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1. Mutations of non-integer quivers:

* B = {b;;} a skew-symmetric matrix with b;; € R.

* Mutate B by usual mutation rule:
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1. Mutations of non-integer quivers:

* B = {b;;} a skew-symmetric matrix with b;; € R.

* Mutate B by usual mutation rule:

) by, Ti=korj=*k
ij — b + %(\b@'k\bkj + bik|br;]), otherwise

Why e Philipp Lampe, On the approzimate periodicity of sequences attached to

noncrystallographic root systems, To appear in Experimental Mathematics (2018).
o Integer finite type contains types A, B, C, D, E, F' .... - but not Hj3, H,!

o Geometric realization of acyclic mutation classes by partial reflections

allow non-integer values.
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® Mutation u; of a non-integer quiver:

1) reverse all arrows incident to k;
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(v1,...,V,) - basis of quadratic space V' of same signature as M.
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2. In Rank 3: {
2 — byl
o () = (by;) ~ M = ( 2 ) = (v;, Vj)
— byl 2

(v1,...,V,) - basis of quadratic space V' of same signature as M.

e Given v € V with (v,v) = 2, consider reflection
ro(u) = u — (u,v)v.
o Let G = (51,...,5y) Where s, =1,..

(G acts discretely in a cone C' C V' with fundamental domain

F= 1, wherell;, ={ueV | (u,v;) <O0}.
i=1
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Mutation ~  Partial reflection

rvi — (v, vp)vg, Ifk—17inQ

pr(vi) = < —wy, ifi =k

Vi, otherwise
\
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2. In Rank 3: {

Acyclic quiver () ~» reflection group G = (s1,...,8p)
with chosen generating reflections

Mutation ~  Partial reflection

)
v; — (v, vp)vg, fk —4in Q

,uk(’U,') = < — Vg, if 2 = k

Vi, otherwise
\

Theorem. (Barot, Geiss, Zelevinsky'06; Seven'15)
For integer quivers (but also for real ones in rank 3):
The values (v;,v;) change under mutations
in the same way as the weights of the arrows in ().
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2. In Rank 3: {

{cyclic } { Geometric realisation }
mutation class by partial m-rotations

Theorem [FT'16]. Any mutation-finite rank 3 quiver
Is mutation-equivalent to one of

e Markov quiver: e Finite type quivers:
@ Ay e
By o—sel-4
o Affine ?uivers: Hs o }i o
% Hé/ ® 5 }5 =@

km

m

(Here, a label £ stays for the weight |b;;| = 2 cos
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2. In Rank 3: All mut. finite (but Markov) mutation classes
have geometric realisation by reflections.

Properties:
e Realisation in E? — affine type

Realisation in S? — finite type

e All weights are 2 cos %, m,d € Z, m <

N

e If there is d > 5 then (@ is affine.

e If () is acyclic then the corresponding triangle is acute-angled
(or has 2 obtuse angles).

2. My  mg | m3 _
(inE% FH+"2+72=1)
e If () is cyclic then the corresp. triangle has 1 or 3 obtuse angles.

(in E2: ottt A=) =1)
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3. In Rank n:

e \Want: To use rank 3 classification to get general classification.

e Expectation:
o Finite type should come from finite root systems
o Acyclic quivers should come from acute-angled simplices
(in the corresponding reflection group)

e How to proceed:
od < 4: () is a symmetrisation of an integer diagram
= orbifolds and F'-type quivers

o d < 5: computer search gives fin. many examples
in ranks 3,4,5,6 — and nothing else.

o d > 5: easy to check that nothing in rank > 5;
in rank 4: there are 3 series of answers.

e All of them geometric!



3. In Rank n:

rank 3 rank 4 rank 5 rank 6
Answer: L. F
' Finit 2 / 2 /
Thm. [FT'18] e | b | b,
' PALHY | P L HY
Mut.-fin. & 2te Hy i H;
5 5 Hé/l//
G2’.n of 2 32 H:l’//
orbifold or :
5 = 1 ~
i _ )
as in Table: Affine 1@ _ H3 F,
type | TV Gaon | ot o _
L Hé 5.5 5 H4
5
S 1
o Gg,Zn) 3 F4( )
Extended . 2?31 12 .
affine o 72” GS:;;) <5 @>>7‘5 Hél,l) '%-gz e F4(*’*)
type !
. 2n+1 ) % L %
2n+] %4‘\1 (1 1)
2nl+1 (1* >|< 5 H )
G2 9ni1 4
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3. In Rank n:

Expected: Acyclic quivers are coming form acute-angled simplices

e YES! - all acyclic quivers correspond to acute angled simplices
- there many be many of them in one mutation class.

e But not all acute-angled simplices (decorated with acyclic quivers)
induce mut.-finite mutation classes.

Why??? - No idea...

e One mutation class can have many acyclic belts

e and contain many acyclic quivers distinct
up to sink/source mutations.



4. Exchange graph: Rank 3 - finite type

® Example: Hs (mutation class and “exchange graph”)

(cf. generalised associahedron in Fomin - Reading)

U=
U=
o=
=
Ot =

o— @ —@

U=



4. Exchange graph: Rank 3 - finite type

* Exchange graphs for H; and HY are graphs on a torus
(with two acyclic belts each):

* Two different acyclic representatives in each of H5 and HY"

1l 2
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from here: joint with Philipp Lampe

N\

/



4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed

e An acyclic belt \




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed

e An acyclic belt \




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed

e An acyclic belt \




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed

e An acyclic belt




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed

e An acyclic belt




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Initial acyclic seed

e An acyclic belt
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4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

e Away from acyclic belt: —> | If there are shifts,

two feet of altitudes are they are parallel to the belt line

on the belt line.

e Belt (or billiard) line

passes through two
feet of altitudes

cf. Fagnano's problem:

billiard tranjectory in triangle.
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4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

If there are shifts,
they are parallel to the belt line

e Invariant under mutation:

T(A) = a;sin(A;) sin(Ag)

Triangles with same angles
are congruent

Need: to find all shifts!

o T(A)=3i(|HiHs| + |HoHs| + |HsH|)

AT (A) = shift along the belt line
(in every acyclic belt)
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4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

e [here are more shifts:

each infinite region induces a shift:

o If a if the finite size, a the angle
then T(A) = asin® o

T

@
So, a = —T(QA) /\ a
sin“ s
o If o= o7 then we have shifts: //
AT T T T

sin®(w/d)’ sin?(2m/d)’ sin?(37/d)’ "




4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

Theorem. [FL'2018]

Let () be an affine type rank 3 mutation-finite quiver.
Then the exchange graph of () grows polynomially
and is quasi-isometric to some lattice L.

rkz(L) = { pld), for some d € 2Z;

zo(d), otherwise.

Here, o(d) = #{k € {1,2,....d} | ged(k,d) = 1}

Is the Euler’s totient function.




Rank 3 - affine type

4. Exchange graph:

from here: joint with Philipp Lampe

Example: exchange graph for d =5




4. Exchange graph: Rank 3 - affine type
from here: joint with Philipp Lampe

Remark: Similar belt line (and similar geometry) takes place
when @ has a geometric presentation by reflections on S? or H?.
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We defined:

Mutation ~~ Partial reflection

pr(vi) =

9

(v; — (vi, vE)vE, Ifk—17in @

— VL, if 1 =k

| Vi, otherwise

Not

an involution!



5. Remarks on definition of mutation

We defined: | Mutation ~~ Partial reflection
(v; — (v, v v, Fhk—iinQ
pi(vi) = § —vg, ifi =k Not
Vi otherwise an involution!

Define: if vy is positive:
(v; — (vi, V) Vg, If k=i in @
i (vi) = § —Vk, ifi=k
| Vi, otherwise

if v is negative:

(v; — (v, Vi) Vg, If ki in @
,uk(vi) = —Vk, if1=1=5
| Vi otherwise

What to mean by positive / negative?
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e admissible positions
Period 5 Period 7 o forbidden positions
of the reference point
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5. Remarks on definition of mutation

What to mean by positive / negative?

In rank 3: Reference point is in admissible position,
iIf it is in admissible position
for every rank 2 subquiver in every cluster.

Theorem [FL'18] For every rank 3 finite type quiver,
(1) there are geometric realisations
with the reference point in an admissible position;
(2) all such realisations result in the same exchange graph;
(3) in all such realisations, the reference point belongs
to some acute-angled (i.e. acyclic) domain;
(4) every choice of reference point in an acute-angled
(i.e. acyclic) domain gives such a realisation.



5. Remarks on definition of mutation

What to mean by positive / negative?

Theorem [FL'18] For every rank 3 affine quiver,
there exists a unique admissible position of the reference point:
it is the limit point at the end of the belt line.




Non-integer quivers:

geometry and mutation-finiteness

Introduction
* B = {b;;} a skew-symmetric matrix

with b;; € R.
* Mutate B by usual mutation rule:

;L —bi]', If’L:]{JOI’]:]{?
9 ) bij + S(|binlbrj + birlbrj]), otherwise

* B defines a non-integer quiver
(with arrows of real weights b;; = —bj;).

Quivers of rank 3

Theorem [FT1]. Any mutation-finite rank 3
quiver is mutation-equivalent to one of

e Markov quiver: e Finite type quivers:

@ Az e—>e =
B; o—se ize
o Affine quivers: H; o= 3 =
0 Hl o —e % —e
1 :/))/ 1 2
iz Hi o> >=e
Here, a label £ stays for the weight |b;;| = 2 cos £Z.

* All of these (but Markov) are mutation-acyclic.

* "Exchange graphs” for Hj and HY are graphs
on a torus (with two acyclic belts each):

* Each of the mutation classes H% and HY has
two different acyclic representatives:

2 102
[ 5 1. = £
H3- % H3. 2

i

i
i

* Mutation py of a non-integer quiver:
1) reverse all arrows incident to k;
2) for every path i 2k -5 j with p,g > 0

apply:
* Example: B3
Geometric realisation by reflections (GR)

* GR of a quiver of rank n:
vectors v1,...,U, in a quadratic vector space V'

s.t. (1)7;,1)7;) =2 and (vi,vj) = —|b”’

* Mutation = partial reflection:
Vi, |fb;”20,z;£k

pr(vi) =1 —v;, ifi=k

v; — (vi, V) Vk, if b <O
* Mutation class has a GR if GR of quivers
commute with mutations.

Theorem [FT1,FT2]. Mutation class of any real
acyclic quiver with |b;;| > 2 Vi,j admits a GR.

* When GR exists, we define (geometric) ¥ -seeds
(n-tuples of vectors in V') and “exchange graphs”.

Example: excﬂange griph f ‘11 ‘11 ‘11 XI ‘I
=<1 NNNNN;
3N NN N

[ I [ [ [

Theorem [FL]. Let ) be an affine type rank 3
mut.-fin. quiver. Then “exchange graph” of @
grows polynomially and is quasi-isometric to a
lattice of some dimension.

Anna Felikson

A0
. ¥ Durh
Pavel Tumarkin sty

University

* Question: when a real quiver @
is mutation-finite?
* Example: Hjz(mutation class and “exchange graph”)

where 6 = 2 cos T
(cf. generalised associahedron in [FR])

Finite mutation type: classification

Theorem [FT3]. A mut.-fin. non-int. quiver
of rank n > 3 is either of orbifold type, or
mut.-equiv. to one of Fy, Fy, F4(*’+), F4(*’*)

o
ho

kxm
m’

Here, a label ,"TI stays for the weight |b;;| = 2 cos
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Quivers of rank 3 Geometric realisation by reflec it ype: classification

Theorem [FT1]. Any mutation-finite rank 3
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A mut.-fin. non-int. quiver
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