Problems 0 - Polynomial interpolation
Approximation Theory (MATH3081/4221) — Epiphany 2015 — anthony.yeates@dur.ac.uk

The problem marked * should be handed in for marking at the lecture on Thursday 22nd January.
I use T to indicate (what I consider to be) trickier problems.

1. Interpolation error.

(a) Write down the Lagrange interpolation polynomial of degree 1 for the function f(z) = a3,

using the points g =0, z1 = a.
(b) Verify Theorem 0.1 by direct calculation, and show that in this case £ is unique and has
the value £ = %(z + a).

Solution: (a) We have

T — 21 T — To T—a, 3 3 9
pi() xo—x1f0+x1—x0fl —a ©) +a—0(a) “r

(b) Here n =1, so
Wnt1(z) = (& = 0)(z —a) =2z —a), [ (z) = f"(x) = 6a.

From calculating p;, we know that f — p; = 2% — a?x = x(x — a?), so to verify Theorem 0.1 we
need to find £ € [0, a] such that

wni1(2) " (§)
2!

=z(z—a) <= M:x(m‘—a% = {(=3i(r+a).

This lies in the required interval (in this case, the same ¢ is true for all z in [0, a]).

2. Equally-spaced versus Chebyshev nodes. Consider the problem of finding a degree 4 polynomial
interpolant p4(x) for the function f(z) = e® on the interval [—1,1].

(b) Without computing the locations of the Chebyshev nodes, find an upper bound on the error
in the Chebyshev interpolant ¢4, and comment on how this compares to part (a).

Solution: (a) We can use Theorem 0.1, which gives
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where ws(z) = (z + 1)(z + 3)(z — 0)(z — 3)(z — 1), | f®) ]| = e (maximum is at = = 1), and
5! =120.
i. For z =1, we have |ws(%)| = 1537, so
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=51 €
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ii. Forz =2, we have |ws(1)| = 4%, so
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(b) For the Chebyshev nodes, Lemma 0.2 gives ws(x) = T5(z)/25. Since |Ti(z)| < 1 for all of the
Chebyshev polynomials, we have
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* 3. Chebyshev nodes. Consider the problem of fitting a linear polynomial to the function f(z) = x

for any x € [—1,1]. Therefore
de -
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Notice that (i) both of these error bounds are lower than the equally-spaced interpolant, and (ii)
we get the same error bound at any = (although the error itself will be different, of course).
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on [—1,1].

(a) Find the Chebyshev nodes and the linear polynomial p; that interpolates f at these nodes.

(b) Compute ||f — pil/co- Is it possible to find a linear polynomial ¢; (not necessarily interpo-
lating f at the same nodes) such that ||f — ¢1||~ is any smaller?

(c) Find the linear polynomial that interpolates g(z) = x® at the same Chebyshev nodes. Is
this the polynomial that minimises ||g — p1||co among all p; € P;? Explain why or why not.

Solution: (a) We have n = 1 so need two Chebyshev nodes. These are
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The linear interpolating polynomial with these nodes is
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So in fact it is a horizontal line.

Note that f — py = 2® — 5. The extremum of this function occurs either at # = —1 or z = 1 (the
boundary points), or at the turning point x = 0. In fact, at all of these points we have |f —p;| = %
50 [|f — pilloo = 3.

To decide whether any other straight line could give a smaller error, consider the graphs. Moving
the horizontal line up or down would lead to larger || f — p1]|co, @s would changing the slope. So in
fact p; has the minimum possible || f — p1|/« on this interval.

Remark: Once we do Chapter 2 on minimax approximation, you will know how to prove this
rigorously, using the fact that {—1,0,1} are an “alternating set” for f, p;.

Now we have
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so there are turning points at x = +1/4/6. We have

3
od) — () = (235) 4 () =74 () ~0.136.
while the values at the endpoints x = +1 are
g(£1) = pr(£1) = 3.

Sketching the graph shows that the distance between p; and g = 2 is different at the turning
points of g — p; from at the end-points. Therefore you could reduce ||g — p1]||oo by increasing the
slope of the line p; to equalize the four extreme distances. The figure below shows g = 2 (in blue)
and py (in red), with the interpolation nodes and the points :t% marked.
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Remark: Once we do Chapter 2 on minimax approximation, you will know how to prove rigorously
that this Chebyshev interpolant is not the minimax polynomial.

4. Barycentric formulae.

(a) Let A; = 1/wj, . (x;), where wy 1 is the usual error polynomial from Theorem 0.1 and x;

for i = 0,...,n are the interpolation nodes. Show that the polynomial interpolating f may
be written as
(2
pn(m) = wn+1($) § fi-
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Remark: This was derived by Jacobi in his 1825 PhD thesis. Once the weights \; are known,
it allows you to compute each value p,(x) with only O(n) operations.

Show that p,(z) may alternatively be written as the barycentric interpolation formula
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Remark: This formula is an efficient and stable way to compute Chebyshev interpolants
(although it should not be used at the nodes themselves because both numerator and denom-
inator are infinite).

Solution: (a) Firstly, note that

so at the nodes x;, we have
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From the first lecture, the Lagrange polynomials are
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and the result follows from p,,(z) = > i fili(x).
(b) The trick is to use the fact that
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You can see this from the fact that this is just the interpolant to a function f(x) = 1. Then, we
divide [;(z) from part (a) by this expression:
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Substituting this into p,(z) = Y., fili(z) and relabelling the index j — i gives the required
formula.




