
Problems 2 - Minimax Approximation
Approximation Theory (MATH3081/4221) — Epiphany 2015 — anthony.yeates@dur.ac.uk

The problem marked ? should be handed in for marking at the lecture on Thursday 19th February.
There will be a problem class on this chapter on Monday 16th February.
I use † to indicate (what I consider to be) trickier problems.

16. Bernstein polynomial approximation. Compute the approximations using Bernstein polynomials
of degree n = 1 and n = 2 to the function f(x) = 1 −

∣∣x − 1
3

∣∣ on [0, 1]. Verify that the
approximation is converging in the ∞-norm.

Solution: We have

B1(f, x) = f(0)

(
1
0

)
(1− x) + f(1)

(
1
1

)
x = f(0)(1− x) + f(1)x = 2

3 (1− x) + 1
3x = 2

3 −
1
3x,

B2(f, x) = f(0)

(
2
0

)
(1− x)2 + f( 1

2 )

(
2
1

)
x(1− x) + f(1)

(
2
2

)
x2

= f(0)(1− x)2 + 2f( 1
2 )x(1− x) + f(1)x2 = 2

3 (1− x)2 + 5
3x(1− x) + 1

3x
2 = − 2

3x
2 + 1

3x+ 2
3 .

In pictures,

To verify convergence, we compute ‖f −B1(f, x)‖∞ and ‖f −B2(f, x)‖∞.

From the picture, we see that the maximum of |f(x)−B1(f, x)| occurs at x = 1
3 , so

‖f −B1(f, x)‖∞ = 1− ( 2
3 −

1
9 ) = 4

9 .

To find ‖f −B2(f, x)‖∞, we check each subinterval. In [0, 13 ], we have

f(x)−B2(f, x) = 2
3 + x− (− 2

3x
2 + 1

3x+ 2
3 ) = 2

3x+ 2
3x

2 =⇒ d

dx

(
f(x)−B2(f, x)

)
= 2

3 + 4
3x.

Hence |f(x)−B2(f, x)| is largest at x = 1
3 , where f(x)−B2(f, x) = 8

27 . On the other hand, in [ 13 , 1],
we have

f(x)−B2(f, x) = 4
3−x−(− 2

3x
2+ 1

3x+ 2
3 ) = 2

3−
4
3x+ 2

3x
2 =⇒ d

dx

(
f(x)−B2(f, x)

)
= − 4

3 + 4
3x.

We conclude that the largest value of |f(x) − B2(f, x)| in this subinterval is also at x = 1
3 . Hence

‖f − B2(f, x)‖∞ = 8
27 . This is less than ‖f − B1(f, x)‖∞ = 4

9 = 12
27 , so we are indeed seeing

convergence as n increases.

17. Recursive definition of Bernstein polynomials. Let bn,k for k = 0, . . . , n be the Bernstein basis
functions, as defined in the lecture. Show that these basis functions satisfy the recursion relation

bn,k(x) = (1− x)bn−1,k(x) + xbn−1,k−1(x).

Remark: This is the basis of de Casteljau’s fast algorithm for drawing Bézier curves.
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Solution: This is just an exercise in algebra. We have

(1− x)bn−1,k(x) + xbn−1,k−1(x) = (1− x)

(
n− 1
k

)
xk(1− x)n−1−k + x

(
n− 1
k − 1

)
xk−1(1− x)n−1−(k−1),

=

(
n− 1
k

)
xk(1− x)n−k +

(
n− 1
k − 1

)
xk(1− x)n−k,

=

[(
n− 1
k

)
+

(
n− 1
k − 1

)]
xk(1− x)n−k,

=

[
(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− k)!

]
xk(1− x)n−k,

=

[
(n− 1)!(n− k)

k!(n− k)!
+

(n− 1)!k

(k)!(n− k)!

]
xk(1− x)n−k,

=

(
n
k

)
xk(1− x)n−k = bn,k(x).

18. Derivatives of Bernstein polynomials. Show that the derivatives of the Bernstein basis functions
bn,k(x) for k = 0, . . . , n satisfy

d

dx
bn,k(x) = n

(
bn−1,k−1(x)− bn−1,k(x)

)
.

Solution: This can be shown by direct differentiation:

d

dx
bn,k(x) =

(
n
k

)
d

dx

(
xk(1− x)n−k

)
,

=
kn!

k!(n− k)!
xk−1(1− x)n−k +

(n− k)n!

k!(n− k)!
xk(1− x)n−k−1,

=
n(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k +

n(n− 1)!

k!(n− k − 1)!
xk(1− x)n−k−1,

= n
(
bn−1,k−1(x)− bn−1,k(x)

)
.

19. Cubic Bézier curves. Verify that the cubic Bézier curve B3(t) with control points x0, x1, x2, x3

is tangent (i) at x0 to the line joining x0 and x1, and (ii) at x3 to the line joining x2 and x3.

Solution: The cubic Bézier curve is

B3(t) = (1− t)3x0 + 3t(1− t)2x1 + 3t2(1− t)x2 + t3x3,

so
B′3(t) = −3(1− t)2x0 + 3(1− t)(1− 3t)x1 + 3t(2− 3t)x2 + 3t2x3.

The tangent direction at x0 is B′3(0) = −3(x1 − x0), while at x3 it is B′3(1) = −3(x3 − x2). This
shows that the required lines are indeed the tangents at these two points.

20. A Bézier curve. Find the parametric equations of the Bézier curve with control points (0, 1),
(15 ,

3
2), (35 , 2) and (1, 0). Find the slope of the curve at each of its end-points and make a rough

sketch of the curve.
As a check, you could try drawing the curve in Postscript.

Solution: We have

x(t) = (1− t)3(0) + 3t(1− t)2( 1
5 ) + 3t2(1− t)( 3

5 ) + t3(1) = 1
5 t(3 + 3t− t2),

y(t) = (1− t)3(1) + 3t(1− t)2( 3
2 ) + 3t2(1− t)(2) + t3(0) = 1

2 (1− t)(2 + 5t+ 5t2).



Approximation Theory - Epiphany 2015

For the slope, note that x′(t) = 3
5 + 6

5 t −
3
5 t

2 and y′(t) = 3
2 −

15
2 t

2. So at the endpoints dy/dx(0) =
y′(0)/x′(0) = 5

2 and dy/dx(1) = y′(1)/x′(1) = −5. Alternatively, you could get these from the slopes
of the straight lines between the control points. Note that x′(t) is always positive for t ∈ [0, 1], so that
x is monotonically increasing. On the other hand, y′(t) changes sign, so there is a maximum in y. The
curve and its control points are shown below:

21. Minimax approximation. Find the minimax linear approximation to f(x) = sinh(x) on [0, 1].

Solution: We look for a straight line p∗1(x) = a + bx such that f , p∗1 have an alternating set {0, θ, 1}. We
require

f(0)− p∗1(0) = 0− a = E, (1)

f(θ)− p∗1(θ) = sinh(θ)− a− bθ = −E, (2)

f(1)− p∗1(1) = sinh(1)− a− b = E. (3)

There are four unknowns (a, b, θ, E) but only three equations - we get a fourth equation by requiring
that the error has a turning point at x = θ. This gives

cosh(θ)− b = 0. (4)

Eliminating E from (3) gives b = sinh(1) = 1.1752, and from (2) gives a = 1
2

(
sinh(θ) − sinh(1)θ

)
≈

−0.0343, where θ is given by cosh(θ) = sinh(1) [from (4)]. The solution looks like this:
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22. Minimax approximation to a polynomial. Find the minimax approximation of degree 4 to the
polynomial f(x) = x5 + 2x2 − x.

Solution: As shown in the lecture,

p∗4(x) = f(x)− 1

24
T5(x).

We use the recurrence relation to compute the Chebyshev polynomial T5(x):

T0(x) = 1, T1(x) = x,

T2(x) = 2xT1(x)− T0(x) = 2x2 − 1,

T3(x) = 2xT2(x)− T1(x) = 4x3 − 3x,

T4(x) = 2xT3(x)− T2(x) = 8x4 − 8x2 + 1,

T5(x) = 2xT4(x)− T3(x) = 16x5 − 20x3 + 5x.

Therefore
p∗4(x) = x5 + 2x2 − x− x5 + 5

4x
3 − 5

16x = 5
4x

3 + 2x2 − 21
16x.

23. Non-monic polynomials. Prove that, if p∗m is the minimax polynomial of degree m for a polyno-
mial f ∈ Pm+1, then αp∗m is the minimax approximation for αf .

Solution: We need to show that
‖αf − αp∗m‖∞ ≤ ‖αf − pm‖∞

for all pm ∈ Pm. For a scalar α, all norms satisfy ‖αg‖ = |α|.‖g‖, so for any qm ∈ Pm we have

‖αf − αp∗m‖∞ = |α|.‖f − p∗m‖∞ ≤ |α|.‖f − qm‖∞ = ‖αf − αqm‖∞.

Writing qm = pm/α gives the result (unless α = 0 in which case it is trivial).

? 24. De la Vallée Poussin Theorem. Let f(x) = − cos(x) and q1(x) = 0.5x− 1.1.

(a) Show that {0, 12 , 1} is a non-uniform alternating set for f and q1 on [0, 1].

(b) Use the De la Vallée Poussin Theorem with these points to find a lower bound for ‖f−p∗1‖∞,
where p∗1 is the minimax degree 1 polynomial for f on [0, 1].

(c) Use q1 to find an upper bound for ‖f − p∗1‖∞.

(d) By postulating a suitable alternating set, or otherwise, find p∗1.

Solution: (a) We have

f(0)− q1(0) = 0.1 := e0,

f( 1
2 )− q1( 1

2 ) = −0.0276 := e1,

f(1)− q1(1) = 0.0597 := e2.

The points are ordered and the successive ei alternate in sign, so this is a non-uniform alternating
set for f and q1.

(b) By the DLVP Theorem, it follows from (a) that ‖f − p∗1‖∞ > 0.0276.

(c) To find an upper bound, we can use ‖f − q1‖∞. To find this, consider the derivative

f ′(x)− q′1(x) = sin(x)− 0.5.

Thus the error has a turning point at sin(x) = 0.5, or x = π
6 . At this point f(π6 )−q1(π6 ) = −0.0278.

Thus the maximum on [0, 1] is ‖f − q1‖∞ = 0.1 (at the left end). Hence our upper bound is

‖f − p∗1‖∞ ≤ 0.1.
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(d) We look for a straight line p∗1(x) = a + bx such that f , p∗1 have an alternating set {0, θ, 1}. We
require

f(0)− p∗1(0) = −1− a = E, (5)

f(θ)− p∗1(θ) = − cos(θ)− a− bθ = −E, (6)

f(1)− p∗1(1) = − cos(1)− a− b = E. (7)

There are four unknowns (a, b, θ, E) but only three equations - we get a fourth equation by requiring
that the error has a turning point at x = θ. This gives

sin(θ)− b = 0. (8)

Eliminating E from (7) gives b = 1− cos(1) = 0.4597, and from (6) gives a = 1
2

(
− 1− cos(θ)−

[1 − cos(1)]θ
)
≈ −1.0538, where θ is given by sin(θ) = 1 − cos(1) [from (8)]. The solution looks

like:

25. The Equioscillation Theorem. In light of the Chebyshev Equioscillation Theorem, explain why
the function q1(x) in Problem 24 could not possibly be the minimax degree 1 polynomial.

Solution: In the solution to Problem 24(c), we found that the local extrema of the error f − q1 were 0.1,
−0.0278, 0.0597. Therefore it is impossible to find an alternating set of length 3 for f and q1 (remember
that alternating sets must attain ±‖f − q1‖∞ at each point), meaning that q1 cannot possibly be the
minimax polynomial (by the Equioscillation Theorem).

26. Every minimax polynomial is an interpolant. Let p∗n ∈ Pn be a minimax approximation to
f ∈ C[a, b]. Show that there exist n+ 1 distinct points a < x0 < x1 < . . . < xn < b such that p∗n
is the polynomial interpolant in Pn to f at these n+ 1 points.

Solution: We know from the Equioscillation Theorem that f and p∗n have an alternating set of length n+ 2.
Therefore, f − p∗n changes sign at n+ 1 distinct points, which are the required interpolation points.

† 27. Minimax polynomials of even functions. Let f ∈ C[−1, 1] be even, i.e. f(−x) = f(x).

(a) Use the Equioscillation Theorem to prove that the minimax polynomial p∗n is even for any
n ≥ 0.

(b) Prove that for any n ≥ 0, p∗2n = p∗2n+1.

(c) Find the minimax polynomial of degree 1 for f(x) = |x| on [−1, 1].

Solution: (a) Since p∗n is the minimax polynomial for f , these two functions have an alternating set {xi}
of length n+ 2 such that

f(xi)− p∗n(xi) = (−1)iE, for i = 0, . . . , n+ 1, where E = ‖f − p∗n‖∞.
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Now let g(x) = f(−x). We have

g(−xi)− p∗n(xi) = (−1)iE, for i = 0, . . . , n+ 1,

so {−xi} are an alternating set for g(x), p∗n(−x). Thus p∗n(−x) is a minimax polynomial for g(x).
But f is even so g = f . Therefore p∗n(−x) is also a minimax polynomial for f . Since the minimax
polynomial is unique (Corollary 2.4), it follows that p∗n(−x) = p∗n(x), i.e. p∗n is even.

(b) This follows from part (a). Since the minimax polynomial is even for any n, it cannot have any odd
powers of x, so the coefficient of x2n+1 must be zero.

(c) Using the above, we know that since f(x) = |x| is even, we must have p1 = p0. By symmetry,
p0 = 1

2 . Hence p1(x) = 1
2 .

28. Remez algorithm. Use the Remez Exchange algorithm to compute the linear minimax approxima-
tion to f(x) = x2 on [0, 3], using the initial reference set {0, 1, 3}. Comment on the convergence
of the algorithm.

Solution: Let p1 = a0 + a1x.
Step 1: solve the linear system

a0 + E = 02 = 0,

a0 + a1 − E = 12 = 1,

a0 + 3a1 + E = 32 = 9.

Solving this system gives a0 = −1, a1 = 3, E = 1, i.e. p
(1)
1 = −1 + 3x.

Step 2: to update the reference set, we look for the point of maximum |f − p(1)1 |. We have

f − p(1)1 = x2 − 3x+ 1.

This has a turning point at x = 3
2 , where f( 3

2 )− p(1)1 ( 3
2 ) = − 5

4 . At the end-points, f(0)− p(1)1 (0) = −1

and f(3)−p(1)1 (3) = 1, so ‖f−p(1)1 ‖∞ = 5
4 . At the middle point of the old reference set, f(1)−p(1)1 (1) =

−1. So we form the new reference set {0, 32 , 3}.
Step 1: now solve the linear system

a0 + E = 02 = 0,

a0 + 3
2a1 − E = ( 3

2 )2 = 9
4 ,

a0 + 3a1 + E = 32 = 9.

Solving this system gives a0 = − 9
8 , a1 = 3, E = 9

8 , i.e. p
(2)
1 = − 9

8 + 3x.

Step 2: Now we have

f − p(2)1 = x2 − 3x+ 9
8 .

Again this has a turning point at x = 3
2 , but now f( 3

2 )− p(2)1 ( 3
2 ) = − 9

8 . The end point values are now

f(0)−p(2)1 (0) = 9
8 and f(3)−p(2)1 (3) = 9

8 . Now the maximum |f−p(2)1 | is achieved with alternating signs
at {0, 32 , 3}, so this is an alternating set. Hence (by Equioscillation Theorem) the minimax polynomial is

p∗1(x) = p
(2)
1 = 3x− 9

8 .

The algorithm has converged to the exact solution after two steps. See the illustration below:
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