
Problems 0 - Polynomial interpolation
Approximation Theory (MATH3081/4221) — Epiphany 2015 — anthony.yeates@dur.ac.uk

The problem marked ? should be handed in for marking at the lecture on Thursday 22nd January.
I use † to indicate (what I consider to be) trickier problems.

1. Interpolation error.

(a) Write down the Lagrange interpolation polynomial of degree 1 for the function f(x) = x3,
using the points x0 = 0, x1 = a.

(b) Verify Theorem 0.1 by direct calculation, and show that in this case ξ is unique and has
the value ξ = 1

3(x+ a).

Solution: (a) We have

p1(x) =
x− x1
x0 − x1

f0 +
x− x0
x1 − x0

f1 =
x− a
−a

(0)3 +
x− 0

a− 0
(a)3 = a2x.

(b) Here n = 1, so

wn+1(x) = (x− 0)(x− a) = x(x− a), fn+1(x) = f ′′(x) = 6x.

From calculating p1, we know that f − p1 = x3 − a2x = x(x − a2), so to verify Theorem 0.1 we
need to find ξ ∈ [0, a] such that

wn+1(x)f ′′(ξ)

2!
= x(x− a) ⇐⇒ x(x− a)6ξ

2
= x(x− a2) ⇐⇒ ξ = 1

3 (x+ a).

This lies in the required interval (in this case, the same ξ is true for all x in [0, a]).

2. Equally-spaced versus Chebyshev nodes. Consider the problem of finding a degree 4 polynomial
interpolant p4(x) for the function f(x) = ex on the interval [−1, 1].

(a) Suppose we choose the equally-spaced nodes −1,−1
2 , 0,

1
2 , 1. Find an upper bound for the

difference between f and p4 at (i) x = 1
4 and (ii) x = 3

4 .

(b) Without computing the locations of the Chebyshev nodes, find an upper bound on the error
in the Chebyshev interpolant q4, and comment on how this compares to part (a).

Solution: (a) We can use Theorem 0.1, which gives∣∣∣f(x)− p4(x)
∣∣∣ ≤ |w5(x)|‖f (5)‖∞

5!
,

where w5(x) = (x + 1)(x + 1
2 )(x − 0)(x − 1

2 )(x − 1), ‖f (5)‖∞ = e (maximum is at x = 1), and
5! = 120.

i. For x = 1
4 , we have |w5( 1

4 )| = 45
1024 , so

∣∣∣f( 1
4 )− p4( 1

4 )
∣∣∣ ≤ 45

1024e

120
= 9.96× 10−4.

ii. For x = 3
4 , we have |w5( 1

4 )| = 105
1024 , so

∣∣∣f( 3
4 )− p4( 3

4 )
∣∣∣ ≤ 105

1024e

120
= 2.3× 10−3.

(b) For the Chebyshev nodes, Lemma 0.2 gives w5(x) = T5(x)/25. Since |Tk(x)| ≤ 1 for all of the
Chebyshev polynomials, we have

|w5(x)| =
∣∣∣∣ 1

32
T5(x)

∣∣∣∣ ≤ 1
32



for any x ∈ [−1, 1]. Therefore ∣∣∣f( 1
4 )− q4( 1

4 )
∣∣∣ ≤ 1

32e

120
= 7.1× 10−4,∣∣∣f( 3

4 )− q4( 3
4 )
∣∣∣ ≤ 1

32e

120
= 7.1× 10−4.

Notice that (i) both of these error bounds are lower than the equally-spaced interpolant, and (ii)
we get the same error bound at any x (although the error itself will be different, of course).

? 3. Chebyshev nodes. Consider the problem of fitting a linear polynomial to the function f(x) = x2

on [−1, 1].

(a) Find the Chebyshev nodes and the linear polynomial p1 that interpolates f at these nodes.

(b) Compute ‖f − p1‖∞. Is it possible to find a linear polynomial q1 (not necessarily interpo-
lating f at the same nodes) such that ‖f − q1‖∞ is any smaller?

(c) Find the linear polynomial that interpolates g(x) = x3 at the same Chebyshev nodes. Is
this the polynomial that minimises ‖g−p1‖∞ among all p1 ∈ P1? Explain why or why not.

Solution: (a) We have n = 1 so need two Chebyshev nodes. These are

x̃1 = cos

(
π −

1
2π

2

)
= cos

(
3π

4

)
= − 1√

2
, x̃2 = cos

(
π −

3
2π

2

)
= cos

(π
4

)
= 1√

2
.

The linear interpolating polynomial with these nodes is

p1(x) =
x− x̃2
x̃1 − x̃2

f0 +
x− x̃1
x̃2 − x̃1

f1 =
x− 1/

√
2

−2/
√

2
( 1
2 ) +

x+ 1/
√

2

2/
√

2
( 1
2 ) = 1

2 .

So in fact it is a horizontal line.

(b) Note that f − p1 = x2 − 1
2 . The extremum of this function occurs either at x = −1 or x = 1 (the

boundary points), or at the turning point x = 0. In fact, at all of these points we have |f−p1| = 1
2 ,

so ‖f − p1‖∞ = 1
2 .

To decide whether any other straight line could give a smaller error, consider the graphs. Moving
the horizontal line up or down would lead to larger ‖f − p1‖∞, as would changing the slope. So in
fact p1 has the minimum possible ‖f − p1‖∞ on this interval.

Remark: Once we do Chapter 2 on minimax approximation, you will know how to prove this
rigorously, using the fact that {−1, 0, 1} are an “alternating set” for f , p1.

(c) Now we have

p1(x) =
x− 1√

2

− 2√
2

(
− 1

2
√
2

)
+
x+ 1√

2
2√
2

(
1

2
√
2

)
= 1

2x.

Now g − p1 = x3 − 1
2x. Now

d

dx
(g − p1) = 3x2 − 1

2 ,

so there are turning points at x = ±1/
√

6. We have

g(± 1√
6
)− p1( 1√

6
) =

(
± 1√

6

)3
∓ 1

2

(
1√
6

)
= ∓ 1

3

(
1√
6

)
≈ 0.136.

while the values at the endpoints x = ±1 are

g(±1)− p1(±1) = 1
2 .

Sketching the graph shows that the distance between p1 and g = x3 is different at the turning
points of g − p1 from at the end-points. Therefore you could reduce ‖g − p1‖∞ by increasing the
slope of the line p1 to equalize the four extreme distances. The figure below shows g = x3 (in blue)
and p1 (in red), with the interpolation nodes and the points ± 1√

6
marked.



Remark: Once we do Chapter 2 on minimax approximation, you will know how to prove rigorously
that this Chebyshev interpolant is not the minimax polynomial.

4. Barycentric formulae.

(a) Let λi = 1/w′
n+1(xi), where wn+1 is the usual error polynomial from Theorem 0.1 and xi

for i = 0, . . . , n are the interpolation nodes. Show that the polynomial interpolating f may
be written as

pn(x) = wn+1(x)
n∑

i=0

λi
x− xi

fi.

Remark: This was derived by Jacobi in his 1825 PhD thesis. Once the weights λi are known,
it allows you to compute each value pn(x) with only O(n) operations.

† (b) Show that pn(x) may alternatively be written as the barycentric interpolation formula

pn(x) =
n∑

i=0

λifi
x− xi

/ n∑
i=0

λi
x− xi

.

Remark: This formula is an efficient and stable way to compute Chebyshev interpolants
(although it should not be used at the nodes themselves because both numerator and denom-
inator are infinite).

Solution: (a) Firstly, note that

w′n+1(x) =

n∏
j=0
j 6=0

(x− xj) +

n∏
j=0
j 6=1

(x− xj) + . . .+

n∏
j=0
j 6=n

(x− xj),

so at the nodes xi, we have

w′n+1(xi) =

n∏
j=0
j 6=i

(xi − xj).

From the first lecture, the Lagrange polynomials are

li(x) =

n∏
j=0
j 6=i

x− xj
xi − xj

=
1

w′n+1(xi)

n∏
j=0
j 6=i

(x− xj) =
λi

x− xi
wn+1(x).

and the result follows from pn(x) =
∑n

i=0 fili(x).

(b) The trick is to use the fact that
n∑

j=0

lj(x) = 1.



You can see this from the fact that this is just the interpolant to a function f(x) = 1. Then, we
divide li(x) from part (a) by this expression:

li(x) =
λiwn+1(x)

x− xi

/ n∑
j=0

lj(x) =
λiwn+1(x)

x− xi

/ n∑
j=0

λjwn+1(x)

x− xj
=

λi
x− xi

/ n∑
j=0

λj
x− xj

.

Substituting this into pn(x) =
∑n

i=0 fili(x) and relabelling the index j → i gives the required
formula.


