax||3 = A,. O

Numerical Analysis Il - ARY 61 2017-18 Lecture Notes

5.7 Conditioning

Some linear systems are inherently more difficult to solve than others, because the solution is
sensitive to small perturbations in the input.

Example — Consider the linear system

b0 = R)=C)

If we add a small rounding error 0 < § < 1 to the data b; then

b E)-0) =)=L)

The solution is within rounding error of the true solution, so the system is called well condi-
tioned.

Example — Now let ¢ < 1 be a fixed positive number, and consider the linear system

b G0 = ()=

The true solution is still (0,1)7, but if the error § is as big as the matrix entry ¢, then the
solution for x; will be completely wrong. This system is much more sensitive to errors in b, so
is called ill-conditioned.
Graphically, this system (right) is more sensitive to 6 than the first system (left) because the
two lines are closer to parallel:

Xy Xy

A . A
- _-—‘-—\-—‘-—‘-——-

Tg =1 > T9 =1

\x1 Xy

To measure the conditioning of a linear system, consider
|relative error in x| _ [|6x]|/llx|| _ (||5XI|)(Ll) _ (IIA_15b||)(15l)
|relative error in b| [|6bI|/|Ib|l lIxIl) \1I6bl| llxl 6B
_ IA7shl (bl) _ IATHIBI AT Al
B |

= = < AT AL (5.29)

[Ed] 5Bl Il]| llx]|
We define the condition number of a matrix A in some induced norm || - ||. to be
K (A) = AT L]IAl. (5.30)

If k.. (A) is large, then the solution will be sensitive to errors in b, at least for some b. A large
condition number means that the matrix is close to being non-invertible (i.e. two rows are
close to being linearly dependent).

Numerical Analysis Il - ARY 62 2017-18 Lecture Notes

» This is a “worst case” amplification of the error by a given matrix. The actual result will
depend on b (which we usually don’t know if it arises from previous rounding error).

» Note that det(A) will tell you whether a matrix is singular or not, but not whether it is
ill-conditioned. Since det(¢A) = a" det(A), the determinant can be made arbitrarily large or
small by scaling (which does not change the condition number). For instance, the matrix

107°° 0
0 107
has tiny determinant but is well-conditioned.

Example — Return to our earlier examples and consider the condition numbers in the 1-norm.
We have (assuming 0 < € < 1) that

11 (1 -1 B}
A=() ='A1=(1) = A =1A"h =2 = K(4) =4,

0 1 0

e 1 4 1(1 =1 _ 1+e€ 2(1+¢)
B = — Bl =-— = [Bl1=2, [B'lhi=—— = xi(B)=—"—.

0 1 € 0 € € €

For matrix B, k1 (B) — o0 as € — 0, showing that the matrix B is ill-conditioned.

Example — The Hilbert matrix H, is the n X n symmetric matrix with entries

1

hn)ij = ——
() i+j—1

These matrices are notoriously ill-conditioned. For example, x;(Hs) ~ 4.8 X 10°, and k(Hag) ~
2.5% 102, Solving an associated linear system in floating-point arithmetic would be hopeless.

» A practical limitation of the condition number is that you have to know A™! before you can
calculate it. We can always estimate ||A™!|| by taking some arbitrary vectors x and using

[l x]]

A7 > :
bl

5.8 Iterative methods

For large systems, the O(n®) cost of Gaussian elimination is prohibitive. Fortunately many
such systems that arise in practice are sparse, meaning that most of the entries of the matrix
A are zero. In this case, we can often use iterative algorithms to do better than O(n®).

In this course, we will only study algorithms for symmetric positive definite matrices. A matrix
Ais called symmetric positive definite (or SPD) if x " Ax > 0 for every vector x # 0.

» Recall that a symmetric matrix has real eigenvalues. It is positive definite iff all of its eigen-
values are positive.

Example — Show that the following matrix is SPD:

3
1

Numerical Analysis Il - ARY 63 2017-18 Lecture Notes

With x = (x1, x2,x3) T, we have

x Ax = 3xf + 4x§ + 5x§ + 2x1%X9 + 4X9x35 — 2X1X3
= xf + xg + 2x§ + (x1 + x2)2 + (x1 — x3)2 + 2(xz + x3)2.
This is positive for any non-zero vector x € R3, so A is SPD (eigenvalues 1.29, 4.14 and 6.57).

If A is SPD, then solving Ax = b is equivalent to minimizing the quadratic functional
f:R" >R, f(x)=4x"Ax -b'x. (5.31)

When A is SPD, this functional behaves like a U-shaped parabola, and has a unique finite global
minimizer x, such that f(x.) < f(x) forall x € R", x # x.. To find x,, we need to set Vf = 0.
We have

n

flx)=1 Z xi| D ayx; | - Z bjx; (5.32)
i=1 j=1

j=1
SO

af . n n . n n n
o =3 Z XiQik + Z agjXj | = bx = 5 Z akix; + Z agjxj | = br = Z agjxj — br. (5.33)
i=1 j=1 i=1 j=1 j=1

In the penultimate step we used the symmetry of A to write a;; = ag;. It follows that
Vf = Ax - b, (5.34)

so locating the minimum of f(x) is indeed equivalent to solving Ax = b.

» Minimizing functions is a vast sub-field of numerical analysis known as optimization. We
will only cover this specific case.

A popular class of methods for optimization are line search methods, where at each iteration
the search is restricted to a single search direction d. The iteration takes the form

Xir1 = Xk + apdy. (5.35)

The step size o is chosen by minimizing f(x) along the line x = xj + adj. For our functional
(5.31), we have

flxi + adi) = (3d[Adi)a® + (3d[Axy + 3x[Ad — b di)a + dx[Ax — b x. (5.36)
Since A is symmetric, we have x] Ady = x[A"d} = (Axk)Tdk =d] Ax; and b'dy = d| b, so

we can simplify to
flxi + adi) = (3df Adi)a® + d] (Axi = b)a + x[Ax - b x;. (5.37)

This is a quadratic in @, and the coefficient of a? is positive because A is positive definite. It is
therefore a U-shaped parabola and achieves its minimum when

of
7 = df Adya + dy (Ax; - b) = 0. (5.38)

Numerical Analysis Il - ARY 64 2017-18 Lecture Notes

Defining the residual ry := Axy — b, we see that the desired choice of step size is

dT
o = -~k (5.39)

Different line search methods differ in how the search direction dj is chosen at each iteration.
For example, the method of steepest descent sets

di = -V f(xi) = -rx, (5.40)
where we have remembered (5.34).
Example — Use the method of steepest descent to solve the system
b6
2 6] \xy -8/

Starting from xo = (=2,-2)T, we get

d,d 208 .
dy=b-Ax, = 2 = o = TO = = x; =X9+aydy ® 0.08 .
8 diAd, 1200 ~0.613

Continuing the iteration, x; proceeds towards the solution (2,—2) " as illustrated below. The
coloured contours show the value of f(x;, x2).

4.

-162

-144

-126

108

)
[le]
o

72

54

36

18

Unfortunately, the method of steepest descent can be slow to converge. In the conjugate gra-
dient method, we still take dy = —ry, but subsequent search directions dy are chosen to be
A-conjugate, meaning that

d;. Ad; = 0. (5.41)

This means that minimization in one direction does not undo the previous minimizations.

In particular, we construct dy; by writing

dis1 = —Tis1 + Pidi, (5.42)

Numerical Analysis Il - ARY 65 2017-18 Lecture Notes

then choosing the scalar f such that d],, Ady = 0. This gives

T
0= (— I + ﬁkdk) Ady = —r,IHAdk + ﬂkd,;rAdk (5.43)
and hence T ad
rk+1 k
= —. 5.44
Br T Ads (5.44)

Thus we get the basic conjugate gradient algorithm.

Algorithm 5.6 (Conjugate gradient method). Start with an initial guess x, and initial search
directiondy = —ry = b — Ax,. Foreachk = 0,1, . . ., do the following:

1. Compute step size
d,;rrk
adf = VT
2. Compute xy41 = Xk + oxdy.
3. Compute residual riy1 = Axpy1 — b.
4. If |lrk+1ll < tolerance, output xy1 and stop.

5. Determine new search direction

.
rk+1Adk
d} Ady

Example — Solve our previous example with the conjugate gradient method.

dk+1 = —Frk+1 T+ ﬁkdk where ﬁk =

Starting with xo = (—2,-2)7, the first step is the same as in steepest descent, giving x; =
(0.08,—-0.613)". But then we take

.
~ ~[-2.99 _riAdy B _ [4.66
rl—Axl—b—(4.48), ﬁo—m—o.liag, dl——r1+ﬁ0d0—(_3_36).
The second iteration then gives
dir 2
o = — .l_l ! =0.412 o x2:x1+a1d1:()
dl Ad, —2

This time there is no zig-zagging and the solution is reached in just two iterations:

4.

L L ® 1 B N I (e R
ooc\-l:-mog

o

I

Numerical Analysis Il - ARY 66 2017-18 Lecture Notes

In exact arithmetic, the conjugate gradient method will always give the exact answer in n
iterations — one way to see this is to use the following.

Theorem 5.7. The residuals ri := Axy — b at each stage of the conjugate gradient method are
mutually orthogonal, meaning rj-.'_r/C =0forj=0,...,k—1.

Proof. See problem sheet. O

After n iterations, the only residual vector that can be orthogonal to all of the previous ones is
r, = 0, so x,, must be the exact solution.

» In practice, conjugate gradients is not competitive as a direct method. It is computationally
intensive, and rounding errors can destroy the orthogonality, meaning that more than n iter-
ations may be required. Instead, its main use is for large sparse systems. For suitable matrices
(perhaps after preconditioning), it can converge very rapidly.

» We can save computation by using the alternative formulae

T T
Tk IR TSLESS

= > k
d; Ady Tk

rev1 = re + acAde,
With these formulae, each iteration requires only one matrix-vector product, two vector-

vector products, and three vector additions. Compare this to Algorithm 5.6 which requires
two matrix-vector products, four vector-vector products and three vector additions.

Numerical Analysis Il - ARY 67 2017-18 Lecture Notes

6 Least-squares approximation
How do we find approximate solutions to overdetermined systems?

If Ais an mXn rectangular matrix with m > n, then the linear system Ax = b is overdetermined
and will usually have no solution. But we can still look for an approximate solution.

6.1 Orthogonality

Recall that the inner product between two column vectors x,y € R" is defined as

n

x-y=x'y= Zxkyk- (6.1)
k=1

This is related to the £,-norm since ||x||; = VxTx. The angle 6 between x and y is given by
x "y = [|xl2llyll> cos 6.

Two vectors x and y are orthogonal if x "y = 0 (i.e. they lie at right angles in R").

Let S = {x1,x2,...,x,} be a set of n vectors. Then S is called orthogonal if x;'_xj = 0 for all
i,je{1,2,...,nt withi#j.

Theorem 6.1. An orthogonal set S of n vectors in R" is a basis for R".

Proof. We know that a set of n vectors is a basis for R" if the vectors are linearly independent.
If this is not the case, then some x; € S could be expressed as a linear combination of the other

members,
n

Xk = Z CiXi. (6-2)

i=1
i#k

Since xi # 0, we know that x,jxk = ||xk||§ > 0. But we would have

n
x;xk = Z cl-x,jxl- =0, (6.3)
i=1
ik
where we used orthogonality. This would be a contradiction, so we conclude that the vectors
in an orthogonal set are linearly independent. O

» Many of the best algorithms for numerical analysis are based on the idea of orthogonality.
We will see some examples this term.

An orthonormal set is an orthogonal set where all of the vectors have unit norm. Given

an orthogonal set S = {x1,x,,...,x,}, we can always construct an orthonormal set S’ =
{x], x5, ..., x},} by normalisation, meaning
1
= ——x;. (6.4)
B3]

Numerical Analysis Il - ARY 68 2017-18 Lecture Notes

Theorem 6.2. Let Q be an mxn matrix. The columns of Q form an orthonormal set iff QT Q = I,.

If m = n, then such a Q is called an orthogonal matrix. For m # n, it is just called a matrix with
orthonormal columns.

Proof. Let q,,q,, .. .,q, be the columns of Q. Then

qg qiql qiqz qiqn

q 4,4, 9,9; - 4,9
070=|"7(es a2 -+ qu)=| 000 AT T (65)

q, 4,9, 9,9; *° 9.9

So orthonormality q.'q ; = 0ij is equivalent to Q7O = I,, where I, is the n X n identity matrix.

O
» Note that the columns of Q are a basis for range(Q) = {Ox : x € R"}.

Example — The set S = {%(2, T, %(1, —2)T}.

The two vectors in S are orthonormal, since

1 (2 ;L o fl)2y a(1)2

%(2 1)%(1 =1, \5(1 2)v€)=t \/5(2 1)\/g =0
Therefore S forms a basis for R2. If x is a vector with components xi, x; in the standard basis
{(1,0)7,(0,1) "}, then the components of x in the basis given by S are

2 L
(«/5 Vi) (xl)
T2 ||y,
Vi s
» Inner products are preserved under multiplication by orthogonal matrices, since (Qx)"Qy =
x"(Q"Q)y = x"y. This means that angles between vectors and the lengths of vectors are

preserved. Multiplication by an orthogonal matrix corresponds to a rigid rotation (if det(Q) =
1) or a reflection (if det(Q) = —1).

6.2 Discrete least squares

The discrete least squares problem: find x that minimizes the £,-norm of the residual, ||Ax —bl||,.

Example — Polynomial data fitting.
An overdetermined system arises if we try to fit a polynomial

pn(x) =co+erx+ ...+ cpx”

to a function f(x) at m + 1 > n + 1 nodes xo, ..., x,. In the natural basis, this leads to a
rectangular system

1 xp --- x(’)l Co f‘ (xo)

1 x - x'||a f(x1)

1 x3 - x3||:]=]f(x)

Do : \e, :

1 Xy -0 xp f(xm)

Numerical Analysis Il - ARY 69 2017-18 Lecture Notes

We can’t find coefficients ¢ to match the function at all m+ 1 points. Instead, the least squares
approach is to find coefficients that minimize

m

> o) - £

i=1
We will see how to do this shortly.

To solve the problem it is useful to think geometrically. The range of A, written range(A), is
the set of all possible vectors Ax € R™, where x € R". This will only be a subspace of R™, and
in particular it will not, in general, contain b. We are therefore looking for x € R" such that
Ax is as close as possible to b in R™ (as measured by the £,-norm/Euclidean distance).

A b
r=Axr—0b

Ax

range(A)

The distance from Ax to b is given by ||r|l; = ||Ax — b||,. Geometrically, we see that ||r||, will
be minimized by choosing r orthogonal to Ax, i.e.,

(AX)T(Ax -b) =0 = x"(ATAx-ATh)=0. (6.6)
This will be satisfied if x satisfies the n X n linear system
ATAx = A'b, (6.7)
called the normal equations.

Theorem 6.3. The mairix AT A is invertible iff the columns of A are linearly independent, in
which case Ax = b has a unique least-squares solution x = (ATA)"'ATb.

Proof. If AT Ais singular (non-invertible), then AT Ax = 0 for some non-zero vector x, implying
that
x"ATAx=0 = ||Ax|}=0 = Ax=0. (6.8)

This implies that A is rank-deficient (i.e. its columns are linearly dependent).

Conversely, if A is rank-deficient, then Ax = 0 for some x # 0, implying AT Ax = 0 and hence
that AT A is singular. i

» The n X m matrix (ATA) 'AT is called the Moore-Penrose pseudoinverse of A. In practice,

we would solve the normal equations (6.7) directly, rather than calculating the pseudoinverse
itself.

Numerical Analysis Il - ARY 70 2017-18 Lecture Notes

Example — Polynomial data fitting.

For the matrix A in our previous example, we have a;; = le fori=0,.

So the normal matrix has entries

m

m m
T i i+j
(ATA); = E ayiay; = E XX, = E X,
k=0 k=0

k=0
and the normal equations have the form

n

chZx,iH:ix]’:f(xj) fori=0,...n.

m
=0 k=0 =0

...,mandj=0,...,n.

Example — Fit a least-squares straight line to the data f(-3) = f(0) =0, f(6) = 2.
Here n = 1 (fitting a straight line) and m = 2 (3 data points), so xo = —3, x; = 0 and x; = 6.

The overdetermined system is

1=3)
1 6)\

and the normal equations have the form

(3 X + X1 +x2) (co) _ (f(xo) + f(x1) + f(x2))

Xo+x1+x xi+x7+x2) \op
3 3 Coy _ 2 — Coy _ 3/7
3 45/ \cy) — \12 c1] 5/21
5
7 T a1

2.5-
2.0 -
1.5
1.0 -

0.5-

0.0 -

—0.5-

Numerical Analysis Il - ARY 71

xof (x0) + x1f (1) + x2.f (x2)

)

So the least-squares approximation by straight line is p; (x) = 2 + 2x.

2017-18 Lecture Notes

6.3 QR decomposition

In practice the normal matrix AT A can often be ill-conditioned. A better method is based on
another matrix factorization.

Theorem 6.4 (QR decomposition). Any real m X n matrix A, with m > n, can be written in the
form A = QR, where Q is an mXn matrix with orthonormal columns and R is an upper-triangular
n X n matrix.

Proof. We will show this by construction... O

The simplest way to compute Q and R is by Gram-Schmidt orthogonalization.

Algorithm 6.5 (Gram-Schmidt). Let {uy,...,u,} be a set of n vectors in R™, not necessarily
orthogonal. Then we can construct an orthonormal set {q,,...,q,} by
k-1 p
k
pr=w-) (ulq)g, g = ” fork=1,....n.
= Dill2

Notice that each p, is constructed from uy by subtracting the orthogonal projections of u; on
each of the previous g, for i < k.

Example — Use the Gram-Schmidt process to construct an orthonormal basis for W = Span{uy, u;},
where u; = (3,6,0)" and u, = (1,2,2) 7.

We take
3 3
Py 1
pi=u; = 6 = q, = =—|6].
! . el V& |
Then
1 3 0 0
15 P
po=uw—(u7q,)q, = (2| - =|6]=(0] = gy=7—=—=|0].
2 0 2 ”pz”Z 1

The set {q,, q,} is orthonormal and spans W.

How do we use this to construct our QR decomposition of A? We simply apply Gram-Schmidt
to the set of columns of A, {ay,...,a,}, which are vectors in R™. This produces a set of
orthogonal vectors q; € R™. Moreover, we have

k-1 k-1
Ipelgr = ac - Y (alg)q; = a = lp g+ Y (alq))q. (6.9)

i=1 i=1

Taking the inner product with g, and using orthonormality of the q; shows that [|p, [l2 = @ q;.,
so we can write the columns of A as

k
a =) (a[9,); (6.10)
i=1

Numerical Analysis Il - ARY 72 2017-18 Lecture Notes

In matrix form this may be written

a q, azT‘h aal_ql
0 a,q, -+ a,q,
A=|qy @ @ . T (6.11)
Q (mxn) R (nxn)

» What we have done here is express each column of A in the orthonormal basis given by the
columns of Q. The coefficients in the new basis are stored in R, which will be non-singular if
A has full column rank.

How does this help in least squares? If A = QR then

ATAx=A"b <= (QR)"QRx = (QR)"b (6.12)
& R (Q'Q)Rx =R'Q"b (6.13)
& R'(Rx-Q7b) =0 (6.14)
& Rx=0Q'b. (6.15)

In the last step we assumed that R is invertible. We see that the problem is reduced to an
upper-triangular system, which may be solved by back-substitution.

Example — Use QR decomposition to find our earlier least-squares straight line, where

)

The columns of A are a; = (1,1,1)" and @, = (-3,0,6) . So applying Gram-Schmidt gives

1 1

P 1
= Qa4 = 1 e = = — 1
P =a (1) 9 lip, Il ‘/5(1)

—a—(aT)—O—\/gil—:él1 = _ P —L:Al1
P =a 2491)91 =) NG X = ; qz_”Pz”z_\/E ; .

Therefore A = QR with

and

1/V3 —4/V42 g
_ _(alq, ajq,\ _ (V3 V3
Q=|1Vs —1/VEz). R_(lol ajq;)_(o \@)

1/V3 5/V42

The normal equations may then be written

e = (a0 ova) = ()=o)

Numerical Analysis Il - ARY 73 2017-18 Lecture Notes

which agrees with our earlier solution.

» In practice, Gram-Schmidt orthogonalization is not very numerically stable. Alternative
methods of computing the QR decomposition such as the Householder algorithm are preferred
(but beyond the scope of this course).

6.4 Continuous least squares

We have seen how to approximate a function f(x) by a polynomial p,(x), by minimising
the sum of squares of errors at m > n nodes. In this section, we will see how to find an
approximating polynomial that minimizes the error over all x € [a, b].

» Think of taking m — oo, so that our matrix A is infinitely tall. Happily, since p, still has
finitely many coefficients, we will end up with an n X n system of normal equations to solve.

Let f, g belong to the vector space C[a, b] of continuous real-valued functions on [a, b]. We
can define an inner product by

b
(f.g) = / FE)9x)w(x) d (6.16)

for any choice of weight function w(x) that is positive, continuous, and integrable on (a, b).

» The purpose of the weight function will be to assign varying degrees of importance to errors
on different portions of the interval.

Since (6.16) is an inner product, we can define a norm satisfying (N1), (N2), (N3) by

b 1/2
1= O) = (/ () dx) . (617)

Example — Inner product.
For the weight function w(x) = 1 on the interval [0, 1], we have, for example,

1/2

1 1
<1’X>=/Oxdx=%, ||x||:\/ﬁz(/o xzdx) =

2

The continuous least squares problem is to find the polynomial p,, € #, that minimizes ||p, — f]|,
in a given inner product. The analogue of the normal equations is the following.

Theorem 6.6 (Continuous least squares). Given f € C[a, b], the polynomial p, € P, minimizes

llgn — fl| among all q,, € P, if and only if

(Pn—f,qn) =0 forallq, € P,.

» Notice the analogy with discrete least squares: we are again setting the “error” orthogonal
to the space of “possible functions” P,,.

Numerical Analysis Il - ARY 74 2017-18 Lecture Notes

Proof. If (p, — f, qn) = 0 for all g, € Py, then for any g, # p, we have
lgn = £1* = 11(gn = £a) + @n = HIF = llgn = pall® + llpn = FI° > llpn = 1, (6.18)

i.e., p, minimizes ||g, — f||-

Conversely, suppose (p, — f, qn) # 0 for some g, € $,, and consider

(on =) + Aqall” = llpn = fII° + 22 (pn = £1qn) + 2* llgull* - (6.19)
If we choose A = —(p, — f,qn)/llgnll* then we see that

1o + Aga) — FIP = low — I - % < llpn - I, (6.20)

showing that p, does not minimize ||gq, — f]|. i

» The theorem holds more generally for best approximations in any subspace of an inner
product space. It is an important result in the subject of Approximation Theory.

Example — Find the least squares polynomial p;(x) = ¢y + c;x that approximates f(x) =
sin(zx) on the interval [0, 1] with weight function w(x) = 1.

We can use Theorem 6.6 to find ¢y and ¢; by requiring orthogonality for both functions in the
basis {1, x} for #;. This will guarantee that p; — f is orthogonal to every polynomial in #;.
We get a system of two linearly independent equations

p-f1) =0 [en)=(f1) . Joteo+) dx = [sin(rx) dx
(pr—f.x) =0 (p1.x) = (f,x) fol (co + c1x)x dx = fol sin(rx)x dx
which may be written as the linear system
fol dx fol xdx) [co) _ f01 sin(rx) dx
fol x dx fol x2dx) \e1) fol x sin(rrx) dx
These are analogous to the normal equations for the discrete polynomial approximation, with
sums over xi replaced by integrals. Evaluating the integrals, we have

1 1/2\ (e 2/ c 2/m
b2) 0)=072) = (6)-(7) = new-s

1.0-

0s @

0.6 -
0.4 -
0.2 -

0.0 - : : : : -
0.0 0.2 0.4 0.6 0.8 1.0

Numerical Analysis Il - ARY 75 2017-18 Lecture Notes

6.5 Orthogonal polynomials

Just as with discrete least squares, we can make our life easier by working in an orthonormal

basis for P,,.

A family of orthogonal polynomials associated with the inner product (6.16) is a set {¢do, @1,
¢2, ...} where each ¢ is a polynomial of degree exactly k and the polynomials satisfy the
orthogonality condition

» This condition implies that each ¢ is orthogonal to all polynomials of degree less than k.

The condition (6.21) determines the family uniquely up to normalisation, since multiplying
each ¢y by a constant factor does not change their orthogonality. There are three common
choices of normalisation:

1. Require each ¢ to be monic (leading coefficient 1).
2. Require orthonormality, (¢;, $x) = Sjk.
3. Require ¢4 (1) = 1 for all k.

» The final one is the standard normalisation for Chebyshev and Legendre polynomials.

As in Theorem 6.1, a set of orthogonal polynomials {¢g, @1, ..., ¢,} will form a basis for P,.
Since this is a basis, the least-squares solution p, € #, may be written

Pn(x) = codo(x) + c1P1(x) + ... + cndpn(x) (6.22)

where ¢y, . . ., ¢, are the unknown coefficients to be found. Then according to Theorem 6.6 we
can find these coefficients by requiring

(pn—f k) =0 fork=0,...,n, (6.23)
& co(Po, Pr) + c1(P1,Px) + - .. cn(Pn, dk) = (f, k) fork =0,...,n, (6.24)
U9 prk=o,....n. (6.25)

% e)

So compared to the natural basis, the number of integrals required is greatly reduced (at least
once you have the orthogonal polynomials).

We can construct an orthogonal basis using the same Gram-Schmidt algorithm as in the dis-
crete case. For simplicity, we will construct a set of monic orthogonal polynomials. Start with
the monic polynomial of degree 0,

$o(x) = 1. (6.26)

Then construct ¢; (x) from x by subtracting the orthogonal projection of x on ¢, giving
_ . (x¢o. o) o (1)
Pr(x) = (b0, 60) ———~$o(x) = L) (6.27)
In general, given the orthogonal set {¢, ¢1, ..., Pr}, we construct ¢x.1(x) by starting with
x¢y(x) and subtracting its orthogonal projections on ¢y, ¢1, . . ., ¢x. Thus

_ _ (x¢x, go) _ (x¢x, $1) N G) (x¢r, Pr)

Pena) =)= 5)=y)= m%mnW“)wmw%;

Numerical Analysis Il - ARY 76 2017-18 Lecture Notes

Now all of these projections except for the last two vanish, since, e.g., (x¢x, ¢o) = (Pr, xPo) = 0
using the fact that ¢y is orthogonal to all polynomials of lower degree. The penultimate term
may be simplified similarly since (x¢k, Px—1) = (P, xPx—1) = (Pk, Pr) So we get:

Theorem 6.7 (Three-term recurrence). The set of monic orthogonal polynomials under the inner
product (6.16) satisfy the recurrence relation

b =1 i) =x—%,
_ _ (xdr, d) D)
Penn(x) = xe(0) =< g Y)~ g e P) fork =L

Example — Legendre polynomials.
These are generated by the inner product with w(x) = 1 on the interval (-1, 1). Starting with
¢o(x) = 1, we find that

1
$1(x) = x - f; xix =x, dox) =
-1

_f_11x3dxx_f_11x2dx
- x -_—
Jaxrde [l dx

:xz—

b

W=

» Traditionally, the Legendre polynomials are then normalised so that ¢, (1) = 1 for all k. In
that case, the recurrence relation reduces to

(2k + 1)x¢p(x) - kd)k—l(x)'

Prr1(x) = e+ 1

Example — Use a basis of orthogonal polynomials to find the least squares polynomial p; =
co +c1x that approximates f(x) = sin(zx) on the interval [0, 1] with weight function w(x) = 1.
Starting with ¢o(x) = 1, we compute

fol x dx
ST

Jo dx

$1(x) = x

N [—=

=x -

Then the coefficients are given by

~(fid0) ﬁ)l sin(rx) dx .,

T God) e "

ci = (f’ d)l) — ﬁ)l(x - %) Sil’l(ﬂ'x) dx
YT (¢) Jie =12 dx

so we recover our earlier approximation p;(x) = %

Numerical Analysis Il - ARY 77 2017-18 Lecture Notes

7 Numerical integration
How do we calculate integrals numerically?

The definite integral

b
)= [) .
a
can usually not be evaluated in closed form. To approximate it numerically, we can use a
quadrature formula
n
L(f) =) o f (%), (7.2)
k=0
where xy, ..., X, are a set of nodes and oy, . . ., 0, are a set of corresponding weights.

» The nodes are also known as quadrature points or abscissas, and the weights as coefficients.

Example — The trapezium rule
L) = 52 (f(@ + £0)

This is the quadrature formula (7.2) with xg = a, x1 = b, 0y = 01 = %(b - a).
For example, with a = 0, b = 2, f(x) = e*, we get

2-0
L(f) == (”+e®) =8.389 to4sf.

The exact answer is

2
I(f):/ e dxr =e’—e’ =6.389 to4sf
0

Graphically, I; (f) measures the area under the straight line that interpolates f at the ends:

Numerical Analysis Il - ARY 78 2017-18 Lecture Notes

7.1 Newton-Cotes formulae
We can derive a family of “interpolatory” quadrature formulae by integrating interpolating
polynomials of different degrees. We will also get error estimates using Theorem 2.6.

Let x¢,...,x, € [a,b], where xg < x; < -+ < xy, be a set of n + 1 nodes, and let p, € P, be
the polynomial that interpolates f at these nodes. This may be written in Lagrange form as

. (7.3)
Xk — Xj

x) =) fE()., where G(x) =]]
k=0

J=0
J#k

To approximate I(f), we integrate p,(x) to define the quadrature formula

L(f) : fokka)dx—fok/ (x) (7.4)

a4 k=0

In other words,
n

b
L(f) ::Zakf(xk), where o} = / k() dx. (7.5)

k=0
When the nodes are equidistant, this is called a Newton-Cotes formula. If xo = a and x,, = b, it
is called a closed Newton-Cotes formula.

» An open Newton-Cotes formula has nodes x; = a+ (i + 1)hfor h = (b — a)/(n + 2).

Example — Trapezium rule.
This is the closed Newton-Cotes formula with n = 1. To see this, let xg = a, x; = b. Then

-b

b b
_x _ 1 B _ 1 b _b-a
fo(x)—a_b :>O'0—/a€0(x)dx—a_b/a(x b)dx—z(a_b)(x b)a— 5
and
b b
_x-—a 3 1 _ 1 P _b-a
fl(x)—b_a = al—/a fl(x)dx——b_a/a (x a)dx—z(b_a)(x a) M

So
L(f) = ouf (@) + o1 f(b) = ;%ﬂw+ﬂwy

Theorem 7.1. Let f be continuous on [a, b] with n+ 1 continuous derivatives on (a, b). Then the
Newton-Cotes formula (7.5) satisfies the error bound

maxge[qp) | f) (€)]
(n+1)!

l1(f) - L(P)| < dx.

/| — o) (x = x1) -+ (¥ = 30)

Numerical Analysis Il - ARY 79 2017-18 Lecture Notes

Proof. First note that the error in the Newton-Cotes formula may be written

b b b
1) - 1) = ‘ [rwax- [o dx‘ [r@-p] & @
b
< [10 - prto] e (7.7
Now recall Theorem 2.6, which says that, for each x € [a, b], we can write
(n+1)
£ = pa) =L s = x) (x-x) 79
for some & € (a,b). The theorem simply follows by inserting this into inequality (7.7).]
Example — Trapezium rule.
Let My = maxge[qp) |f”(&)]. Here Theorem 7.1 reduces to
M, b My b _(b-a)’
() - ()| < Tr / |(x = @) (x - b)| dx = 7/61 (x - a)(b - x) dx = M.,

For our earlier example with a = 0, b = 2, f(x) = €, the estimate gives

l1(f) = ()] < &(2°)e? ~ 4.926.
This is an overestimate of the actual error which was ~ 2.000.

» Theorem 7.1 suggests that the accuracy of I, is limited both by the smoothness of f (outside
our control) and by the location of the nodes xi. If the nodes are free to be chosen, then we
can use Gaussian integration (see later).

» As with interpolation, taking a high n is not usually a good idea. One can prove for the
closed Newton-Cotes formula that

n
Z|0k|—>oo as n— oo.
k=0
This makes the quadrature vulnerable to rounding errors for large n.

7.2 Composite Newton-Cotes formulae

Since the Newton-Cotes formulae are based on polynomial interpolation at equally-spaced
points, the results do not converge as the number of nodes increases. A better way to improve
accuracy is to divide the interval [a, b] into m subintervals [x;_1, x;] of equal length
b—a
h:= , (7.9)

m

and use a Newton-Cotes formula of small degree n on each subinterval.

Numerical Analysis Il - ARY 80 2017-18 Lecture Notes

Example — Composite trapezium rule.
Applying the trapezium rule I;(f) on each subinterval gives

h
Cim(f) = 2 [f(x0) + f(x1) + fx1) + fx2) + ..o+ f(xm—1) + f(xm)]
= [Lf(x0) + F(x1) + Fxz) + ..o+ fGomer) + 3 f(m)] -

We are effectively integrating a piecewise-linear approximation of f(x); here we show m = 3
for our test problem f(x) = e* on [0, 2]:

— fl@)

0.0 0.5 1.0 1.5 2.0

o

Look at what happens as we increase m for our test problem:

m h Cl,m(f) |I(f) - Cl,m(f)|

1 2 8.389 2.000
2 1 6.912 0.524
4 05 6.522 0.133
8 0.25 6.422 0.033
16 0.125 6.397 0.008
32 0.0625 6.391 0.002

When we halve the sub-interval A, the error goes down by a factor 4, suggesting that we have
quadratic convergence, i.e., O(h?).

To show this theoretically, we can apply Theorem 7.1 in each subinterval. In [x;_1, x;] we have

1) - ()| <« Zen) / o= e x0

2!

Note that

/ |(x xi—1)(x — xl)| / (x = xi—1)(x; —x) dx = / — x? + (xi_1 + X)X — xi— 1xl] dx
Xi-1

=13 1y 1x + 1xl2 1Xi — 1y3

——x +2(xl L+ x)x% = X 1xlx] <X — 3 <X

3

= g(xi—xz 1) = 1h3-

Xi-1

Numerical Analysis Il - ARY 81 2017-18 Lecture Notes

So overall
3

3
‘I(f)—CLm(f)| < %ml_ax (ér Flax |f7(£)) h _ ﬂ x |f” (&) = max |f”(&)].

€[xi—1,xi] 12 § 12 § [a,b]

Aslong as f is sufficiently smooth, this shows that the composite trapezium rule will converge
as m — oo. Moreover, the convergence will be O(h?).

7.3 Exactness

From Theorem 7.1, we see that the Newton-Cotes formula I, (f) will give the exact answer if
£+ = 0. In other words, it will be exact if f € P,.

Example — The trapezium rule I;(f) is exact for all linear polynomials f € $;.

The degree of exactness of a quadrature formula is the largest integer n for which the formula
is exact for all polynomials in $,,.

To check whether a quadrature formula has degree of exactness n, it suffices to check whether

it is exact for the basis 1, x, x2, ..., x"

Example — Simpson’s rule.
This is the n = 2 closed Newton-Cotes formula

B(f) = 222 [f(a) f()+f<b]

derived by integrating a quadratic interpolating polynomial. Let us find its degree of exactness:

(1) = /dx (b-a), L)=-—2[+4+1]=b-a=I),
b

I(x):/a xdx:bzga, Iz(x):bga[a+2(a+b)+b]:%2(b+a):l(x),
b

I(xz):/a dex:bggaa, Ig(xz):b;a[a2+(a+b)2+b2]:z(bsé_aB)—I(xz),
b

I(x3):/a x3dx:b4;a4, Iz(x3):b;a[a3+%(a+b)3+b3]:b4_ 4—I(x3).

This shows that the degree of exactness is at least 3 (contrary to what might be expected from
the interpolation picture). You can verify that I,(x*) # I(x*), so the degree of exactness is
exactly 3.

» This shows that the term f”’(&) in the error formula for Simpson’s rule (Theorem 7.1) is
misleading. In fact, it is possible to write an error bound proportional to f*)(&).

» In terms of degree of exactness, Simpson’s formula does better than expected. In general,
Newton-Cotes formulae with even n have degree of exactness n + 1. But this is by no means
the highest possible (next section).

Numerical Analysis Il - ARY 82 2017-18 Lecture Notes

7.4 Gaussian quadrature

The idea of Gaussian quadrature is to choose not only the weights oy but also the nodes xy, in
order to achieve the highest possible degree of exactness.

Firstly, we will illustrate the brute force method of undetermined coefficients.

Example — Gaussian quadrature formula G;(f) = lec:o ok f (xx) on the interval [-1,1].
Here we have four unknowns xy, x1, 0y and oy, so we can impose four conditions:

1
Gl(l):I(l) - O'0+0'1:/ dx = 2,
-1
1

Gi(x) =1(x) = ooxg+ 01x1 = / x dx =0,
-1

1
G1(x2) = I(xz) - o-oxg +o'1xf = /1 x2 dx = %’

1
Gi(xX*) =I(x*) = aox) +o1x]) = / x> dx = 0.
-1

To solve this system, the symmetry suggests that x; = —xy and ¢y = o;. This will automatically
satisfy the equations for x and x?, leaving the two equations

— 2 _ 2
20’0 =2, ZO'OXO =3

so that oy = 07 = 1 and x; = —xy = 1/V3. The resulting Gaussian quadrature formula is
6 = -]+ 5 (%)
V3 V3
This formula has degree of exactness 3.
In general, the Gaussian quadrature formula with n nodes will have degree of exactness 2n + 1.

The method of undetermined coefficients becomes unworkable for larger numbers of nodes,
because of the nonlinearity of the equations. A much more elegant method uses orthogonal
polynomials. In addition to what we learned before, we will need the following result.

Lemma 7.2. If {¢, P1,. .., ¢pn} is a set of orthogonal polynomials on [a, b] under the inner prod-
uct (6.16) and ¢y is of degree k foreachk = 0,1, ..., n, then ¢y hask distinct real roots, and these
roots lie in the interval [a, b].

Proof. Let xy,...,x; be the points where ¢ (x) changes signin [a, b]. If j = k then we are done.
Otherwise, suppose j < k, and consider the polynomial

qj(x) = (x = x1)(x = x3) - - - (x = x;). (7.10)

Since g; has lower degree than ¢, they must be orthogonal, meaning

b
@80 =0 = [adutawx) dr =o. (711)

Numerical Analysis Il - ARY 83 2017-18 Lecture Notes

On the other hand, notice that the product g;(x)¢x(x) cannot change sign in [a, b], because
each sign change in ¢y (x) is cancelled out by one in g;(x). This means that

b
/ 0/() e (X w(x) dx # 0, 712)

which is a contradiction. O

Remarkably, these roots are precisely the optimum choice of nodes for a quadrature formula
to approximate the (weighted) integral

b
L) = [feow dx (713)

Theorem 7.3 (Gaussian quadrature). Let ¢,.1 be a polynomial in P, that is orthogonal on
[a, b] to all polynomials in P,, with respect to the weight function w(x). If xo, x1, . . ., x, are the
roots of P11, then the quadrature formula

n

b
Gral)i= Yo, o= [Gawn) dn

k=0

approximates (7.13) with degree of exactness 2n + 1 (the largest possible).

» Like Newton-Cotes, we see that Gaussian quadrature is based on integrating an interpolating
polynomial, but now the nodes are the roots of an orthogonal polynomial, rather than equally
spaced points.

Example — Gaussian quadrature with n = 1 on [-1, 1] and w(x) = 1 (again).

To find the nodes xy, x;, we need to find the roots of the orthogonal polynomial ¢,(x). For
this inner product, we already computed this (Legendre polynomial) in Chapter 6, where we
found

Pa(x) = x% - %
Thus the nodes are x, = —1/V3,x; = 1/V3. Integrating the Lagrange polynomials gives the
corresponding weights

1
1 1Xx— ==
ao=/_ Lo(x) dx:/_ 2\5 dx:—g[%xz—%x]il=l,

1 1 _%

1 1x+i3)
o= [aear= [R ar=Fb e a1

-1 1 %

as before.

» Using an appropriate weight function w(x) can be useful for integrands with a singularity,
since we can incorporate this in w(x) and still approximate the integral with G, ,,.

1
Example — Gaussian quadrature for fol cos(x)x” 2 dx, with n = 0.
This is a Fresnel integral, with exact value 1.80905. .. Let us compare the effect of using an
appropriate weight function.

Numerical Analysis Il - ARY 84 2017-18 Lecture Notes

1. Unweighted quadrature (w(x) = 1). The orthogonal polynomial of degree 1 is

foxdx
ﬁ)dx

The corresponding weight may be found by imposing G¢(1) = I(1), which gives gy =

P1(x) = x -

- X():%.

D=

=X —

fol dx = 1. Then our estimate is

G (f<x>) _cos(3) _

1
2. Weighted quadrature with w(x) = x 2. This time we get

L1
2d
prl) = - D2

2
3
fol x 2dx 2

W=

1
. . . 1_—= . .
The corresponding weight is oy = fo x 2 dx = 2, so the new estimate is the more accurate

GO,W(cos(x)) = 2cos() = 1.8899.

Proof of Theorem 7.3. First, recall that any interpolatory quadrature formula based on n + 1
nodes will be exact for all polynomials in #, (this follows from Theorem 7.1, which can be
modified to include the weight function w(x)). So in particular, G, ,, is exact for p, € P,.

Now let pan+1 € Pan+1. The trick is to divide this by the orthogonal polynomial ¢,; whose
roots are the nodes. This gives

DPon+1(X) = Pni1(x)qn(x) + ry(x) for some qu, 1, € Ph. (7.14)

Then

nw(P2n+1) = Z O'kP2n+1 xk O'k [¢n+l(xk)qn(xk) + rn(xk)] Z Ukrn(xk) = w(rn)
(7.15)

where we have used the fact that G, ,, is exact for r, € $,. Now, since g, has lower degree
than ¢, it must be orthogonal to ¢,1, so

b
L@ra) = [o (a(w(x) dx = 0 (7.16)
and hence
Gn,w(P2n+1) = Iw(rn) +0= Iw(rn) + Iw(¢n+1Qn) = Iw(¢n+1‘]n + rn) = IW(P2n+1)- (7-17)
O

Numerical Analysis Il - ARY 85 2017-18 Lecture Notes

» Unlike Newton-Cotes formulae with equally-spaced points, it can be shown that G, ,,(f) —
I,(f) as n — oo, for any continuous function f. This follows (with a bit of analysis) from
the fact that all of the weights oy are positive, along with the fact that they sum to a fixed
number fab w(x) dx. For Newton-Cotes, the signed weights still sum to a fixed number, but
Y=o lok| = oo which destroys convergence.

Not surprisingly, we can derive an error formula that depends on f "2 () for some & € (a, b).
To do this, we will need the following result from calculus.

Theorem 7.4 (Mean value theorem for integrals). If f, g are continuous on [a, b] and g(x) > 0
forall x € [a,b], then there exists & € (a,b) such that

b b
/ F)9(x) dx = £(@) / 9(x) dx

Proof. Let m and M be the minimum and maximum values of f on [a, b], respectively. Since
g(x) > 0, we have that

b b b
m/ g(x) dx S/ f(x)g(x) dx < M/ g(x) dx. (7.18)

Now let I = fabg(x) dx. If I = 0 then g(x) = 0, so fab f(x)g(x) dx = 0 and the theorem holds
for every ¢ € (a, b). Otherwise, we have

m< / F)g(x) dx < M. (7.19)

By the Intermediate Value Theorem (Theorem 4.1), f(x) attains every value between m and M
somewhere in (g, b), so in particular there exists ¢ € (a, b) with

b
£© =1 [£ ax (7.20)
O

Theorem 7.5 (Error estimate for Gaussian quadrature). Let ¢, € P11 be monic and orthogo-
nal on [a, b] to all polynomials in P,, with respect to the weight function w(x). Let x, X1, . . . , Xp
be the roots of ¢n+1, and let G, ,,(f) be the Gaussian quadrature formula defined by Theorem 7.3.
If f has 2n + 2 continuous derivatives on (a, b), then there exists ¢ € (a,b) such that

2n+2
Ly(f) = Gow(f) = / ¢%, (x)w(x) dx.

2n+2

Proof. A neat trick is to use Hermite interpolation. Since the x; are distinct, there exists a
unique polynomial p,,; such that

pPon+1(xk) = f(xx) and pl . (xx) = f'(xx) fork=0,...,n. (7.21)

In addition (see problem sheet), there exists A € (a, b), depending on x, such that

f{2n+2)(A) n
f(x) = pans1(x) = ant2) 1;[(35 - x;)°. (7.22)

Numerical Analysis Il - ARY 86 2017-18 Lecture Notes

Now we know that (x — x9)(x — x1) - - - (x — %) = @Pn+1(x), since we fixed ¢,+1 to be monic.

(2n+2) A
[semeac [(patameac= [T 00 cumas o2

Hence

Now we know that G, ,, must be exact for pz,+1, so

n

b n
/ Pone1 (X)W(x) dx = Gp(panis) =) Okponsr(6i) = D oef (k) = Gu(f). (7.24)

k=0 k=0

For the right-hand side, we can’t take f(2"*? (1) outside the integral since A depends on x. But

2 (x)w(x) > 0 on [a, b], so we can apply the mean value theorem for integrals and get

n+1
2n+2
L,(f) — Gow(f) = 2n 2! / ¢2, (x)w(x) dx (7.25)
for some & € (a, b) that does not depend on x. O

Numerical Analysis Il - ARY 87 2017-18 Lecture Notes

