Billiards
Some (mostly on-line) resources
Some books:
Rational billiards:
Billiards in Triangles:
- Richard Schwartz,
Obtuse Triangular Billiards I: Near the(2,3,6) Triangle.
- Richard Schwartz,
Obtuse Triangular Billiards II: 100 DegreesWorth of Periodic Trajectories.
- Richard Schwartz,
Billiards Obtuse and Irrational.
- George Tokarsky, Jacob Garber, Boyan Marinov, Kenneth Moore,
One Hundred and Twelve Point Three Degree Theorem.
- Serge Troubetzkoy,
Periodic billiard orbits in right triangles.
Billiards in Ellipses:
Outer billiards, dual billiards:
Billiards on hyperbolic plane:
- Filiz Dogru, Serge Tabachnikov, On polygonal dual billiards in the hyperbolic plane . ----
- Filiz Dogru, Emily M. Fischer, Cristian Mihai Munteanu,Outer Billiards and Tilings of the Hyperbolic Plane. ----
- Rebecca Lehman, Chad White, Hyperbolic billiard paths . ----
- Simon Castle, Norbert Peyerimhof, Karl Friedrich Siburg,
Billiards in ideal hyperbolic polygons.
----
- John R. Parker, Norbert Peyerimhoff, Karl Friedrich Siburg,
Minimizing length of billiard trajectories in hyperbolic polygons .
----
Optics and mechanics:
Miscellanea:
- Serge Tabachnikov,
A Baker’s Dozen of Problems.
----
- Serge Tabachnikov,
Polynomials as polygons.
----
- Serge Tabachnikov, Richard Schwartz,
Centers of mass of Poncelet polygons, 200 years after.
----
- Anatole Katok,
Billiard table as a mathematician’s playground.
----
- U.A.Rozikov,
Mathematical Billiards.
----
- Gregory Galperin, Dimitri Zvonkine,
Periodic billiard trajectories in right triangles and right-angled tetrahedra .
----
- Dmitry Fuchs,
A
Billiard Trajectories in Regular Polygons and Geodesics on Regular Polyhedra.
----
Slides of some talks:
Some videos:
Some webpages: