Problems 3 - Trigonometric Interpolation
Approximation Theory (MATH3081/4221) — Epiphany 2015 — anthony.yeates@dur.ac.uk

The problem marked x should be handed in for marking at the lecture on Monday 9th March.
There will be a problem class on this chapter on Monday 2nd March.
I use T to indicate (what I consider to be) trickier problems.

29. Discrete Fourier transforms. Compute the discrete Fourier transform of the following vectors,
and interpret your results: (a) x = (1,1,1,1)"; (b) x = (0,1,0,—1,0,1,0,—1)"

Solution: (a) Let w = e??™/4 = ¢™/2 = . Then

wd WO w? wO 1 1 1 1 1 1 1

1 W' wt w? w3 1 1 —i -1 1 0
Filx=1 =1 —

4 41wl w2 wt Wb 1 411 -1 1 -1 1 0

Wl wd w b W 1 1 + -1 — 1 0

Interpretation: the only non-zero coefficient is ¢, which is the constant term in the trigonometric
polynomial (as expected).

(b) Let w = e27™/8 = ¢i™/4 = = 5 + J5i- Then
w? WO w? w? w? w? w? w? 0
W owTt w2 W Wt Wt Wt w7 1
WO w2 wt w8 w8 10 12 -1 0
. N I e R e B e E R Lo LR ]
Fyx=3 WO Wt w8 w12 16 200,24 28 0
WO Wb w10 15 =200 =25, =30 =35 1
WO w6 w12 18 24,80 ,—36 42 0
WO w7 w2l 28 85,42 49 ]
1 1 1 1 1 1 1 1 0
1 wlt w?2 w3 wt wd wb W’ 1
1 w2 w?t W 1 w2 wt WS 0
a1 w? W Wttt W w? W -1
el w1 wt 1wt 1wt 0
1 w?® w? w7 w?t wl wb w3 1
1 wb w?t w2 1 w6 1 w2 0
1 w7 wb Wb wt w3 w? ! -1
1-1+1-1 0 0
w ! —w*3—|—w’5 —wT 0 0
w2 w2y w2 w42y -1
et o —w 0 110
TE |ttt T8 0 “9 o0
wP—w T w -3 0 0
w8 — w_2 +w w2 w b —w 24w b —w? 1
w T —w P w3 —w! 0 0
Note that we used the fact that w™3 = —w™ and w™! = —w~" (think of the unit circle), and that
w2 = —i, w8 = i. Interpretation: the only non-zero terms are cy and cg, and they are purely

imaginary. Thus the real trigonometric polynomial has only a sin(2x) term (which matches the
original function being interpolated) and a sin(6x) term (which is an alias of sin(2x)).

30. Real entries. Suppose that the entries of f are all real. If ¢ = F,'f is the discrete Fourier
transform of f, show that ¢, =c¢; for k=0,...,n— 1.

Solution: We know that

Ck :( n k]fj Zwijkfja

jO
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so using the fact that f; are real,

B 1 n—1 ‘ 1 n—1 i ) - n—1 i
Crke = E ZW_J(n_k)fj — E Z w ]kwjnfj Z w jk 12Trjf Z Jk(l)fj = cp.
j=0 j=0 ]:0

* 31. Trigonometric interpolation. Consider the periodic function f(z) = sin(x) + 2 cos(2x).

(a) Write down the Fourier matrix F3, and its inverse Fj .

(b) Use this to find a real trigonometric polynomial of the form

p3(z) = i (ak cos(kx) — by, sin(kx))
k=0

that interpolates f at three equally-spaced nodes on [0, 27).

(c) Explain how it can be that the interpolant ps3 you found in part (b) does not reproduce the
original function f exactly.

(d) Find a trigonometric polynomial of lower degree that interpolates the same data.

Solution: (a) Let w = e™™/3 = cos(&) +isin(ZF) =1+ ?z Then w? =w™t = -1 — @l Thus
WO Wl WO 1 1 1 1 1 1
F3=1w w! W?]=[1 w w?]=|1 —%—|—§i —%—?i ,
0 2 4 2 1 V3 1 V3
W’ Wt w 1 w w 1 -1 143
and
1 1 1
-1 _ 173 _ 1 1_ V3. 1, V3,
F3 =303=3 1 _?_%Z _?"’%Z s
—3t3r —5— g

(b) The coefficients ay and by are the real and imaginary parts of ¢, where ¢ = F?flf and the data
are given by

fo=sin(0) +2cos(0) =2, f1 =sin(3F) + 2cos(%) = i 1, fa= —@ - 1.

Using the matrix from (a), we obtain

1 1 1 2 0
_ 1 1_ V3 1, V3, V3 1
C—g 757%2 7§+%Z ?/57 = 17?7, 5
] - ] = - 1.
L —3+%1 =351 \—% —1 1+ 30

so the real trigonometric interpolant is

p3(z) = cos(z) + 1 sin(z) + cos(2z) — 5 sin(2z).

(c) We see that p3(x) # f(z) for most z. Although f is itself a trigonometric polynomial with n = 3,

this is not inconsistent, because the Nyquist frequency for n = 3 is ky = % Since the function

f contains a component of frequency k = 2 > kg, there is not a unique trigonometric polynomial
with n = 3 that interpolates f.

(d) We have that

cos(27;) = cos((3 — 1)z;) = cos(2mj — 252) = cos(2mj) cos(252) + sin(27j) sin( 252 ) = cos(z;),
sin(2z;) = sin((3 — 1)x;) = sin(27j — %j) sin(2my) COS(TJ) — cos(27j) sm(%]) = —sin(z;),
so replacing sin(2z) by —sin(x) and cos(2z) by cos(z) yields another interpolant

p1(x) = 2cos(z) + sin(z).
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Here is what the functions look like:

32. Splitting. Let h = f 4+ ig, where f and g are real vectors, and let b be the DFT of h. Show that

the DFTs of f and g are

1 - .
Ck = i(bk + by—k), dp = %(bnfk — by).

Remark: One can speed up the DFT of a real vector £ by splitting into foyen and foqq and finding

the size n/2 transform of h = foyen + ifoaq.

Solution: This is really an extension of Problem 30. We have

n—1
1 .
bk:EZw ]khj— Zw (f; +1g5),
j=0
and
n—1 1 n—1
Zw Jngik ( (f; +igj) = Zoﬂ"w—Jk( —ig;) Zw—Jk
iz iz
Adding and gives
1 B 1 n—1 o
5(’% +bn_k) = - Zw IFfi = ck,
7=0
and subtracting gives
n—1
i _
i(bn K — br) *Zw kg =dy,
§j=0

133. Eigenvalues of Fy.

(a) Find the 4 x 4 matrix P such that Fy = PF}, and verify that P? = I.
(b) Show that P = 1FZ.

(c) Hence show that Fj = 1614, and deduce that the eigenvalues of F; must be either 42 or

+25.

Remark: In fact, for any n, we have F3 = n’I,.
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Solution: (a) As in Problem 29(a), the matrices are

1 1 1
- =1 g
-1 1 -1

i -1 —i _

F4: 11!

—
—_
[a—
el e )

Hence the matrix P needs to swap rows 2 and 4. This is achieved with

oo O
— o O o
o= O O
o O = O

which is easily shown to satisfy P? = I,.
(b) Using the fact that F; ' = 1Fy, we get
PFy=Fy = PEFy=F; = P(4l;) =F; = P=1F}.

(c) Clearly it follows that F{ = (F})? = (4P)? = 16P? = 161,. This shows that the eigenvalues of
F{ are 16 (with multiplicity 4). It follows that the eigenvalues of F; must satisfy A\? = +4, so each
A must be one of +2, £2i.

34. The columns of F,, as eigenvectors. Show that the columns of the Fourier matrix F;, are the
eigenvectors of the cyclic permutation matrix

010 0 - 0
o010 - 0
O 001 - 0
A= )
0 1
1 0 0 O 0
Solution: The columns of F, are vectors v(¥) with components v§k) = wi* where w = €?27/" For

7=0,...,n— 2 we have
(AvIP); = o) = WhGHD = (P,

The last element is
(Av®), | = U(()k) — W0 = ok — k—ktk k(= 1k kvr(lli)r
Hence v(*) is an eigenvector of A with eigenvalue w”.
35. Inverse Fast Fourier Transform. Find § x § matrices A, B, C, D such that
Fil=2 (A B) <F"/12 (11) P,
n \C D 0 Fn/2

where F,, is the n x n Fourier matrix and P, is the odd-even permutation matrix (as defined in
the lecture). This shows that the FFT algorithm works in both directions!

Solution: Since F;' = 1F,, the components of f = F; 'c are
1 n—1 n/2 1 1 n/2—1
—jk —j2k —j(2k+1
_52:(“)”] Ck— E w;d 02k+, E:an( +)C2k+1
k=0 k=0
n/2—1 n/2—-1
1 ik —j —jk
= (wi) oy, + w E C2kt1-

k=0
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From this we see that the required matrices are
A=C =1y,

where Dn/g = diag(l,w_17w S

-2

B

w20

= Dn/Qv

D =

7Dn/2,

136. Applying the FFT. Compute Fgx using the recursive FFT algorithm for x = (1,0,1,0,1,0,1,0) .

Solution: Applying the algorithm recursively gives (in block matrix form)

I
Fy = <I;‘

1
1y

Dy
—Dy

Dy
—Dy

Fy 0
J(v 5)r

I, Dy O
Is, —Dy O
0 0 I
0 0 Iy
I, Dy O
I, —-Dy O
0 0 I
0 0 Iy

Doy
-D,

o0
0 F
0 0
0 0
L Dy
L —-D,
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0],
P oolf
0 R
0 0
0 0
I, D
I, —-D;
0 0
0 0
0 0
0 0

Doococo

iy

OOU

OO OO oo

~

1
I

o O o oo

0
D,
-Dy

P//

where P, P’, P" are the appropriate permutation matrices, and we have used that F; = (1). We don't

need to compute the matrix P explicitly, only to work out the

can be done easily by binary bit-reversal:

We need

where wg =

Fy =

eiQﬂ'/S

OO O, OO O
OO R OO O+ O

[000] 000 T 1
001 100 T4 1
010 010 s 1
011 ol ., zg 1
100| 7 foor| M TE= 14017 o
101 101 5 0
110 011 T3 0
111] |11 z7 0
1 0 0 0
0 ws 0 0 1 0
Di=1o 0 w2 o D2<0 w4)’ D1
0 0 0 w
and wy = ¢’?™/* = i Putting all of this together gives
00 1 0 0 0 10 1 0 0
00 0 ws 0 0 01 0 4 0
10 0 0 w 0 10 -1 0 0
01 0 0 0 w]|lo1 0 —io0
00 -1 0 0 0 00 0 0 1
00 0 —-ws 0 0 00 0 0 0
10 0 0 —w? 0 00 0 0 1
01 0 0 0 —w/\0oO0O 0 0 0
1 1.0 0 0 0 0 0\ /1
1 =10 0 0 0 0 0]]1
00 1 1 0 0 0 0]f1
001 -10 0 0 0]]1 B
00 0 0 1 1 0 0f]o -
00 0 0 1 —-10 0f/]}o
00 0 0 0 0 1 1/[]o
00 0 0 0 0 1 —1/\o

_ O = OO0 oo

O = OO OO

o |
—

O O OO OO

| os coococoo

[
<.

re-ordering of the x components. This
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37. Radiz-3 FFT. The FFT may be applied with more general splittings, instead of the radix-2
algorithm presented in the lecture. Suppose f = Fj,c but now n is a power of 3.

(a) Show that the entries in f may be written as

n/3-1 n/3-1 n/3—1
fj - Z (wn/g)]kc3k + (wn)J Z (wn/?:)]kc?)k:-i-l + (wn)Qj Z (wn/g)jk03k+2.
k=0 k=0 k=0

T (b) For n = 6, write out the explicit factorisation of f = Fj,c in matrix form, including the
necessary permutation matrix.

Remark: This can be generalised to any radiz, which was known already to Gauss.

Solution: (a) This is a simple generalisation of the argument given in the lecture. We split into three sums:

n—1 n/3—1 n/3—1 n/3—1
=S o S et S W a4 S Wi,
k=0 k=0 k=0 k=0
n/3—1 n/3—1 n/3—1
= > @) Fesk 4+ W) Y @) Fesrin + (wn)? Y (i) Fesras
k=0 k=0 k=0
n/3—1 n/3—1 n/3—1
= Z (wny3) ™ es + (wn ) Z (Wny3)*esnpr + (wn)? Z (Wny3)*canya-
k=0 k=0 k=0

(b) For n =6, each of the sums is an n = 2 transform, and the whole can be expressed in matrix form
as

Co

C3

C1

Iy Do Ey K 0 0
f= (L aD, a2D2| |0 B o

I, BDy B?D3) \0 0 F, C4
2

C5

o

where the 2 x 2 blocks are

1 0 0 9 1 0 1 1

The factors «, (B are required to renormalise the matrix Dy for the three sections. We have that

wifn/?) _ 6i27rj/n67(i27r/n)(n/3) _ w%efi%r/?) — wqj1 — 6i27r/3(’u¥7’7n/37
so o = €'2™/3 and similarly
w%—Zn/f& _ pi2mj/n—(i2n/n)(2n/3) _ w%e—i47r/3 — wl = 62‘4#/:‘)&)%—271/37
so = e"™/3 = o2, Overall, including the permutation matrix, we get
1 0 1 0 1 0 11 0 0 0 O 100 0 00
01 0 we 0 wg 1 -1 0 0 0 O 0001 0O
£ 1 0 « 0 a? 0 0o 0 1 1 0 O 01 00 00O c
101 0 aws 0 %W 0o 0 1 -1 0 O 00001 0™
1 0 o? 0 at 0 o 0 o0 0 1 1 001 00O
01 0 Q*ws 0 o' o 0 0 0 1 -1 0 00 0 01

38. Discrete cosine transform. Consider the data (%,2), (3%,0), (5%, -2), (*Z,0).

(a) Use the DCT to find an interpolant ps(z) for these data.
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(b) Hence find the least-squares approximations of the same form with m = 1, m = 2, and
m = 3 terms, for the same data.

Solution: (a) The interpolation coefficients are given by the following DCT:

1/vV2 1/\f 1/v2 1/v2 2

1e . 2| cos(ZD) Cos( ) cos( 5)  cos(T1) 0
a=Cp'f= 4 cos(%zl) cos(2F 23’) cos( 25) cos(%zz) -2
cos(%’é) cos(—g) cos(2E2)  cos( %”2 0
V2 1V2 o 1/N2 f 1/ f
_ 1 | cos(5) cos(3) cos(3F)  cos(
V2 | cos(F)  cos((F) cos(g cos ?”
cos(3F) cos(%) cos(13F)  cos(ZE
0
| V2(cos(F) —cos(3F)) | _ | L. 8478
| v2(cos(Z) —cos(3F)) | 2.0
V2(cos(3F) — cos(137)) —0.7654
Thus the interpolating function is
3
pa(w) = Jag + % Z ay, cos(kxz) = 1.3066 cos(x) + 1.4142 cos(2x) — 0.5412 cos(3z).
k=1

(b) To find the least-squares approximations we just leave off the subsequent terms of py. So
pi(x) =0, p2(x) = 1.3066 cos(x), ps(x) = 1.3066 cos(z) + 1.4142 cos(2z).
This is what the different functions look like:

pd )
*  data
pa ||
pz |
p1

39. DCT-4. An alternative version of the discrete cosine transform known as DCT-4 is used in sound
compression. It is based on the n x n matrix F,, with entries

il 1
(En)jk_\/gcos (]+271(k+2).

By considering the circulant matrix
1 -1
-1 2 -1
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show that the matrix F),, is orthogonal.

Solution: Let v(¥) denote column % of E,,. We will show that these are the eigenvectors of the circulant
matrix. Consider the first entry of Av(¥) where A is the circulant matrix, and use the shorthand

_mk+3)

N on

>

We have

(Av(k))o _ AOlUl(k) _ U(()k) _ vgk)

Q
@]
%)

(

(cos(@) — cos(0) cos(20) + sin(6) sin(29)>

(0) — cos(39))

<cos(9) — cos(f) cos(20) + 2sin?(0) cos(@))

(9) (2 - 2cos(29)) = (2 -2 cos(29))v(()k).

= cos
For j =1,...,n— 2 we have
k k k
(Av®); = o) + 200 —off))
i+ _1(k+1 i+ L+ L Pl ) (ks L
—\/E(COSW(]+2 )( +2)+2C05w—005ﬂ-(j+2+ )( +2)>
n n n n
2 i+ 3 (k+ 1 k+ 1 i+ D (k+ 3
:\/7<—2COS7T('] 2)( 2)COSTr( 2)+2COS7T(‘72)(2)>
n n n n
+l
= (2 — 2cos m( 2)) o) = (2 — 2cos(29)>vj(-k).
Finally, let
W(n—%)(k:—i-%)
p= "D BT R
so

(AviR)), ;= *vgi)g + 37}7(1@1 = \/z( — cos(¢ — 20) + 3COS(¢)>

= \/z( — cos(¢) cos(20) — sin(¢) sin(20) + 3 COS(¢))

_ 2 ( — 2cos(¢) cos(26) + 2 COS(¢))

n
- (2 -2 cos(29)>vflk,)1'

Therefore we see that each column v(¥) is an eigenvector of A with eigenvalue

o+ 1
)\:2—2005w.
n

Since A is real and symmetric, it follows that the matrix E,, is orthogonal.

40. Two-dimensional DCT. A very simple “image” is represented by the matrix

10
1 0)°
Compute the two-dimensional DCT of this matrix, and hence the corresponding interpolation

function po(x,y) for the nodes (%, %), (%“, s (5 3”), (%T”, %’r)

40 4
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Solution: The one-dimensional DCT matrix we require is

1 1 1
051: 2( ﬁ1 3)2 \/51 =1<1 1>~
2 \cos(535) cos(%3) 7 T/ v\l -1

To apply the two-dimensional DCT, we simply compute C{lXC’g where X is the matrix of data values.
Using the fact that Cy ' = O , this gives

v=3( DG D6 =60

This means that the corresponding interpolation function is

S
S

INTE

11
2
p2(z,y) = 5 Z Z Yriokoy cos(lx) cos(ky)
k=0 1=0
where
1
1 =0,
O'] = {\/§ ]
1 7>0
Thus

pa(@,y) = 3900 + 5410 cos(y) + 5901 cos(x) + gy11 cos(x) cos(y) = 3 + T cos(x).

You can see that this satisfies the required interpolation conditions.



