Friezes
Some (mostly on-line) resources
Books:
- H.S.M.Coxeter, Regular complex polytopes, Cambridge University Press, Cambridge, 1991.
Introductory papers:
- J.H.Conway, H.S.M.Coxeter, Triangulated polygons and frieze patterns, ---- (Questions about frieze patterns).
-
J.H.Conway, H.S.M. Coxeter, Triangulated polygons and frieze patterns (continued), ---- (Solutions).
- H.S.M.Coxeter, Frieze patterns ----
- H.S.M.Coxeter, J.F.Rigby, Frieze patterns, triangulated polygons and dichromatic symmetry ----
- D. Broline, D.W. Crowe, I.M.Isaacs The geometry of frieze patterns ----
- T. Holm Friezes and tilings
- K. Baur Frieze patterns of integers
- E. Smirnov Friezes and continued fractions (in Russian)
Introductory videos:
Survey paper:
Recent results:
- S. Morier-Genoud, V. Ovsienko, S. Tabachnikov, SL2(Z)- tilings of the torus, Coxeter-Conway friezes and Farey Triangulations. ----
- C. Bessenrodt, T. Holm, P. Jorgensen, Generalized frieze pattern determinants and higher angulations of polygons. ----
- C. Bessenrodt, T. Holm, P. Jorgensen, All SL2-tilings come from infinite triangulations. ----
- F. Bergeron, C. Reutenauer, SLk-tilings of the plane. ----
- I. Assem, C. Reutenauer, D. Smith, Friezes. ----
- C. Bessenrodt,
Conway- Coxeter friezes and beyond:
polynomially weighted walks around dissected polygons and generalized frieze patterns
. ----
- M. Cuntz, On wild Frieze patterns. ----
- M. Cuntz, T. Holm, Subpolygons in Conway-Coxeter frieze patterns. ----
- T. Holm, P. Jorgensen, A p-angulated generalisation of Conway and Coxeter's theorem on frieze patterns. ----
- V. Ovsienko,
Partitions of unity in SL(2,Z), negative continued fractions, and dissections of polygons. ----
- I. Short, Classifying SL2-tilings. ----
- I. Short, M. Van Son, A. Zabolotski, Frieze patterns and Farey complexes. ----
- A. de St. Germain, On upper bounds of frieze patterns (paper and the project formalising the proof in Lean 4).
Friezes and cluster algebras:
- K. Baur, R. Marsh, Frieze patterns for punctured discs. ----
- J. Propp, The combinatorics of frieze patterns and Markoff numbers. ----
- S. Morier-Genoud, V. Ovsienko, S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons. ----
- S. Morier-Genoud, Arithmetics of 2-friezes. ----
- V. Ovsienko, S. Tabachnikov, Coxeter's frieze patterns and discretization of the Virasoro orbit. ----
- B. Fontaine, Non-zero integral friezes. ----
- B. Fontaine, P-G. Plamondon, Counting friezes in type Dn. ----
- E. Gunawan, R. Schiffler, Frieze vectors and unitary friezes. ----
- I. Canakci, A. Felikson, A. Garsia Elsener, P. Tumarkin, Friezes for a pair of pants. ----
Non-commutative friezes:
Y-friezes:
Non-integer friezes:
- Amy Tao, Zhichun Joy Zhang, Friezes over Z[√2] and Z[√3]. ----
- M. Cuntz, T. Holm, P. Jorgensen, Frieze patterns with coefficients. ----
- M. Cuntz, T. Holm, C. Pagano, Frieze patterns over algebraic numbers. ----
- E. Banaian, L. Farrell, A. Tao, K. Wright, J. Zh. Zhang, Friezes over Z[√2] . ----
Pentagramma Mirificum:
Introduction to cluster algebras:
Some slides: