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0 Introduction and History

0.1 Introduction
What to expect or 8 reasons to expect difficulties.

Our brain has two halves: one is responsible for multiplication of polyno-
mials and languages, and the other half is responsible for orientation of
figures in space and the things important in real life.
Mathematics is geometry when you have to use both halves.

Vladimir Arnold

Geometry is an art of reasoning well from badly drawn diagrams.
Henri Poincaré

1. Structure of the course:

• It will be a zoo of different 2-dimensional geometries - including Euclidean, affine,
projective, spherical and Möbius geometries, all of which will appear as some
aspects of hyperbolic geometry.

Why to study all of them?
- They are beautiful!
- we will need all of them to study hyperbolic geometry.

Why to study hyperbolic geometry?
- Important in topology and physics, for example.

Example. When one looks at geometric structures on 2-dimensional closed
surfaces, one can find out that only the sphere and torus carry spherical and
Euclidean geometries on them, and infinitely many other surfaces (all other closed
surfaces) are hyperbolic (see Fig. 1).
(Given the time there will be more on that at the very end of the second term).

spherical Euclidean hyperbolic

Figure 1: Geometric structures on surfaces.

• There will be just a bit on each geometry, hence the material may seem too easy.

• But it will get too difficult if you will miss something (as we are going to use
extensively almost everything...)
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2. Two ways of doing geometry: “synthetic” and “analytic”

• “Synthetic” way:
- List axioms and definitions.
- Then formally derive theorems.
Question: is there any object satisfying the axioms?
- Build a “model”: an object satisfying the axioms (and hence, theorems).

• “Analytic” way:
- Build a model
- Work in the model to prove theorems (using properties of the model).

The same object may have many different models.

Example 0.1. A group G2 = {e, r} = ⟨r|r2 = e⟩
(Group with 2 elements, e, r, with one generator r and relation r2 = e).
Model 1: Let r be a reflection on R2 (and e an identity map).
Model 2: {1,−1} ∈ Z with respect to multiplication.

We will sometimes use different models for the same geometry - to see different aspect
of that geometry.

3. “Geometric” way of thinking:

Example 0.2. Claim. Let ABC be a triangle, let M and N be the midpoints of AB
and BC. Then AC = 2MN .

We will prove the claim in two ways: geometrically and in coordinates. Geometric
proof will be based on Theorem0.3.

Notation: given lines l and m, we write l||m when l is parallel to m.

Theorem 0.3. If ABC is a triangle, M ∈ AB, N ∈ BC, thenMN ||AC ⇔ BA
BM

= BC
BN

.

Proof. (Geometric proof):
1) MN ||AC (by Theorem 0.3).
2) Draw NK||AM , K ∈ AC (see Fig. 2, left).
3) Then AK = KC (by Theorem 0.3).
4) The quadrilateral AMNK is a parallelogram

(by definition of a parallelogram - as it has two pairs of parallel sides).
5) Hence, MN = AK (by a property of a parallelogram).
6) AC = 2AK = 2MN (by steps 3 and 5).

Proof. (Computation in coordinates):
We can assume that A = (0, 0), C = (x, 0), B = (z, t) (see Fig. 2, right).
Then M = ( z

2
, t
2
), N = (x+z

2
, z
2
).

Therefore, MN2 = (x+z
2
− z

2
)2 + ( t

2
− t

2
)2 = (x

2
)2. Hence, MN = x/2, while AC = x.
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A K C

M N

B

A = (0, 0) C = (x, 0)

M = ( z
2
, t
2
) N = (x+z

2
, t
2
)

B = (z, t)

Figure 2: Two proofs of the theorem about midlines.

Note that even in the second proof we used geometry to simplify the computation:
we assumed that A = (0, 0), i.e. that all points of the plane are equally good, and
that after taking A to the origin we can rotate the whole picture so that C get to the
horizontal line.

4. We will use some results from Euclidean geometry without reproving.
- We need some basics.
- The complete way from axioms takes time.
- It is not difficult (was previously taught in schools).
- You can find proofs in books (will give some references).
- Hopefully, by now you have already mastered logical/mathematical thinking (and
don’t need the course on Euclidean geometry as a model for mastering them).

5. We will use many diagrams:
- They are useful
- but be careful: wrong diagrams may lead to mistakes.

Example 0.4. “Proof” that all triangles are isosceles (with demystification):
http://jdh.hamkins.org/all-triangles-are-isosceles/

6. Problem solving in Geometry
- Is not algorithmic (one needs practice!)
- Solution may be easy – but how to find it?
(additional constructions? which model to use? which coordinates to choose? ...
- all needs practice!)

For getting the practice we will have Problem Classes and Assignments:
- weekly sets of assignments;
- some questions will be starred - to submit for marking fortnightly (via Gradescope).
- other questions - to solve!
- There will be hints - use them if you absolutely don’t know how to start the question
without them (it is much better to attempt the questions with hints than just to read
the solutions).
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7. “Examples” will be hard to tell from “Theory”:
“Problem”=”one more theorem”
“Proof of a Theorem”=”Example on problem solving”.

8. Group approach to geometry

Klein’s Erlangen Program: In 1872, Felix Klein proposed the following:
each geometry is a set with a transformation group acting on it.
To study geometry is the same as to study the properties preserved by the group.

Example 0.5. Isometries preserve distance;
Affine transformations preserve parallelism;
Projective transformations preserve collinearity;
Möbius transformations preserve property to lie on the same circle or line.

Why to speak about possible difficulties now?
- not with the aim to frighten you but
- to make sure you are aware of them;
- to inform you that they are in the nature of the subject;
- to inform you that I know about the difficulties- and will try my best to help;
- to motivate you to ask questions.

Remark. For seven top reasons to enjoy geometry check Chapter 0 here:
http://www1.maths.leeds.ac.uk/ kisilv/courses/math255.html

0.2 Axiomatic approach to geometry

Ptolemy I: Is there any shorter way than one of Elements?
Euclid: There is no royal road to geometry.

Proclus

“One must be able to say at all times instead of points, straight lines and
planes - tables, chairs and beer mugs.”

David Hilbert

Geometry in Greek: γϵωµϵτρια, i.e. measure of land (“geo”=land, “metry”=measure).

Brief History:

• Origin: Ancient Egypt ≈ 3000 BC
(measuring land, building pyramids, astronomy).

• First records: Mesopotamia, Egypt ≈ 2000 BC.
Example: Babylonians did know Pythagorean theorem
at least 1000 years before Pythagoras.

• Greek philosophy brought people to the idea
that geometric statements should be deductively proved.

• Euclid (≈ 300 BC) realised that the chain of proofs cannot be endless:
A holds because of B (Why B holds?)
B holds because of C (Why C?)
C ....

To break this infinite chain ...⇒ C ⇒ B ⇒ A we need to
- Accept some statements as axioms without justification;
- Agree on the rules of logic.
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Euclid’s Postulates:

1. For every point A and for every point B not equal to A there exists a unique line
that passes through A and B.

2. For every segment AB and for every segment CD there exists a unique point
E such that B is between A and E and such that segment CD is congruent to
segment BE.

3. For every point O and every point A not equal to O, there exists a circle with
centre O and radius OA.

4. All right angles are congruent to each other.

5. (Euclid’s Parallel Postulate) For every line l and for every point P that does not
lie on l, there exists a unique line m passing through P that is parallel to l.

In “Elements” Euclid derives all known by that time statements of geometry and
number theory from these five postulates.

Hilbert’s axioms

By XIXth century it is clear that Euclid’s axioms are not sufficient: Euclid still used
some implicit assumptions.

Example 0.6 (Euclid’s Theorem 1). : There exists an equilateral triangle with a given
side AB.

Euclid’s proof:
- Draw a circle CA centred at A of radius AB (see Fig. 5).
- Draw a circle CB centred at B of radius AB.
- Take their intersection C = CA ∩ CB and show that △ABC is equilateral.

What is wrong with the proof: Why do we know that the circles do intersect?

BA

C

Figure 3: Euclid’s proof of existence of equilateral triangle.

This shows that we need to have more axioms. Hilbert has developed such a system of
axioms, which contains 5 groups of axioms (roughly corresponding to Euclid’s postu-
lates). See handout for the list.
You don’t need to memorise - neither Euclid’s nor Hilbert’s axioms!
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Example 0.7. Given a triangle ABC and a line l crossing the segment AB, can we
state that l we cross the boundary of ABC again on it’s way “out of the triangle”?
See Fig. 4.

A C

B

A C

B

Figure 4: Pasch’s Theorem and Crossbar Theorem.

If we want to derive this obvious fact from the axioms, we need to work quite a lot,
in particularly, using Betweenness Axiom BA4. It will go as follows.

Definition 0.8. Given a line l and points A,B /∈ l we say that A and B are on
the same side of l if A = B or the segment AB does not intersects l. Otherwise, A
and B are on the opposite sides of l. We will denote these situations A,B|∗ and A|B
respectively (when it is clear which line is considered).

Axiom 0.9 (BA4, Plane separation). (a) A,C|∗ and B,C|∗ imply A,B|∗.

(b) A|C and B|C imply A,B|∗.

Remark 0.10. The Axiom BA4 guarantees that the geometry we get is 2-dimensional.

Theorem 0.11 (Pasch’s Theorem). Given a triangle ABC, line l, and points A,B,C /∈
l. If l intersects AB then l intersects either AC or BC.

Proof. (1) By Definition 0.8, we have A|B.
(2) Since C /∈ l, BA4(a) implies that either A,C|∗ or B,C|∗.
(3) Suppose that A,C|∗. By BA4(a), this implies that C|B (otherwise we have A,B|∗
in contradiction to (1)). Therefore, l ∩BC ̸= ∅ (by Definition 0.8).
(4) The case if B,C|∗ is considered similarly.

Remark 0.12. In the case, when l enters the triangle ABC through a vertex C one
can show that l intersects AB (this statement is called Crossbar Theorem and its proof
is more than twice longer).

Remarks

1. We will not work with axioms (neither in Euclidean geometry no in any other).

2. We appreciate this magnificent building of knowledge and use theorems of Eu-
clidean geometry when we need them.
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3. Some basic theorems are listed in the handout out Euclidean geometry (with
brief ideas of proofs and references, where available).

4. More detailed treatment of basics can be found in
M. J. Greenberg, Euclidean and Non-Euclidean Geometries, San Francisco: W.
H. Freeman, 2008.

5. Sometimes one can find many proofs of the same theorem.
For example, see https://www.cut-the-knot.org/pythagoras/ for 122 proofs of
Pythagorean theorem.

What to do with the list of Theorems?

1. You don’t need to memorise!
(This is just an index for the references later on).

2. Read, understand and illustrate the statements (to be aware of them).

3. Do HW Question 1.1 (we will collect the data anonymously during Lecture 3!).

Remark 0.13. Axiomatic approach is designed to eliminate geometry from geometry.
Now belongs to the history of mathematics. However, some elements of it still could
be useful as parts of school education as
...... • an example of logical arguing;
...... • a demonstration that even “evident” statements should be justified.
Example: “My opinion is the right one”.

Remark 0.14. Hilbert’s axiom system is shown to be

1. Consistent (i.e. there exists a model for it).

2. Independent (i.e. when removing any axiom one gets another set of theorems).

3. Complete (for any statement A in this language either holds “A” or its negation
“not A”).

Remark 0.15 (Hilbert’s completeness and Gödel’s incompleteness). One may ask why
completeness of Hilbert’s system of axioms does not contradict to Gödel’s Incomplete-
ness Theorem, stating that:

Gödel’s Incompleteness Theorem. Any consistent formal system F within
which a certain amount of elementary arithmetic can be carried out is incomplete.

In other words, Gödel’s Incompleteness Theorem states that a theory cannot at
the same time: (1) to be consistent, (2) to be complete, (3) to contain elementary
arithmetic.

Here, ”to contain elementary arithmetic” means that the theory has a universal
tool to represent addition and multiplication. In particular, geometry allows a sort of
addition (given two segments of lengths a and b, we can construct a segment of length
a+ b). However, there is no similar procedure for multiplication.

This shows that there is no contradiction in geometry being consistent and complete.
It just does not contain arithmetic (though, we are not providing a proof of that).

9
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0.3 References

- A further discussion of Klein’s Erlangen Program can be found in Section 5 of
Nigel Hitchin, Projective Geometry, Lecture notes. Chapters 1, 2, 3, 4.
(See also “Other Resources” on DUO if you want to have all chapters in one pdf).

- Elementary exposition of most basic facts of Euclidean geometry can be found in
A. D. Gardiner, C. J. Bradley, Plane Euclidean Geometry, UKMT, Leeds 2012.
(The book is available from the library).

- Elementary but detailed exposition of basic facts of Euclidean geometry (and of
many other topic of the current module):
A. Petrunin, Euclidean plane and its relatives. A minimalist introduction.

- For the detailed treatment of axiomatic fundations of Euclidean geometry see
M. J. Greenberg, Euclidean and Non-Euclidean Geometries, San Francisco:
W. H. Freeman, 2008.
(The book is available from the library).

- Euclid’s ”Elements”, complete text with all proofs, with illustration in Geometry
Java applet, website by David E. Joyce.
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1 Euclidean Geometry

1.1 Isometry group of Euclidean plane, Isom(E2).

From now all, we will forget about axiomatic and will use some facts of Euclidean
geometry as “preknown”.

By Euclidean plane E2 we will understand R2 together with a distance function
d(A,B) on it satisfying the following axioms M1-M3 of a metric:

Definition 1.1. A distance on a space X is a function
d : X ×X → R, (A,B) 7→ d(A,B) for A,B ∈ X satisfying

M1. d(A,B) ≥ 0 (d(A,B) = 0⇔ A = B);

M2. d(A,B) = d(B,A);

M3. d(A,C) ≤ d(A,B) + d(B,C) (triangle inequality).

Remark. Triangle inequality appears in the list of Euclidean facts as E25. It was
proved using Cauchy-Schwarz inequality in Linear Algebra I, see also Section 1 of
G. Jones, Algebra and Geometry , Lecture notes,
which you can find in “Other Resources” on DUO.

We will use the following two models of Euclidean plane:
a Cartesian plane: {(x, y) | x, y ∈ R} with the distance d(A1, A2) =

√
(x1 − x2)2 + (y1 − y2)2;

a Gaussian plane: {z | z ∈ C}, with the distance d(u, v) = |u− v|.

Definition 1.2. An isometry of Euclidean plane E2 is a distance-preserving transfor-
mation of E2, i.e. a map f : E2 → E2 satisfying d(f(A), f(B)) = d(A,B) for every
A,B ∈ E2.

We will show that isometries of E2 form a group, but first we recall the definition.

Definition. A set G with operation · is a group if the following for properties hold:

1. (Closedness) ∀g1, g2 ∈ G have g1 · g2 ∈ G;

2. (Associativity) ∀g1, g2, g3 ∈ G have (g1 · g2) · g3 = g1 · (g2 · g3);

3. (Identity) ∃e ∈ G such that e · g = g · e = g for every g ∈ G;

4. (Inverse) ∀g ∈ G ∃g−1 ∈ G s.t. g · g−1 = g−1 · g = e.

Theorem 1.3. (a) Every isometry of E2 is a one-to-one map.

(b) A composition of any two isometries is an isometry.

(c) Isometries of E2 form a group (denoted Isom(E2)) with composition as a group
operation.

Proof. (a) Let f be an isometry. By M1, if f(A) = f(B) then d(f(A), f(B)) = 0.
So, by definition of isometry, d(A,B) = 0, which by M1 implies that A = B.
Hence, f is injective.
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Sketch of proof of surjectivity:

– Suppose X /∈ f(E2). Let y = f(A).

– Consider a circle CA(r) centred at A of radius r = d(X, Y ). Notice that
f(CA(r)) ⊂ Cy(r).

– Take B ∈ CA(r), consider f(B) ∈ Cy(r).

– There are two points on CA(r) on any given distance smaller than 2r from
B. Hence, CA(r) contains two points on distance d(f(B), X). Therefore,
X ∈ f(CA(r)). The contradiction proves surjectivity, and (a) is done.

Yf(B)

X

AB

f

Figure 5: To the proof of surjectivity of isometry.

(b) Given two isometries f and g, we need to check that the composition g ◦ f is an
isometry. Indeed,

d(g(f(A), g(f(B))
g
= d(f(A), f(B))

f
= d(A,B),

where the first (resp. second) equality holds since g (resp. f) is an isometry.

(c) We need to prove 4 properties (axioms of a group):
1. Closedness is proved in (b).
2. Associativity follows from associativity of composition of maps.
3. Identity e := idE2 is the map defined by f(A) = A ∀A ∈ E2. It clearly belongs
to the set of isometries.
4. Inverse element g−1 does exist as g is one-to-one (and it is an isometry).

Example 1.4. Examples of isometries of E2:

• Translation Tt : a 7→ a+ t;

• Rotation Rα,A about centre A by angle α.
On complex plane, Rα,0 writes as z 7→ eiαz ;

• Reflection rl in a line. Example: if the line l is the real line on C, then rl : z → z̄.
For a general formula of reflection: see HW 2.7.

• Glide reflection: given a vector a and a line l parallel to a, consider ta◦rl = rl◦ta.
Definition 1.5. Let ABC be a triangle labelled clockwise.
An isometry f is orientation-preserving if the triangle f(A)f(B)f(C) is also labelled
clockwise. Otherwise, f is orientation-reversing.
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Proposition 1.6 (Correctness of Definition 1.5). Definition 1.5 does not depend on
the choice of the triangle ABC.

Proof. Suppose that △ABC has the same orientation as f(ABC). Take a point D on
the same side of the line AB as C. Then △ABD has the same orientation as f(ABD)
(indeed, otherwise the segment f(CD) does intersect the segment f(AB) while AB
and CD are disjoint; this would violate that f is a bijection). Hence, given the points
A,B, Definition 1.5 does not depend on the choice of C.

Now we change points one by one moving from any triangle to any other as follows:
ABC → A′BC → A′B′C → A′B′C ′. (One should be a bit more careful here if some
triples of points are collinear, but then we just insert an extra step and may be change
the order. We skip the details here).

Example 1.7. Translation and rotation are orientation-preserving,
reflection and glide reflection are orientation-reversing.

Remark 1.8. Composition of two orientation-preserving isometries is orientation-
preserving;
composition of an or.-preserving isometry and an or.-reversing one is or.-reversing;
composition of two orientation-reversing isometries is orientation-preserving.

Proposition 1.9. Orientation-preserving isometries form a subgroup (denoted Isom+(E2))
of Isom(E2).

Proof. We need to check the set Isom+(E2) forms a group, i.e. satisfies the four
properties of a group:

1. Closedness follows from Remark 1.8;

2,3. Associativity and Identity follow in the same way as in the proof of Theorem 1.3.

4. Inverse element: consider g ∈ Isom+(E2) and let g−1 ∈ Isom(E2) be the inverse
in the big group. Suppose that g−1 is orientation-reversing. Then by Remark 1.8
g ◦ g−1 is also orientation-reversing, which contradicts to the assumption that g ◦
g−1 = e when considered in the whole group Isom(E2). The contradiction shows
that g−1 is orientation-preserving, and hence Isom+(E2) contains the inverse
element.

Definition. Triangles△ABC and△A′B′C ′ are congruent (write△ABC ∼= △A′B′C ′)
if AB = A′B′, AC = A′C ′, BC = B′C ′ and ∠ABC = ∠A′B′C ′, ∠BAC = ∠B′A′C ′,
∠ACB = ∠A′C ′B′.

Theorem 1.10. Let ABC and A′B′C ′ be two congruent triangles. Then there exists
a unique isometry sending A to A′, B to B′ and C to C ′.

Proof. Existence:

1. Let f1 be any reflection sending A → A′, A′ → A (if A ̸= A′, f1 is unique and
given by reflection with respect to perpendicular bisector to AA′, see Fig. 6, left;
if A = A′ we can take f1 = id, identity map).

13



2. Let f2 be a reflection s.t. f2(A
′) = A′, f2(f1(B)) = B′. This f2 does exist: it

is given by reflection with respect to perpendicular bisector to BB′, see Fig. 6,
middle (denote the perpendicular bisector by l2). Notice that A′ ∈ l2.
Exercise: Show that A′ ∈ l2 by using E14.

3. We have A′ = f2(f1(A)), B
′ = f2(f1(B)).

If f2(f1(C)) and C ′ lie in the same half-plane with respect to A′B′, then the
congruence △ABC ∼= △A′B′C ′ implies C ′ = f2(f1(C)): (indeed, in this case
triangles △A′C ′f2(f1(C)) and △B′C ′f2(f1(C)) are isosceles, so the heights of
these triangles dropped from the points A′ and B′ respectively are two different
perpendicular bisectors for the segment C ′f2(f1(C)), which contradicts to E9, see
Fig. 6, right). So, f2 ◦ f1 maps ABC to A′B′C ′

If f2(f1(C)) and C ′ lie in different half-plane with respect to A′B′, apply f3 =
rA′B′ (reflection with respect to A′B′), then use the above reasoning to see that
f3 ◦ f2 ◦ f1 maps ABC and A′B′C ′.

Uniqueness: Suppose the contrary, i.e. there exist f, g ∈ Isom(E2), f ̸= g such that
f : △ABC → △A′B′C ′ and g : △ABC → △A′B′C ′. Then φ := f−1 ◦ g ̸= id and
φ(△ABC) = △ABC. Choose D ∈ E2 : φ(D) ̸= D (it exists as φ is non-trivial!).
Then d(A,D) = d(A,φ(D)), d(B,D) = d(B,φ(D)), d(C,D) = d(C,φ(D)), which by
E14 means that all three points A,B,C lie on the perpendicular bisector to Dφ(D).
This contradicts to the assumption that ABC is a triangle.

A f1(B)

A′

f1(C) B′A′

B′
f1(A) = A′

C ′

C ′ f2(f1(C))l1

l2

Figure 6: Isometry as a composition of reflections.

Corollary 1.11. Every isometry of E2 is a composition of at most 3 reflections.
(In particular, the group Isom(E2) is generated by reflections).

Remark 1.12. The way to write an isometry as a composition of reflections is not unique.

Example 1.13. We can write rotation and translation as compositions of two reflec-
tions (see (a) and (b) below; a glide deflection can be written as a composition of three
reflection (see (c)).

(a) Let l1||l2 be two parallel lines on distance d. Then rl2 ◦ rl1 is a translation by 2d
along a line l perpendicular to l1 and l2.

(b) Let 0 = l1 ∩ l2 be two lines intersecting at O. Let φ be angle between l1 and l2.
Then rl2 ◦ rl1 is a rotation about O through angle 2φ.
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(c) Let l be a line, and a a vector parallel to l. To write the glide reflection ta ◦ rl,
use (a): consider two lies l1||l2 orthogonal to l lying on the distance a/2 from
each other. Then by (a) ta = rl1 ◦ rl2 , so that ta ◦ rl = rl1 ◦ rl2 ◦ rl.

Theorem 1.14 (Classification of isometries of E2). Every non-trivial isometry of E2

is of one of the following four types: reflection, rotation, translation, glide reflection.

Proof. We can see from the proof of Theorem1.10 that every isometry of E2 is a com-
position of at most 3 reflections. Consider possible compositions:

0. Composition of 0 reflections is an identity map id.

1. Composition of 1 reflection is the reflection.

2. Composition of 2 reflections is either translation or rotation (see Example 1.13).

3. Composition of 3 reflections: one can prove that is a glide reflection (this is not
done in Example 1.13!), for the proof see HW 2.3.

Definition 1.15. Let f Isom(E2). Then the set of fixed points of f is
Fixf = {x ∈ E2 | f(x) = x}.
Example 1.16. Fixed points of id, reflection, rotation, translation and glide reflection
are E2, the line, a point, ∅, ∅ respectively.
Remark 1.17. Fixed points together with the property of preserving/reversing the
orientation uniquely determine the type of the isometry.

Proposition 1.18. Let f, g ∈ Isom(E2).

(a) Fixgfg−1 = gF ixf ;

(b) gfg−1 is an isometry of the same type as f .

Proof. (a) We need to proof that g(x) ∈ Fixgfg−1 ⇔ x ∈ Fixf .
See HW 3.2 for the proof.

(b) Applying (a) we see that fixed points of f and gfg−1 are of the same type, also
they either both preserve the orientation or both reverse it. Hence, the isometries
f and gfg−1 are of the same type by Remark 1.17

1.2 Isometries and orthogonal transformations

a. Isometries preserving the origin O = (0, 0)

• From HW 2.7 we see, that a reflection preserving O is a linear map:

x→ Ax A ∈ GL2(R).

More precisely, if l is a line through O and a a vector normal to l (i.e. the line l
is given by equation (a,x) = 0, where (∗, ∗) is the dot product), then

a

(a,x)=0

rl(x) = x− (a,x)
(x,x)

a.
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• Every isometry preserving O is a composition of at most 2 reflections (this fol-
lows from the proof of Theorem 1.10, or, alternatively, from the classification of
isometries). Hence, it is either an identity map, or a reflection or a rotation.

• So, if f ∈ Isom(E2) and f(O) = O, then f(x) = Ax for some A ∈ GL2(R).

Proposition 1.19. A linear map f : x→ Ax, A ∈ GL(2,R) is an isometry if and only if

A ∈ O(2), orthogonal subgroup of GL(2,R) (i.e. iff ATA = I = AAT , where AT is A
transposed).

Proof. See HW 3.3.

b. General case

Let (b1, b2) = f(O), denote b = (b1, b2). Then t−b ◦ f(O) preserves O. So, in view of
Proposition 1.19, t−b ◦ f(x) = Ax for some A ∈ O2(R), which implies that

f(x) = tb ◦ (Ax) = Ax+ b.

Proposition 1.20. (a) Every isometry f of E2 may be written as f(x) = Ax+ t.

(b) The linear part A does not depend on the choice of the origin.

Proof. (a) is already shown. (b) Move the origin to arbitrary other point u = (u1, u2)
and denote by y = x− u the new coordinates (see Fig. 7). Then

f(y) = f(x)− u = Ax+ b− u = A(y + u) + b− u = Ay + (Au+ b− u).

O′ = u

O

x y

f(y)

f(x) = Ax+ b

Figure 7: Linear part of isometry: independence of the origin.

Example 1.21. Let A ∈ O2(R) then detA = ±1.

• Consider the reflection rx=0 with respect to the line x = 0: rx=0 =

(
−1 0
0 1

)(
x
y

)
.

Clearly, in this case detA = −1.

• Consider a rotation by angle α, RO,α =

(
cosα sinα
− sinα cosα

)
. In this case detA = 1.
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Proposition 1.22. Let f(x) = Ax+ t be an isometry.
f is orientation-preserving if detA = 1 and orientation-reversing if detA = −1.
Proof. First, notice that translation does not affect the orientation, so. we can assume
that f preserve the origin. An origin-preserving isometry is either identity, or reflection,
or rotation, and for all of them the statement holds.

Remark. Let l be a line through O forming angle α with the horizontal line x = 0.
Then rl = g−1rx=0g, where g = RO,−α (check this!). So,

det rl = det g−1 det rx=0 det g = −1.
Exercise 1.23. (a) Show that any two reflections are conjugate in Isom(E2). (i.e.

that given any two reflections r1 and r2 there exists an isometry g ∈ Isom(E2)
such that r1 = g−1r2g).

Hint. If l is a line not through the origin, then there exists a translation t such
that l′ = t(l) is a line through the origin and rl = t−1rl′t.

(b) Not all rotations are conjugate (only rotations by the same angle),
not all translations are conjugate (only the ones by the same distance)
and not all glide reflections are conjugate (only the ones with translational part
by the same distance).

Proposition 1.24. Let A,C ∈ l ∈ E2. Then the line l gives the shortest path from A
to C.

Proof. Idea: approximate the path fromA to C by a broken lineAA1A2A3 . . . An−1AnC
and apply triangle inequality |AC| ≤ |AB|+ |BC| repeatedly:

|AC| ≤ |AA1|+ |A1C| ≤ |AA1|+ |A1A2|+ |A2C| ≤ · · · ≤ |AA1|+ ·|AnC|,
with at least one inequality being strict if AA1A2A3 . . . An−1AnC ̸= AC.

A

A1A1

A2

C

An

Figure 8: A broken line approximating a path.

Analytically: given a path γ : [0, 1]→ E2 with γ(0) = A = (0, 0) and γ(1) = C = (c, 0),
write

l(γ
∣∣∣C
A
) =

∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt ≥
∫ 1

0

√(
dx

dt

)2

dt

=

∫ 1

0

∣∣dx
dt

∣∣dt ≥ ∫ 1

0

dx

dt
dt = x(t)

∣∣1
0
= x(1)− x(0) = b− 0 = d(A,B).
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1.2.1 Remarks on groups

There are two ways to define a group G:

• To describe the set of elements of the group G and the group operation.

Example: Matrix groups are usually defined in this way, i.e. GL(2,R) (nonde-
generate real 2× 2 matrices), SL(n,Z) (n× n real matrices with det = 1), etc....
The group operation in these groups is a matrix multiplication

• To describe the group G by “generators and relations”, where

- Generators are given as a set S of (finitely or infinitely many) elements such
that for any g ∈ G can be written as a finite word w = s1◦s2◦· · ·◦sn, where
either si or s

−1
i lies in the set S. (Notice, that this n depends on g ∈ G and

is not required to be bounded).

In other words, G if a minimal group containing all the generators.

- Relations: A word w in the alphabet S, S−1 is a relation, if w = e in G.

- Defining relations: is a list of relations w1, . . . , wn such that any relation in
w follows from these relations.

Example 1. G = ⟨r | r2 = e⟩ is a group generated by element r satisfying the
relation r2 = e. This group contains two elements: e and r (as any longer word
in the alphabet r, r−1 can be reduced to one of these two.

Example 2. G = ⟨r1, r2 | r1r2 = r2r1 = e⟩. In this group, every element g ∈ G
can be rewritten as g = rk1r

l
2, so G = Z⊕ Z.

Remark. Not every group has a presentation with finitely many generators and finitely
many relations. The groups satisfying this property are called finitely-presented.

1.3 Discrete groups of isometries acting on E2

Definition 1.25. A group acts on the set X (denoted G : X) if
∀g ∈ G ∃fg, a bijection X → X, s.t. fgh(x) = (fg ◦ fh)(x),∀x ∈ X, ∀g, h ∈ G.

Example 1.26. Here are some examples of group actions:

(a) Let G = ⟨ta⟩ be a group generated by a translation ta. Every element of G can
be written as tka for some k ∈ Z. Clearly G : E2 with all elements of G acting as
translations tka = tka.

(b) Isom(E2) acts on the set of all regular pentagons.

(c) (Z,+) : E2 in the following way:
Take any vector a, then n ∈ Z will act on E2 as the translation tna.

Definition 1.27. An action G : X is transitive if ∀x1, x2 ∈ X ∃g ∈ G : fg(x1) = x2.

Example 1.28. (a) The action of Isom(E2) on the set of regular pentagons is not
transitive (it cannot take a small pentagon to a bigger one).

(b) Theorem 1.10 shows that Isom(E2) acts transitively on the set of all triangles
congruent to the given one.
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(c) Isom(E2) acts transitively on points of E2 (this directly follows from (b)).

(d) The action of Isom(E2) on lines is transitive (as for any two lines l1 and l2 there
is an isometry taking l1 to l2.

(e) Theorem 1.10 also implies that Isom(E2) acts transitively on flags in E2, where
a flag is a triple (p, r,H+) such that p ∈ E2 is a point, r is a ray from p and H+

is a half-plane bounded by the line containing r.

(f) Isom(E2) does not act transitively on the circles or triangles.

Definition 1.29. Let G : X be an action. An orbit of x0 ∈ X under the action G : X
is the set orb(x0) :=

⋃
g∈G

gx0.

Example 1.30. (a) The group O2 of isometries preserving the origin O acts on E2.
For this action orb(O) = O (i.e. orbit of the origin is one point) and all other
orbits are circles centred at O (see Fig. 9, left).

(b) The group Z×Z acts on E2 by integer translations (a, b) (where a ∈ Z and b ∈ Z
are the first and the second components respectively). Then the orbit of any
point is a shift of the set of all integer points (see Fig. 9, right).

Figure 9: Orbits of O2 (left) and Z2 = Z× Z (right)

Definition 1.31. Let X be a metric space. An action G : X is discrete if none of its
orbits possesses accumulation points, i.e. given an orbit orb(x0), for every x ∈ X there
exists a ball Bx centred at x s.t. the intersection orb(x0)∩Bx contains at most finitely
many points.

Example 1.32. (a) Consider the action Z : E1 defined by gnx = 2nx for n ∈ Z. The
action is not discrete as orb(1) = {2n} and the sequence 1/2n converge to 0 ∈ E1,
see Fig. 10, left.

(b) The action Z × Z acts on E2 by translations: let G = ⟨t1, t2⟩, where t1, t2 are
translations in non-collinear directions. This action is discrete as every orbit con-
sists of isolated points, see Fig. 9, right.
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(c) (Reflection group). Given an isosceles right-angled triangle, one can generate a
group G by reflections in its three sides, G = ⟨r1, r2, r3⟩. Then G : E2 is a discrete
action.

To show that the action is discrete, consider a tiling of E2 by isosceles right-
angled triangles such that any adjacent tiles are reflection images of each other,
see Fig. 10, right. Then

- each of the three generators r1, r2, r3 preserves the triangular tiling;

- there are finitely many isometries taking a tile to itself (2 isometries here);

- hence, every tile contains only finitely many points of any given orbit;

- every ball intersects only finitely many tiles;

- which implies that every ball contains finitely many points of each orbit, i.e.
the group acts discretely.

0 1
22

1
2 1 2

Figure 10: A non-discrete action (left) and a discrete action (right).

Definition 1.33. An open connected set F ⊂ X is a fundamental domain for an action
G : X if the sets gF, g ∈ G satisfy the following conditions:

1) X =
⋃
g∈G

gF (where U denotes the closure of U in X);

2) ∀g ∈ G, g ̸= e, F ∩ gF = ∅;

3) There are only finitely many g ∈ G s.t. F ∩ gF ̸= ∅.

Remark. A set is open if it contains a disc neighbourhood of each point. The closure
U of U in X is the set of point U = U ∪ {x ∈ X | ∀ε > 0, Bε(x) ∩ U ̸= ∅}.
Examples of fundamental domains: any of the triangles in the tiling shown in Fig. 10
is a fundamental domain for the action described in Example 1.32(c).

Definition 1.34. An orbit space X/G for the discrete action G : X is a set of orbits
with a distance function

dX/G = min
x̂∈orb(x), ŷ∈orb(y)

{dx(x̂, ŷ)}.
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Example 1.35. (a) Z : E1 acts by translations, then an interval is a fundamental
domain. Identifying its endpoints we see that the orbit space E1/Z is a circle.

(b) Z2 : E2 (generated by two non-collinear translations), then a parallelogram is a
fundamental domain of the action and the orbit space E2/Z2 is a torus.

Figure 11: Fundamental domain for Z2 : E2 and a torus as an orbit space.

Remark. One can find some (artistic) tilings of Euclidean plane produced M. C. Escher
here, on Escher’s official website.
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1.4 3-dimensional Euclidean geometry

Model: Cartesian space (x1, x2, x3), xi ∈ R, with distance function

d(x, y) = (
3∑

i=1

(xi − yi)2)1/2 =
√
⟨x− y, x− y⟩.

We will not list all the axioms but will mention some essential properties.

Properties:

1. For every plane α there exists a point A ∈ α and a point B /∈ α;

2. If two distinct planes α and β have a common point A then they intersect by a
line containing A.

3. Given two distinct lines l1 and l2 having a common point, there exists a unique
plane containing both l1 and l2.

Example. Three flies are flying randomly in one room. Find the probability that they
are all in one plane at some given moment of time.

Proposition 1.36. For every triple of non-collinear points there exists a unique plane
through these points.

Proof. Let A,B,C be the three non-collinear points. The lines AB and AC have a
common point A. Therefore, there exists a unique plane α containing the lines AB
and AC, and hence, containing all three points A,B,C.

Definition 1.37. Given a metric space X, a distance between two sets A,B ∈ X is
d(A,B) := inf

a∈A,b∈B
(d(a, b)).

In particular, the distance between a pointA and a plane α is d(A,α) := min
X∈α

(d(A,X)).

X0X1

A

X0X1
l

AA

X0 l
α

Figure 12: Distance between a point and a plane (see Proposition 1.38).

Proposition 1.38. Given a plane α, a point A /∈ α and a point X0 ∈ α, AX0 = d(A,α)
if and only if AX0 ⊥ l for every l ∈ α, X0 ∈ l.
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Proof. “⇒”: First, we prove that AX0 = d(A,α) implies that AX0 ⊥ l for every l ∈ α,
X0 ∈ l. Suppose that l ∈ α, X0 ∈ l and l is not orthogonal to AX0, see Fig. 12,
in the middle. Then there exists X1 ∈ l such that d(X1, A) < d(X0, A) (indeed,
this is the case when X1 is the point such that AX1 ⊥ l).

“⇐”: Suppose that AX0 ⊥ l, but d(A,X0) ̸= d(A,α) = d(A,X1), see see Fig. 12, right.
As it is shown above, AX1 ⊥ X1X0. Then there are two distinct lines through A
perpendicular to l, in contradiction with E9.

Corollary. Given a plane α and a point A /∈ α, the closest to A point X0 ∈ α is
unique.

α α

α

nα

nβ
BC

A

β

β

Figure 13: Angle between a line and a plane (left) and between two planes (right).

Definition 1.39. (a) The pointX0 ∈ α s.t. d(A,α) = AX0 is called an orthogonal projection
of A to α. Notation: X0 = projα(A).

(b) Let α be a plane, AB be a line, B ∈ α, and C = projα(A). The angle between
the line AB and the plane α is ∠(AB,α) = ∠ABC, where C = projα(A),
(see Fig. 13, left).
Equivalently, ∠(AB,α) = min

X∈α
(∠ABX).

Exercise: Check the equivalence. Hint: use cosine rule.

Remark. Definition 1.37 implies that if AC ⊥ α then AC ⊥ l for all l ∈ α, C ∈ l.

Definition 1.40. The angle ∠(α, β) between two intersecting planes α and β is the
angle between their normals (see Fig. 13 middle and right).

Equivalently, if B ∈ β, A = projα(B), C = projl(A) where l = α ∩ β,
then ∠(α, β) = ∠BCA.
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Exercise:

1. Check the equivalence.

2. Let γ be a plane through BCA. Check that γ ⊥ α, γ ⊥ β.

3. Let α be a plane, C ∈ α. Let B be a point s.t. BC ⊥ α. Let β be a plane
through C, β ⊥ α. Then B ∈ β.

u

v1

v2 k1v1+k2v2

a

b

c
A

α

Figure 14: To Proposition 1.41.

Proposition 1.41. Given two intersecting lines b and c in a plane α, A = b ∩ c, and
a line a, A ∈ a, if a ⊥ b and a ⊥ c then a ⊥ α (i.e. a ⊥ l for every l ∈ α).

Proof. Given three vectors u,v1,v2 in R3 such that (u,v1) = 0 and (u,v2) = 0 we
have (u, k1v1 + k2v2) = 0 for any k1, k2 ∈ R.

C

D

A

B

A C

l

B

α

Figure 15: Theorem of three perpendiculars (and it’s proof).

Theorem 1.42 (Theorem of three perpendiculars). Let α be a plane, l ∈ α be a line
and B /∈ α, A ∈ α and C ∈ l be three points. If BA ⊥ α and AC ⊥ l then BC ⊥ l.

Proof. 1. Let CD be a line through C parallel to AB, see Fig. 15. Then CD ⊥ α (as
AB ⊥ α).
2. Then CD ⊥ l (as CD ⊥ l′ ∀l′ ⊂ α. Also, l ⊥ AC (by assumption).
3. Hence, by Proposition 1.41 l ⊥ (plane ACD), i.e. l ⊥ BC (as BC ⊂ plane ACD).
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1.5 References

- A nice discussion of the group of isometries of Euclidean plane can be found in
G. Jones, Algebra and Geometry, Lecture notes (Section 1).
(The notes are available on ULTRA, see “Other Resources” section).

- Discussion of the geometric constructions and constructibility of various geomet-
ric objects can be found in
G. Jones, Algebra and Geometry, Lecture notes (Section 8).
(The notes are available on ULTRA, see “Other Resources” section).

- More detailed discussion of Euclidean isometries can be found here:
N. Peyerimhoff, Geometry III/IV, Lecture notes (Section 1).

- To read more about the role of reflections for Isom(E2), look at
O. Viro, Defining relations for reflections I, arXiv:1405.1460v1.

- The following book (Section 1) provides an introduction to group actions:
T. K. Carne, Geometry and groups.
Also, one can find here a detailed discussion of the group of Euclidean isometries
(Sections 2-4) - as well as many other topics.

- Another source concerning groups actions:
A. B Sossinsky, Geometries, Providence, RI : American Mathematical Soc. 2012.
One can find the book in the library, see also Section 1.3 (pp.9–11) here.
Section 2.7 (pp.26-27) of the same source introduces group presentations and
gives many examples.

- Exposition of 3-dimensional Euclidean Geometry can be found in Chapter 1 of
Kiselev’s Geometry, Book II. Stereometry. (Adopted from Russian by Alexader
Givental).
(The book is not easily reachable at the moment. You can find a reference to
Amazon on Giventhal’s homepage. I should probably order the book for our
library... Please, tell me if you are interested in this book).

- Webpages, etc:

- Cut-the-knot portal by Alexander Bogomolny.

- Drawing a Circle with a Framing Square and 2 Nails.

- One can find some (artistic) tilings of Euclidean plane produced M. C. Escher
here, on Escher’s official website.

25

http://www.maths.dur.ac.uk/~dma0np/geometry0809/script.pdf
https://arxiv.org/pdf/1405.1460v1.pdf
ttps://www.dpmms.cam.ac.uk/~tkc/GeometryandGroups/GeometryandGroups.pdf
https://library.dur.ac.uk/record=b2771389~S1&holdings
https://ium.mccme.ru/postscript/f11/sossinskii-GeoBook-part1.pdf
https://math.berkeley.edu/~giventh/
https://www.cut-the-knot.org/
http://www.rfcafe.com/miscellany/smorgasbord/drawing-circle-with-framing-square-and-2-nails.htm
https://mcescher.com/gallery/symmetry/
https://mcescher.com/


2 Spherical geometry

In this section we will study geometry on the surface of the sphere.

Model of the sphere S2 in R3: (sphere of radius R = 1 centred at O = (0, 0, 0))

S2 = { (x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}

O

1

Figure 16: Sphere.

Sometimes we will consider sphere of radius R: { (x1, x2, x3) ∈ R3 | x21+x22+x23 = R}.

2.1 Metric on S2

Definition 2.1. • Points A and A′ of S2 will be called antipodal if O ∈ AA′.

• A great circle on S2 is the intersection of S2 with a plane passing though O, see
Fig. 17, left.

Remark 2.2. Given two distinct non-antipodal points A,B ∈ S2, there exists a unique
great circle through A and B (as there is a unique 2-dimensional plane through 3 non-
collinear points A,B,O).

O

B

A

Figure 17: Great circles and distance on the sphere.
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Definition 2.3. Given a sphere S2 of radius R, a distance d(A,B) between the points
A,B ∈ S2 is πR, if A is diametrically opposed to B, and the length of the shorter arc
of the great circle through A and B, otherwise.

Equivalently, d(A,B) := ∠AOB ·R (with R = 1 for the case of unit sphere).
See Fig. 17, right.

Theorem 2.4. The distance d(A,B) turns S2 into a metric space, i.e. the following
three properties hold:
M1. d(A,B) ≥ 0 (d(A,B) = 0⇔ A = B);
M2. d(A,B) = d(B,A);
M3. d(A,C) ≤ d(A,B) + d(B,C) (triangle inequality).

Proof. M1 and M2 hold by definition. To prove M3 we need to show

∠AOC ≤ ∠AOB + ∠BOC.

We will do it in the following 8 steps.

1. If B lies on a great circle CAC through A and C, then M3 holds (may turn into
equality). Assume B /∈ CAC .

2. Suppose that ∠AOC > ∠AOB + ∠BOC, in particular, ∠AOC > ∠AOB.

3. Choose B1 inside AC so that ∠AOB1 = ∠AOB, see Fig. 18.
Choose B2 ∈ OB so that OB2 = OB1.
Then AB1 = AB2 (since △AB1O is congruent to △AB2O by SAS).

A

B

O

C

B1

B2

Figure 18: To the proof of triangle inequality for S2.

4. Since ∠AOC > ∠AOB + ∠BOC we have ∠AOC > ∠AOB2 + ∠B2OC.
Also, ∠AOC = ∠AOB1 + ∠B1OC.
Hence, ∠B2OC < ∠B1OC.

5. Recall the Cosine Rule in E2: c2 = a2 + b2 − 2ab cos γ.
Note that given the sides a, b, for a larger angle γ between them we get a larger
side c.

6. Applying results of steps 4 and 5 to △OB1C and OB2C, we get B2C < B1C.

7. AB2 +B2C
3,6
< AB1 +B1C = AC ≤ AB2 +B2C

(here the last inequality is the triangle inequality on the plane).
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8. The contradiction obtained in 7 shows that ∠AOC ≤ ∠AOB + ∠BOC (where
equality only holds when B lies in the plane ACO).

2.2 Geodesics on S2

Definition 2.5. A curve γ in a metric space X is a geodesic if γ is locally the shortest
path between its points.

More precisely, γ(t) : (0, 1)→ X is geodesic if

∀t0 ∈ (0, 1) ∃ε : l(γ(t)|t0+ε
t0−ε) = d(γ(t0 − ε), γ(t0 + ε)).

Proposition 2.6. Geodesics on S2 are great circles.

Proof. Use the (spherical) triangle inequality and repeat the proof of Proposition 1.24.

Definition 2.7. Given a metric space X, a geodesic γ : (−∞,∞)→ X is called closed
if ∃T ∈ R, T ̸= 0 : γ(t) = γ(t+ T ) ∀t ∈ (−∞,∞), and open, otherwise.

Example. In E2, all geodesics are open, each segment is the shortest path.
In S2, all geodesics are closed, one of the two segments of γ \ {A,B} is the shortest
path (another one is not shortest if A and B are not antipodal).
HW 4.1: describes a metric space containing both closed and open geodesics.

From now on: by lines in S2 we mean great circles.

Proposition 2.8. Every line on S2 intersects every other line in exactly two antipodal
points.

Proof. Let l1 = α1 ∩ S and l2 = α2 ∩ S be two lines on S2, see Fig. 19, left. Then

l1 ∩ l2 = (α1 ∩ α2) ∩ S2 = ( line through origin ) ∩ S2,

as O ∈ α1 ∩ α2.

α1

α2

α1

α2

Figure 19: Intersection and angle between two lines on the sphere.
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Definition 2.9. By the angle between two lines we mean the angle between the cor-
responding planes:
if li = αi ∩ S2, i = 1, 2 then ∠(l1, l2) := ∠(α1, α2), see Fig. 19, right.

Equivalently, ∠(l1, l2) is the angle between the lines l̂1 and l̂2, l̂i ∈ R3,

where l̂i is tangent to the great circle li at l1 ∩ l2 as to a circle in R3.

Proposition 2.10. For every line l and a point A ∈ l in this line there exists a unique
line l′ orthogonal to l and passing through A.

Proof. Consider the plane α ∈ R3 such that l = α ∩ S2. We need to find another line
l′ = β ∩ S2, where β ∈ R3 is a plane orthogonal to α and such that O,A ∈ β. Let vα
be the normal vector at O to α, see Fig. 21, left. Since β ⊥ α, we see that vα ∈ β. So,
β is the plane spanned by the line OA and vα. This construction shows both existence
of l′ and uniqueness.

β

α

O A

vα

O B

A

Figure 20: Existence and uniqueness of a perpendicular line on the sphere.

Proposition 2.11. For every line l and a point A /∈ l in this line, s.t. d(A, l) ̸= π/2
there exists a unique line l′ orthogonal to l and passing through A.

Proof. Let B ∈ α be the orthogonal projection of A to the plane α, see Fig. 21, right.
Then l′ = β ∩ S2, where β = OAB.

Notice that given the points A,B in the line l, one of the two segments l \ {A,B}
is the shortest path between them.

Definition 2.12. A triangle on S2 is a union of three non-collinear points and a triple
of the shortest paths between them.

Figure 21: Spherical triangles
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2.3 Polar correspondence

Definition 2.13. Let l = S2 ∩Πl be a line on S2, where Πl is the corresponding plane
through O in R3. The pole to the line l is the pair of endpoints of the diameter DD′

orthogonal to Πl, i.e. Pol(l) = {D,D′}.
A polar to a pair of antipodal points D,D′ is the great circle l = S2∩Πl, s.t. the plane
Πl is orthogonal to DD

′, i.e. Pol(D) = Pol(D′) = l.

l

D′

D

l

D′

D

Figure 22: Polarity: Pol(l) = {D,D′} (left) and Pol(D) = Pol(D′) = l (right).

Proposition 2.14. If a line l contains a point A then the line Pol(A) contains both
points of Pol(l).

Proof. 1. Let {D,D′} := Pol(l), i.e. DD′ ⊥ αl, where l = αl ∩ S2. In particular,
OD ⊥ OA (see Fig. 23, left).

2. By definition, Pol(A) is the line l′ = S2 ∩ αA, where αA ⊥ OA.

3. We conclude that OD ⊂ αA as AD ⊥ OA. Hence, D ⊂ Pol(A). Similarly,
D′ ⊂ Pol(A).

l
αl

D′

D

A

αA

O

B′

C

B

A

A′

C ′

Figure 23: Left: A ∈ l ⇒ Pol(l) ∈ Pol(A). Right: polar triangle.

Hence, polar correspondence transforms:

• points into lines;

• lines into points;

• the statement “A line l contains a point A” into
“The points Pol(l) lie on the line Pol(A)”.
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Definition 2.15. A triangle A′B′C ′ is polar to ABC (denoted A′B′C ′ = Pol(ABC))
if A′ ∈ Pol(BC) and ∠AOA′ ≤ π/2, and similar conditions hold for B′ and C ′, see
Fig. 23, right.

Remark. If A′ ∈ Pol(BC), then to say “ ∠AOA′ ≤ π/2” is the same as to say that
A′ lies on the same side with respect to BC as A.

Exercise. Is there a self-polar triangle ABC on S2, i.e. a triangle ABC such that
Pol(ABC) = ABC?

Theorem 2.16 (Bipolar Theorem).

(a) If A′B′C ′ = Pol(ABC) then ABC = Pol(A′B′C ′).

(b) If A′B′C ′ = Pol(ABC) and △ABC has angles α, β, γ and side lengths a, b, c,
then △A′B′C ′ has angles π− a, π− b, π− c and side lengths π− α, π− β, π− γ.

Proof. (a) Since A′ ∈ Pol(BC), we have OA′ ⊥ OC,OB. Since B′ ∈ Pol(AC), we
have OB′ ⊥ OC,OA. From this we conclude that OC ⊥ OA′, OB′, i.e. OC is
orthogonal to the plane OA′B′, which implies that C ∈ Pol(A′B′). Also, we have
∠COC ′ < π/2.

As similar conditions hold for A and B, we conclude that ABC = Pol(A′B′C ′).

(b) - Angle β = ∠ABC between the spherical lines AB and BC is equal to the
angle between corresponding planes αAB and αBC in E3.

- The length b′ in the spherical triangle A′B′C ′ is given by definition by
b′ = ∠A′OC ′.

- As OA′ ⊥ αBC , OC
′ ⊥ αAB, we see ∠A′OC ′ = π − β, see Fig. 24.

So, we get b′ = π − β.
- By symmetry, we get all other equations.

αBA

αBC

αBA

αBA

αBC
β = 6 ABC

b′ = 6 A′B′C′

A′

C ′

Figure 24: Proof of Bipolar Theorem.
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2.4 Congruence of spherical triangles

Theorem 2.17. SAS, ASA, and SSS hold for spherical triangles.

Proof. The proofs are exactly the same as for similar statements in E2.

SAS: This is an axiom (of congruence of trihedral angles in E3).

ASA: 1. Suppose that ∠BAC = ∠B′A′C ′, AC = A′C ′, ∠BCA = ∠B′C ′A′.
2. If AB = A′B′, then △ABC ∼= △A′B′C ′ by SAS.
3. If AB ̸= A′B′, consider B′′ ⊂ A′B′ such that AB = AB′′.
4. Then △A′B′′C ′ ∼= △ABC by SAS, which implies that ∠BCA = ∠B′′C ′A′.
This means that the lines CB′ and CB′′ coincide, and hence B = B′ (as a unique
intersection of two rays in the given half-space with respect to A′C ′).

SSS: Assume that the corresponding sides of △ABC and △A′B′C ′ are equal but the
triangles are not congruent, see Fig. 25. Consider a triangle ABC ′′ congruent to
A′B′C ′. Notice that C ′′ ̸= C, but AC = AC ′′ and BC = BC ′′, which implies that
the segment CC ′′ has two distinct perpendicular bisectors (one constructed as the
altitude in the isosceles triangle ACC ′′, and another as an altitude in isosceles
triangle BCC ′′, see Remark 2.18 below). This contradicts to Proposition 2.10.

BA

CC ′′

Figure 25: Proof of SSS.

Notice that as soon as we have SAS property, we can immediately deduce the
following corollary:

Corollary 2.18. (a) In a triangle ABC, if AB = BC then ∠BAC = ∠BCA.

(b) If AB = BC and M is a midpoint of AC then BM ⊥ AC.

Proof. (a) Follows as △ABC ∼= △CBA by SAS.
Then (b) follows as △BAM ∼= △BCM by SAS in view of (a).

In Euclidean plane, triangles with three equal angles are not necessarily congruent,
but only similar. This is not the case in S2:
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Theorem 2.19. AAA holds for spherical triangles.

Proof. Consider the polar triangles Pol(ABC) and Pol(A′B′C ′). By Bipolar Theorem
(Theorem 2.16(b)) AAA for initial triangles turns into SSS for the polar triangles.
Hence, Pol(ABC) is congruent to Pol(A′B′C ′). Applying Theorem 2.16 again, we
conclude that ABC is congruent to A′B′C ′.

2.5 Sine and cosine rules for the sphere

a. Sine and cosine rules on the plane

Before discussing spherical sine and cosine rules, lets recall the statements for Euclidean
plane:

Consider a triangle on E2 with sides a, b, c and opposite angles α, β, γ, as in Fig. 26,
left. Then:

sine rule: a
sinα = b

sinβ = c
sin γ

cosine rule: c2 = a2 + b2 − 2ab cos γ

Proof. Sine rule: Let A,B,C be the vertices of the triangle with the angles α, β, γ
respectively. Drop the perpendicular BH from B to AC, see Fig. 26, right. Then
BH = c sinα = a sin γ, which implies c

sin γ
= a

sinα
. The other equality is obtained by

symmetry.

Cosine rule: With the same H as before, we have BH = a sin γ, CH = a cos γ, then

c2 = AH2 +BH2 = (b− CH)2 +BH2

= (b2 − 2b · a cos γ + a2 cos2 γ) + a2 sin2 γ = a2 + b2 − 2ab cos γ.

C

γ

A

c ac a

b
α

HA C

BB

α γ

β

Figure 26: Triangle △ABC.
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b. Sine and cosine rules on the unit sphere

Theorem 2.20 (Sine rule for the unit S2). sin a
sinα

= sin b
sinβ

= sin c
sin γ

.

Proof. - Let H be the orthogonal projection of A to the plane OBC.

- Let Ab and Ac be orthogonal projections of H to the lines OB, OC respectively,
see Fig. 27, left.

- As AH ⊥ OHC and HAc ⊥ OC,
Theorem of three perpendiculars (Theorem 1.42) implies that AAc ⊥ OC.

- As OC ⊥ AcH and OC ⊥ AcA,
we see that ∠AAcH = ∠(OHC,OAcA) = ∠(OBC,OAC) = γ
see Fig. 27, right.

- AH
△AHAc
= AAc sin γ

△AOAc
= AO sin(π − b) sin γ = R sin b sin γ.

- Similarly, AH = AAb sin β = · · · = R sin c sin β.

- We conclude that sin b
sinβ

= sin c
sin γ

.

A A

H H

BB

CC
Ab

Ac O O
Ac

Figure 27: Proof of the sine rule on the sphere.

Remark. If a, b, c are small then a ≈ sin a and the spherical sine rule transforms into
Euclidean one.

Corollary. (Thales Theorem) If a = b then ∠α = ∠β, i.e. the base angles in isosceles
triangles are equal.

Theorem 2.21 (Cosine rule for S2). cos c = cos a cos b+ sin a sin b cos γ.

Proof. We skip the proof in the class, but one can find it in any of the following:
- Prasolov, Tikhomirov: Section 5.1, p.87;
- Prasolov: p.48.
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Remark. If a, b, c are small then cos a ≈ 1 − a2/2 and the spherical cosine rule
transforms into Euclidean one.

Theorem 2.22 (Second cosine rule). cos γ = − cosα cos β + sinα sin β cos c.

Proof. Let A′B′C ′ = Pol(ABC) be the triangle polar to ABC. Then by Bipolar
Theorem (Theorem 2.16) a′ = π−α, cos a′ = − cosα, sin a′ = sinα. Applying the first
cosine rule (Theorem 2.21) to △A′B′C ′ we get

cos c′ = cos a′ cos b′ + sin a′ sin b′ cos γ′,

which implies
− cos γ = cosα cos β − sinα sin β cos c.

Remark.

(a) If a, b, c are small then cos a ≈ 1 and from the second cosine rule we have
cos γ = − cosα cos β+sinα sin β = cos(α+β), which means that γ = π−(α+β).
So, the second cosine rule transforms into α + β + γ = π.

(b) For a right-angled triangle with γ = π/2 we have sin γ = 1, cos γ = 0. So we
obtain:

sine rule: sin b = sin c · sin β,
cosine rule: cos c = cos a cos b (Spherical Pythagorean Theorem).

(c) Is there a “second sine rule” on the sphere?
Writing the sine rule for the polar triangle only changes the places of numerators
and denominators in the sine rule and does not lead to anything new...

2.6 More about triangles

The following properties of spherical triangles are exactly the same as the corresponding
properties of Euclidean triangles:

Proposition 2.23. For any spherical triangle,

1: angle bisectors are concurrent;

2,3,4: perpendicular bisectors, medians, altitudes are concurrent.

5,6: There exist a unique inscribed and a unique circumscribed circles for the triangle.

Proof. - Parts 1,2 are discussed in HW 5.2 (and can be done as for E2).

- Parts 3,4 are discussed in HW 6.5 (here, one needs to use some projections to
reduce the statement to similar statements on E2.

- Parts 5,6 follow directly from 1,2 respectively (as on E2, one needs to think about
an angle bisector as a locus of points on the same distance from the sides of the
angle and a perpendicular bisector as a locus of points on the same distance from
the endpoints of the segment).
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Remark. To define an altitude AH in a triangle △ABC, we need to assume that at
least one of angles ∠B and ∠C in △ABC is not a right angle.

So, There are many common properties for triangles in S2 and E2, however, not
everything about spherical triangles works exactly the same way as in Euclidean plane:

Example 2.24. Let M , N be the midpoints of AB and AC in a spherical triangle
ABC. Then MN > AC/2.
One can use cosine law to prove the statement, see HW 6.6.

Moreover, for some triangles in the sphere one can even have MN > AC, or even
MN > 100AC!
To see this take B to be the North Pole, and A and C to be the points on the same
parallel very close to the South Pole.

2.7 Area of a spherical triangle

We will denote area of X by S(X) or by SX and will assume the following properties
of the area:

• S(X1 ⊔X2) = S(X1) + S(X2)
where ⊔ means a disjoint union, i.e. interior of X1 is disjoint from interior of X2.

• If f is an isometry of S2 then S(X) = S(f(X)) for any domain X ∈ S2.

• S(S2) = 4πR2 for a sphere of radius R.

Theorem 2.25. The area of a spherical triangle with angles α, β, γ equals

(α + β + γ − π)R2,

where R is the radius of the sphere.

Proof. 1. Consider a spherical digon, i.e. one of 4 figures obtained when S2 is cut
along two lines. See Fig. 28, left. Let S(α) be the area of the digon of angle α.

2. S(α) is proportional to α. Indeed we can divide the whole sphere into 2n con-
gruent digons, and obtain that S(π/n) = 4πR2/2n. This will show the propor-
tionality for π-rational angles. For others we will apply continuity of the area.
As S(2π) = S(sphere) = 4πR2, we conclude that S(α) = 2αR2.

3. - The pair of lines AB and AC meeting at angle α determines two α digons.

- Similarly, AB and BC gives two β-digons and AC,CB gives two γ-digons,
see Fig. 28, middle.

- The total area of all six digons is Sdigons = 2R2(2α + 2β + 2γ).

- Triangle ABC is covered by three digons, also triangle A′B′C ′ antipodal to
ABC is covered by 3 digons.

- All other parts of S2 are covered only by one digon each, see Fig. 28, right.

- So,
3(SABC + SA′B′C′) + SS2\{△ABC∪△A′B′C′} = Sdigons.

Hence, 2(SABC + SA′B′C′) + SS2 = Sdigons. Which implies

4SABC + 4πR2 = 2R2(2α + 2β + 2γ)

and we get SABC = R2(α + β + γ − π).
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α

A′ B′

C ′

A B

C

Figure 28: Computing the area of a triangle using digons

Corollary 2.26. π < α + β + γ < 3π.

Proof. The area of triangle is positive. Also, every angle is smaller than π.

Corollary 2.27. 0 < a+ b+ c < 2π.

Proof. Let A′B′C ′ = Pol(ABC) . Then α′ + β′ + γ′ > π, and by Bipolar Theorem
(Theorem 2.16) we have (π− a) + (π− b) + (π− c) > π, which implies a+ b+ c < 2π.

Theorem 2.28. No domain on S2 is isometric to a domain on E2.

Proof. One proof directly follows from sine or cosine rule, another from the sum of
angles of a triangle.

The third proof is by comparing the length of circles of radius r: a spherical circle
of radius r has length 2π sin r while in E2 such a circle would have length 2πr, see
Fig. 29 (we leave the computation as an excercise).

r

1

sin r

Figure 29: Computing length of spherical circle
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2.8 Isometries of the sphere

Example 2.29. The following maps are isometries of S2 (as they are restrictions to
S2 of isometries in E3):

- Rotation about a point A on the sphere may be understood as a restriction of
rotation of E3 about the corresponding diameter of the sphere.

- Reflection with respect a line l on S2 may be understood as a restriction of
reflection in E3 with respect to the plane α s.t. l = α ∩ S2.

- Antipodal map is a restriction of the symmetry in E3 with respect to the point
O.

Figure 30: Examples of isometries on S2: rotation, reflection and antipodal map.

Proposition 2.30. Every non-trivial isometry of S2 preserving two non-antipodal
points A,B is a reflection (with respect to the line AB).

Proof. - Suppose f ∈ Isom(S2), such that f(A) = A, f(B) = B, f(X) = X ′ ̸= X.

- Since f is an isometry, we see that △ABX is congruent to △ABX ′ (by SSS),
see Fig. 31, left. Hence, ∠ABX = ∠ABX ′.

- SinceX ̸= X ′, this implies thatX andX ′ lie in different hemispheres with respect
to AB.

- Consider the point H ∈ AB such that ∠XHB = π/2. Then △HCB ∼= △HX ′B
by SAS. This implies that X ′ = rAB(X) is a reflection image of X.

Proposition 2.31. Given points A,B,C, satisfying AB = AC, there exists a reflection
r such that r(A) = A, r(B) = C, r(C) = B.

Proof. Let M be the midpoint of BC, let r = rAM be the reflection with respect
to AM , see Fig. 31, right. Then △AMB ∼= △AMC by SSS, which implies that
∠BMA = ∠AMC = π/2, and hence r swaps B and C.

Exercise. The line through BC in the proof above contains 2 segments with endpoints
B,C. Are there two distinct solutions for r?
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X

X ′

H BA AB

C

M

Figure 31: To the proofs of Propositions 2.30 and 2.31

Example 2.32. A glide reflection is an isometry defined by f = rl ◦RA,φ = RA,φ ◦ rl,
where rl is a reflection with respect to a line l and RA,φ is a rotation about A = Pol(l),
see Fig. 32, left.

Theorem 2.33. 1. An isometry of S2 is uniquely determined by the images of 3
non-collinear points.

2. Isometries act transitively on points of S2 and on flags in S2

(where a flag is a triples (A, l, h+), where A is a point, l is a line containing A,
and h+ is a choice of hemisphere bounded by l).

3. The group Isom(S2) is generated by reflections.

4. Every isometry of S2 is a composition of at most 3 reflections.

5. Every orientation-preserving isometry is a rotation.

6. Every orientation-reversing isometry is either a reflection or a glide reflection.

Proof. 1-4 are proved similarly to their analogues in E2.
5: An orientation-preserving isometry of S2 is a composition of 2 reflections with

respect to some lines l1, l2. As any two lines intersect non-trivially on S2, we conclude
that it is a rotation.

6: See Lemma 2.34 below.

Lemma 2.34. Let r1, r2, r3 be distinct reflections not preserving the same point of S2.
Then r3 ◦ r2 ◦ r1 is a glide reflection.

Proof. To show the lemma we will use non-uniqueness of presentation of an isometry
as a composition of reflections.
We will denote by r∗X a reflection with respect to the line l∗X . Also, denote g = r3◦r2◦r1.

Notice, that the lines l1, l2, l3 are all distinct and not passing through the same
point.
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- Let A = l1 ∩ l2. Let l′2 be the line through A orthogonal to l3. There exists a line
l′1 through A such that r2 ◦ r1 = r′2 ◦ r′1. Hence,

g = r3 ◦ r2 ◦ r1 = r3 ◦ (r′2 ◦ r′1) = (r3 ◦ r′2) ◦ r′1,

see Fig. 32 (the two diagrams in the middle).

- Similarly, let B = l3 ∩ l′2. Let l′′3 ⊥ l1 be the line through B orthogonal to l′1 and
let l′′2 be the line such that r3 ◦ r′2 = r′′3 ◦ r′′2 (i.e. l′′3 ⊥ l′′2), see Fig. 32 (the two
diagrams on the right). Then we get

g = (r′′3 ◦ r′′2) ◦ r′1 = r′′3 ◦ (r′′2 ◦ r′1),

where r′′3 is the reflection in l′′3 and (r′′2 ◦ r′1) is the rotation about the point l′′2 ∩ l1
polar to l′′3 . Hence, g is a glide reflection.

A
ϕ

l
X

f(X)

l1

l2

l3

l′1

l′2
l3

l′1

l′′2

l′′3

Figure 32: Glide reflection and a composition of three reflections

Remark. We could try to prove the lemma shorter by saying that r3 ◦ r2 ◦ r1 =
(r3 ◦ r2) ◦ r1 is a composition of a rotation and reflection, as required. But we don’t
know (and it is not always true) that the centre of the rotation (r3 ◦ r2) is polar to the
line of reflection r3.

Exercise. What is the type of the antipodal map?

Remark 2.35. Fixed points of isometries on S2 distinguish the types of isometries.
Indeed, fixed points of identity map, reflection rl, rotation RA,α and a glide reflection

are the whole sphere, the line l, the pair of antipodal points A,A′ and the empty set
respectively.

Theorem 2.36. (a) Every two reflections are conjugate in Isom(S2).

(b) Rotations by the same angle are conjugate in Isom(S2).

Proof. Idea of proof:

(a) Let r1 and r2 be reflection with respect to the lines l1 and l2. Let l be an angle
bisector for an angle formed by l1 and l2. Then r2 = r−1

l ◦ r1 ◦ rl (indeed, rl takes
l2 to l1, then r1 preserves l1, then r−1

l takes l1 back to l2, so, the composition
r−1
l ◦ r1 ◦ rl preserves l2 pointwise and changes the orientation, which means that
it coincides with r2).
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(b) Let A and B be the centres of the two rotations RA,φ,RB,φ, let l be the orthogonal
bisector of AB. Then R−1

A,φ = r−1
l ◦ RB,φ ◦ rl. Also, R−1

A,φ is conjugate to R−1
A,φ

since the rotation RA,φ = r2 ◦ r1 is a composition of some reflections r1, r2, and
the inverse is R−1

A,φ = r1 ◦ r2 = r−1
1 ◦ (r2 ◦ r1) ◦ r1.

Remark 2.37. As S2 ⊂ E3, we have Isom(S2) ⊂ Isom(E3) (more precisely, isometries
of the sphere is the origin-preserving subgroup of isometries of E3). This is given by
orthogonal 3× 3 matrices (i.e. matrices satisfying ATA = AAT = I.)

Orientation reversing isometries correspond to matrices with det = −1, while
orientation-preserving to ones with det = 1.
Orientation-preserving isometries form a subgroup given by

SO(3,R) = {A ∈M3|ATA = I, detA = 1}.

2.9 Platonic solids and their symmetry groups (NE)

(Non-examinable section)

We conclude our exposition of spherical geometry by a brief discussion of symmetry
groups of Platonic solids, i.e. regular polyhedra known since antiquity, namely

tetrahedron, cube, octahedron, dodecaghedron and icosohedron

(see Fig.33, left to right).

Definition 2.38. By a regular polyhedron we mean a polyhedron P with largest possi-
ble group of symmetries GP , i.e. the group GP should act on P by isometries mapping
its vertices to vertices, and the action GP : P should be transitive

- on vertices of P ;

- on edges of P ;

- on faces of P .

Moreover, GP should act transitively on flags in P , i.e. on triples (V,E, F ) where V is
a vertex, and E is an edge such that V ∈ E, and F is a face of P such that E ∈ F .

To find a fundamental domain of the action, one needs to choose a flag (V1, E1, F1)
in P . Let A = V1 be a vertex, and B be a midpoint of the edge E1 and C be a centre
of the face F1. Then one can check that the triangle ABC is a fundamental domain of
the action GP : P .

Projecting P from its center O to a sphere centred at O one can turn the triangle
ABC into a spherical triangle A′B′C ′. One can check that the angles of this spherical
triangle are

- (π
2
, π
3
, π
3
) when P is a tetrahedron;

- (π
2
, π
3
, π
4
) when P is a cube or an octahedron;

- (π
2
, π
3
, π
5
) when P is a dodecahedron or an icosohedron.
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Figure 33: Regular polyhedra (from left to right): tetrahedron, cube, octahedron,
dodecahedron and icosohedron.

One can also check that the group GP : S2 is generated by reflections with respect to
the sides of the triangle A′B′C ′.

Remark 2.39. Let H : S2 be an action. As the sphere is a compact set, H acts on S2

discretely if and only if H is a finite group.

Remark 2.40. A group H generated by reflections on S2 is finite if and only if

• H is generated by 1 or 2 reflections;

• H is generated by reflections with respect to the sides of one of the following
triangles with angles:

– (π
2
, π
2
, π
n
), n ∈ Z, n ≥ 2;

– (π
2
, π
3
, π
3
), (π

2
, π
3
, π
4
), (π

2
, π
3
, π
5
).

Remark 2.41. Notice that the same group serves as the symmetry group for the cube
and the octohedron - this is because the cube is dual to the octahedron (if we take
a regular cube and mark the centeres of its faces, then the six marked points will be
vertices of a regular octahedron; also, we can obtain a cube if we highlight the centeres
of faces of the octahedron). Similarly, an icosohedron is dual to a dodecahedron, while
a tetrahedron is dual to itself.
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2.10 References

- In this section, we have mostly followed the exposition in
V. V. Prasolov, Non-Euclidean Geometry (see Lecture I and pp. 48-49)
or you can find the same material in pp. 83-87 of
V. V. Prasolov, V. M. Tikhomirov Geometry.

- The spririt of our discussion of isometry group of the sphere follows the paper by
Oleg Viro: O. Viro, Defining relations for reflections. I, arXiv:1405.1460v1.

- For another exposition concerning the isometry group of the sphere see
G. Jones, Algebra and Geometry, Lecture notes (Section 2.2).

- More general notion of polarity comparing to the one considered in Section 2.3
is presented in Sections 16-17 of the following lecture notes:
A. Barvinok, Combinatorics of Polytopes.

- One can read about tilings by triangles in
V. V. Prasolov, Non-Euclidean Geometry , Lecture X, p. 34-36,
or in
V. V. Prasolov, V. M. Tikhomirov, “Geometry”, Section 5.5, p 185-187.
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3 Affine geometry

An affine space is a vector space whose origin we try to forget about.
Marcel Berger

We consider the same space R2 as in Euclidean geometry but with larger group acting
on it.

3.1 Similarity group

Similarity group, Sim(R2) is a group generated by all Euclidean isometries and scalar

multiplications, i.e. transformations given by (x1, x2) 7→ (kx1, kx2), k ∈ R.

Its elements may change size, but preserve the following properties:
angles, proportionality of all segments, parallelism, similarity of triangles.

This means that many problems in Euclidean geometry are actually problems about
“similarity geometry”.

Example 3.1. Consider the following theorem of Euclidean geometry:

A midline in a triangle is twice shorter than the corresponding side.

One can prove it as follows. Let M and N be the midpoints of AB and BC in the
triangle ABC, see Fig. 34. Let B = 0 be the origin, consider the map f : C → C
taking z → 2z, i.e. the map which doubles every distance. Then for every segment I
the length of f(I) is twice the length of I. In particular, as f(M) = A and f(N) = C,
we get |AC| = 2|MN |.

A C

B

M N

Figure 34: Length of midline using similarity

Remark. A map which may be written as a scalar multiplication in some coordinates
in R2 is called homothety (with positive or negative coefficient depending on the sign
of k).

Here, one can find the picture of a pantograph and a Sylvester machine - two mecha-
nisms for implementing similarity (webpage by Rémi Coulon).
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3.2 Affine geometry

Instead of scalar maps, as in “similarity geometry”, now we will consider all non-
degenerate linear maps.

Affine transformations are all transformations of the form f(x) = Ax + b where A ∈
GL(2,R).

Proposition 3.2. Affine transformations form a group.

Proof. We leave the proof as an exercise. You need to write f(x) = Ax + b and to
find the composition of two such maps, then to find f−1 and an identity map. The
associativity will follow from associativity of composition.

Example 3.3. (a) Consider the map f : C → C given by f(z) = 2z + 2 + i. By
definition f ∈ Aff(R2), but also one can notice that f ∈ Sim(R2).

(b) Now, consider f :

(
x
y

)
→

(
2x+ y + 1
−x+ y + 2

)
. As det

(
2 1
−1 1

)
= 3 ̸= 0, we conclude

that f ∈ Aff(R2). At the same time f /∈ Sim(R2.

Figure 35: Examples of affine maps (see Example 3.3).

Affine transformations do not preserve length, angles, area.

Proposition 3.4. Affine transformations preserve

(1) collinearity of points;

(2) parallelism of lines;

(3) ratios of lengths on any line;

(4) concurrency of lines;

(5) ratio of areas of triangles (so ratios of all areas).

Proof. Linear maps preserve the properties (1)-(5), translations also preserve them.
So, affine maps, as their compositions, also preserve all these properties.

Proposition 3.5. (1) Affine transformations act transitively on triangles in R2.
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(2) An affine transformation is uniquely determined by images of 3 non-collinear
points.

Proof. (1) Let ABC and A′B′C ′. We want to find a map f(x) = Ax + b such that
f(ABC) = A′B′C ′. We will find it as a composition f = g ◦ h, where

A,B,C
g→
(
0
0

)
,

(
1
0

)
,

(
0
1

)
h→ A′, B′, C ′.

The map h is easy to find, and so is the map g−1. This implies that the compo-
sition f = g ◦ h exists.

(2) Suppose there are two different affine transformations f and g taking the non-
collinear points A,B,C to A′, B′, C ′. Then the transformation g−1 ◦ f ̸= id is a
non-trivial transformation preserving all three points A,B,C. Let h be the affine

transformation taking the points

(
0
0

)
,

(
1
0

)
,

(
0
1

)
to A,B,C. Then the affine

transformation h−1 ◦ (g−1 ◦ f) ◦h preserves the points

(
0
0

)
,

(
1
0

)
,

(
0
1

)
(and it is

a non-trivial transformation, since it is conjugate to a non-trivial one). Which is

a contradiction, as a transformation Ax + b taking the points

(
0
0

)
,

(
1
0

)
,

(
0
1

)
to themselves clearly has b =

(
0
0

)
and A =

(
1 0
0 1

)
.

Example 3.6. We will use the affine group to show the following statement of Eu-
clidean geometry:

The medians of a triangle in E2 are concurrent.

Proof.

- The statement is trivial for a regular triangle (as each of the three medians passes
through the centre of the triangle).

- Apply an affine transformation f which takes some regular triangle to the given
triangle ABC.

- f takes the medians of the regular triangle to the medians of ABC (as it maps
vertices to vertices and midpoints to midpoints).

- So, it takes the intersection of the three medians to the intersection of the three
medians of ABC.

Theorem 3.7. Every bijection f : R2 → R2 preserving collinearity of points, between-
ness and parallelism is an affine map.

Proof.

- Let g be an affine map which takes

the points

(
0
0

)
,

(
1
0

)
,

(
0
1

)
to f(

(
0
0

)
), f(

(
1
0

)
), f(

(
0
1

)
).

(this map exists by Theorem 3.5).
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- We want to show f(x) = g(x) for all x ∈ R2.

- We will denote the points by their complex coordinates, so by now we know the
desired property for 0, 1, i.

- As affine maps take parallel lines to parallel lines and f also preserves collinearity,
we conclude that f(x) = g(x) also for x = 1+ i (as 1 + i lies on the line though
1 parallel to the line through O and i and on also it lies on the line through i
parallel to the line through 0 and 1), see Fig. 36, left.

- Similarly, we use the points i, 1 + i, 1 to conclude the property for the point 2,
see Fig. 36 middle left.

- Applying this procedure, one can show the property for all integer points a+ bi,
a, b,∈ Z.

- Every half-integer point a + bi, a, b,∈ 1
2
Z can be obtained as an intersection of

two segments with integer endpoints, so the property also holds for half-integer
points, see Fig. 36 middle right and right..

- Applying the previous step again, we obtain the property for 1
4
-integer points,

then for 1
8
-integer points, and so on... We will get smaller and smaller lattices.

- As f preserves betweenness and coincides with g on a dense set of points, we
conclude that f is continuous and f(x) = g(x) for all x ∈ R2.

(More precisely, we first conclude this for all horisontal and vertical lines x1 = a
and x2 = b, where a, b ∈ Z/2n for some n, and then extend it to any point (x1, x2)
by looking at any non-horizontal and non- vertical line l through it).

10

1+ii
f(1+i)

2

Figure 36: To the proof of Theorem 3.7.

Remark. If f is a bijection R2 → R2 preserving collinearity,
then it preserves parallelism and betweenness.

Proof. Parallelism: of f takes parallel lines to the lines intersecting at the point A,
consider f−1(A). It exists because f is a bijection, and it would lie on both of the
parallel lines as f preserves collinearity. The contradiction shows that f preserves
parallelism.
Betweenness: the argument here is much more involved, we will skip it. You can find
the argument on pp.40-41 in the book by Prasolov and Tikhomirov.
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This allows as to reformulate Theorem 3.7 as follows.

Theorem 3.7’. (The fundamental theorem of affine geometry).
Every bijection f : R2 → R2 preserving collinearity of points is an affine map.

Corollary 3.8. If f : R2 → R2 is a bijection which takes circles to circles, then f is
an affine map.

Proof.

(1) The transformation f−1 maps three collinear points f(A), f(B), f(C) to 3 three
collinear points A,B,C.

- Indeed, if the points A,B,C are not collinear, then they are pairwise distinct
and there is a circle through A,B,C.

- Hence, f(A), f(B), f(C) are also pairwise distinct (as f is bijective) and lie
on a circle (since f maps circles to circles).

- Then f(A), f(B), f(C) cannot lie on one line.

(2) From (1) and Theorem 3.7’ we conclude that f−1 is affine, which implies that f
is also affine.

Remark. An affine transformation takes ellipses to ellipses. So, in Corollary 3.8 we
can change the circles to ellipses.

Example 3.9 (Parallel Projection). Consider two copies α and β of a two-dimensional
plane in R3, let suppose that each of α and β are endowed with coordinates. Project
from α to β by parallel rays (the rays should not be parallel to any of α and β!).
Then we get a bijection between the two planes, and one can see that this bijection is
preserving parallelism (indeed, if two parallel lines l,m ∈ α are mapped to intersecting
lines l′,m′ ∈ β, then what is the preimage of the intersection l′ ∩m′ ∈ β?). Applying
the fundamental theorem of affine geometry, we conclude that the parallel projection
is an affine map.

Proposition 3.10. Every parallel projection is an affine map, but not every affine map
is a parallel projection.

Proof. It is already shown in Example 3.9 that the parallel projections are affine maps.
To see the second statement, consider the affine map f : z → 2z:

- Suppose that f is a parallel projection f : α→ β.

- The planes α and β are not parallel (otherwise, f would be an isometry, which
is not the case).

- Consider the line of intersection α ∩ β. Every point of this line is mapped by f
to itself, so the distance between two points on that line is preserved.

- At the same time z → 2z makes all distances twice longer. So, f : z → 2z cannot
be a parallel projection.

Exercise 3.11. Every affine map can be obtained as a composition of two parallel
projections. (See also p.18 in Geometry, Lecture notes, by Norbert Peyerimhoff).
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3.3 References

- Most of the material above (and more information on affine geometry) may be
found in
G. Jones, Algebra and Geometry, Lecture notes (Section 3).

- For fundamental theorem of affine geometry and its corollaries see
V. V. Prasolov, V. M. Tikhomirov, Geometry , Section 2.1. pp.39-42.

- For another exposition of affine geometry, based on parallel projection, see
N. Peyerimhoff, Geometry, Lecture notes, (Section 2, Section 2.1 and 2.2.).

- Illustrating Mathematics by Rémi Coulon: a panthograph and a Sylvester ma-
chine.
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a

Albrecht Dürer, The Draughtsman of the Lute. Woodcut.
From Dürer’s “ Unterweysung der Messung mit dem Zyrkel und Richtscheyd”, 1525.
Image from https://www.metmuseum.org/art/collection/search/387741
(OA public domain)

https://www.metmuseum.org/art/collection/search/387741


4 Projective geometry

Projective geometry is all geometry.
Arthur Caley

Motivation: We have considered larger and larger groups acting on the same space R2,
now we are going to consider even larger group Proj(a) of projective transformations:

Isom(E2) ⊂ Sim(2) ⊂ Aff(2) ⊂ Proj(2).

The bigger is the group acting, the smaller is the set of properties it preserves. Now,
we will extend the group so that is will only preserve collinearity (but not parallelism
or betweenness).

The group Proj(2) of projective transformations will act transitively on the pairs of
lines, in particular there will be transformations taking intersecting lines into parallel.
The intersection point of the lines in this case still needs to be mapped somewhere.
This motivates the idea of adding some points to the plane, namely “points at infinity”
(we will have infinitely many of them, more precisely, one point for each direction).

4.1 Projective line, RP1

Model:

- Points of the projective line are lines though the origin O in R2.

On the plane with coordinates (x1, x2) consider the line l0 given by the equation
x2 = 1. Then every line l through the origin O can be represented by the
coordinates of the intersection l ∩ l0 = (x, 1), except for the line Ox1 which does
not intersect l0, see Fig. 37.
We will assign to Ox1 a special point, “point at infinity” and will denote it x∞.

x1

x2
l : x2=1

Figure 37: Projective line: set of lines through O in R2.

- Group action: GL(2,R) acts on R2 by mapping a line though O to another line

through O: a matrix A =

(
a b
c d

)
with ad− bc ̸= 0 maps the point (λx, λ) ∈ l to

(
a b
c d

)(
λx
λ

)
= λ

(
ax+ b
cx+ d

)
.

If cx+ d ̸= 0, we can write A : (x, 1)→ (ax+b
cx+d

, 1).

The point (−d/c, 1) is mapped to x∞. So, GL(2,R) acts on RP1.
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- Homogeneous coordinates: a line through O is determined by a pair of num-
bers (ξ1, ξ2), where (ξ1, ξ2) ̸= (0, 0).

The pairs (ξ1, ξ2) and (λξ1, λξ2) determine the same line, so are considered as
equivalent.

The ratio (ξ1 : ξ2) determines the line and is called homogeneous coordinates of
the corresponding point in RP1.

The GL(2,R)-action in homogeneous coordinates writes as

A : (ξ1 : ξ2) 7→ (aξ1 + bξ2 : cξ1 + dξ2), where A =

(
a b
c d

)
,

and is called a projective transformation.

Remark. Projective transformations are called this way since they are compositions of
projections (of one line to another line from a point not lying on the union of that lines).
The following several statements will help us to prove that projective transformations
are exactly the set of all possible compositions of such projections.

Lemma 4.1. Let points A2.B2, C2, D2 of a line l2 correspond to the points A1, B1, C1, D1

of the line l1 under the projection from some point O /∈ l1 ∪ l2. Then

|C1A1|
|C1B1|

/ |D1A1|
|D1B1|

=
|C2A2|
|C2B2|

/ |D2A2|
|D2B2|

.

Proof. For a triangle ∆ let S∆ denote the Euclidean area of ∆. Recall that given a
Euclidean triangle ABC with altitude BH one has

SABC =
1

2
|BH| · |AC| = 1

2
|AB| · |AC| sin∠BAC. (4.1)

In particular, SOC1A1 =
A1C1·h

2
, SOC1B1 =

A1B1·h
2

, where h is the distance from O to
the line l1. Hence, we have

|C1A1|
|C1B1|

=
SOC1A1

SOC1B1

(4.1)
=
|OC1||OA1| sin∠A1OC1

|OC1||OB1| sin∠B1OC1

=
|OA1| sin∠A1OC1

|OB1| sin∠B1OC1

,

which implies that

|C1A1|
|C1B1|

/ |D1A1|
|D1B1|

=
|OA1| sin∠A1OC1

|OB1| sin∠B1OC1

/ |OA1| sin∠A1OD1

|OB1| sin∠B1OD1

=
sin∠A1OC1

sin∠A1OD1

· sin∠B1OD1

sin∠B1OC1

=
sin∠A2OC2

sin∠A2OD2

· sin∠B2OD2

sin∠B2OC2

= RHS.

Definition 4.2. Let A,B,C,D be four points on a line l, and let a, b, c, d be their
coordinates on l. The value [A,B,C,D] := c−a

c−b

/
d−a
d−b

is called the cross-ratio of these
points.

So, we can reformulate Lemma 4.1 as follows.

Lemma 4.1’. Projections preserve cross-ratios of points.
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l2

l1

D2C2B2A2

D1

C1B1A1

O

Figure 38: Projection preserves cross-ratio.

Definition 4.3. The cross-ratio of four lines lying in one plane and passing through
one point is the cross-ratio of the four points at which these lines intersect an arbitrary
line l.

Remark. By Lemma 4.1’, Definition 4.3 does not depend on the choice of the line l.

Proposition 4.4. Any composition of projections is a linear-fractional map.

Proof. Let f be a composition of projections. Let a′, b′, c′ be images of points a, b, c
under a composition of projections. By Lemma 4.1’, [a, b, c, x] = [a′, b′, c′, f(x)], i.e.

c− a
c− b

/x− a
x− b =

c′ − a′
c′ − b′

/f(x)− a′
f(x)− b′ .

Expressing f(x) from this equation we get f(x) = αx+β
γx+δ

for some α, β, γ, δ.

Proposition 4.5. A composition of projections preserving 3 points is an identity map.

Proof. We leave the proof as an exercise.
Hint: use f(x) = αx+β

γx+δ
and show that if f fixes three points then either f(x) = x or

there is a quadratic equation with 3 roots.

Lemma 4.6. Given A,B,C ∈ l and A′, B′, C ′ ∈ l′, there exists a composition of
projections which takes A,B,C to A′, B′, C ′.

Proof.

• Consider any line l′′ such that A′ ∈ l′′ and l′′ ̸= l′. Let O ∈ AA′ be any point, see
Fig. 39.

• Project B,C from O to l′′. This will define points B′′ and C ′′ respectively.

• Let P = B′B′′ ∩ C ′C ′′. Project l′′ to l′ from P . The composition of the two
projections takes points A,B,C to A′B′C ′.

53



A′ = A′′ B′ C ′

O

P

C
B

A
l

l′

l′′

B′′
C ′′

Figure 39: To the proof of Lemma 4.6.

Remark. If in the proof above B′B′′||C ′C ′′ we can chose another line l′′ so that the
lines will not be parallel (in particular, if we move l′′ so that it crosses BO and CO
closer to the point O, then the intersection P = B′B′′ ∩C ′C ′′ moves also closer to O).

Theorem 4.7.

(a) The following two definitions of projective transformations of RP1 are equivalent:

(1) Projective transformations are compositions of projections;

(2) Projective transformations are linear-fractional transformations.

(b) A projective transformation of a line is determined by images of 3 points.

Proof. First, we will prove part (a) of the theorem.

(1)⇒(2) Compositions of projections are linear-fractional transformations by Proposi-
tion 4.4.

(1)⇐(2) We will prove this in three steps.

(i) We will now show that

linear-fractional transformations preserve cross-ratios.

Indeed, if yi =
αxi+β
γxi+δ

, then one can check that

yi − yj =
(αγ − βδ)(xi − xj)
(γxi + δ)(γxj + δ)

.

Denote ui =
1

γxi+δ
. Then

y3 − y1
y3 − y2

/y4 − y1
y4 − y2

= [x1, x2, x3, x4]
u3 · u1
u3 · u2

/u4 · u1
u4 · u2

= [x1, x2, x3, x4].
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(ii) Hence, a linear-fractional transformation is determined by the images of
3 points. Indeed, if there are two linear-fractional transformations f and
g which take A,B,C to A′, B′, C ′, then g−1 ◦ f is a non-triavial linear-
fractional transformaion preserving three points A,B,C, which is impossible
as would lead to a quadratic equation with 3 roots (compare to the proof of
Proposition 4.5).

(iii) Let f be a linear-fractional transformation. By Lemma 4.6, there exists a
composition of projections φ which takes A,B,C ∈ R to f(A), f(B), f(C).
In view of the part ((1)⇒(2)), the map φ is linear-fractional. Then Step
(ii) implies that φ = f (i.e. a linear-fractional map f is the composition of
projection φ).

This completes the proof of part (a) of the theorem. Part (b) follows now from
Step (ii).

4.2 Projective plane, RP2

Model:

- Points of RP2 are lines through the origin O in R3.
Let x1, x2, x3 be coordinates in R3 and let α ∈ R3 be the plane x3 = 1.
For each line l /∈ Ox1x2 take a point l ∩ α, see Fig. 40.
For each line in the plane Ox1x2 assign a “point at infinity”.

x1

x2

x3

α : x3=1

Figure 40: Projective plane: set of lines through O in R3.

- Lines of RP2 are planes through O in R3.
All points at infinity form a line at infinity (a copy of RP1).

- Group action: GL(3,R) (acts on R3 mapping a line though O to another line
through O).

- Homogeneous coordinates:

· A line though O is determined by a triple of numbers (ξ1, ξ2, ξ3), where
(ξ1, ξ2, ξ3) ̸= (0, 0, 0).
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· Triples (ξ1, ξ2, ξ3) and (λξ1, λξ2, λξ3) determine the same line, so are consid-
ered equivalent.

· So, lines are in bijection with ratios (ξ1 : ξ2 : ξ3) called homogeneous coordinates.

- Projective transformations in homogeneous coordinates:

A : (ξ1, ξ2, ξ3) 7→ (a11ξ1+a12ξ2+a13ξ3 : a21ξ1+a22ξ2+a23ξ3 : a31ξ1+a32ξ2+a33ξ3),
where A = (aij) ∈ GL(3,R).

- Points and lines in RP2:

· Points are lines through O in R3;

· Lines are 2-dimensional planes through O in R3, see Fig. ??.

· A plane through O can be written as

c1x1 + c2x2 + c3x3 = 0, (4.2)

where (c1, c2, c3) ̸= (0, 0, 0).

· If (c1, c2) ̸= (0, 0) then the plane defined by Equation 4.2 makes a trace on
the plane x3 = 1; this trace if the line given by{

c1
c3
x1 +

c2
c3
x2 = −1 for c3 ̸= 0

c1x1 + c2x2 = 0 for c3 = 0

· The plane x3 = 0 gives a “line at infinity”.

x1

x2

x3

α : x3=1

Figure 41: Projective plane: lines are planes through O in R3.

Remark.

(1) A unique line passes through any given two points in RP2 (as a unique plane
through the origin passes through any two lines intersecting at the origin).

(2) Any two lines in RP2 intersect at a unique point (as any two planes through O
in R3 intersect by a line through O).
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(3) Relation 4.2 establishes duality between points and lines in RP2:
(the point (c1 : c2 : c3) is dual to the plane c1x1 + c2x2 + c3x3 = 0).
So, for any theorem about points in RP2 there should be a dual theorem about
lines.

Theorem 4.8. Projective transformations of RP2 preserve cross-ratio of 4 collinear
points.

Proof. - Let f be a projective transformation and let β ∈ R3 be the plane through
the origin containing the four collinear points whose cross-ratio we consider.

- Find an isometry i ∈ Isom(R3) which takes β to the plane f(β).

- Let φ = f ◦ i−1, i.e. f = φ ◦ i. Notice that φ is a projective transformation of
the projective line β (as φ is a composition of a projective transformation and
an isometry).

- i preserves cross-ratios (as it is an isometry), and φ preserves cross-ratios by
Theorem 4.7. This implies that f preserves cross-ratio of the considered points
(as a composition of cross-ratio preserving maps).

- As the quadruple of collinear points was chosen randomly, we conclude that f
preserves all cross-ratios.

Definition. A triangle in RP2 is a triple of non-collinear points.

Proposition 4.9. All triangles of RP2 are equivalent under projective transformations.

Proof. There exists an element of GL(3,R) which takes three given linearly indepen-
dent vectors to three other given linearly independent vectors.

Definition 4.10. A quadrilateral in RP2 is a set of four points, no three of which are
collinear.

Proposition 4.11. For any quadrilateral Q in RP2 there exists a unique projective
transformation which takes Q to a given quadrilateral Q′.

Proof. - It is sufficient to prove the statement for the fixed quadrilateral

Q′ = Q0 = [(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)].

Indeed, if we have projective transformations f : Q→ Q0 and g : Q′ → Q0, then
g−1 ◦ f is a projective transformation mapping Q→ Q′. Moreover, if φ ̸= g−1 ◦ f
is another projective transformation taking Q to Q′ then g ◦ φ ̸= f is another
projective transformation mapping Q to Q0.

- By Proposition 4.9 we may assume that

Q = [(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (a : b : c)].

Then f =

a 0 0
0 b 0
0 0 c

 is the unique map taking Q0 to Q, which implies that f−1

is the unique map taking Q to Q0.
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Theorem 4.12. A bijective map from RP2 to RP2 preserving projective lines is a
projective map.

Proof. Consider a bijection f : RP2 → RP2. Let l∞ be the line at infinity and f(l∞)
be its image under f . Consider a projective map φ which maps f(l∞) to l∞ (it does
exists as there is a projective map taking any two points in RP2 to any other two
points in RP2). Then the map ψ = φ ◦ f takes l∞ to itself (so, one can restrict it two
ψ : R2 → R2). Also, ψ preserves collinearity (as a composition of the transformation
f preserving collinearity with a projective transformation).

Hence, by Fundamental Theorem of affine geometry the map ψ = φ ◦ f is affine.
This implies that the map f = φ−1 ◦ψ is projective (as a composition of an affine and
projective transformations).

Corollary 4.13. A projection of a plane to another plane is a projective map.

Proof. As a projection preserves the lines, Theorem 4.12 implies that it is a projective
map.

Remark. A projection of a plane α to another plane β is not an affine map if α is not
parallel to β, as in this case some line from α will not be mapped to β.

4.3 Some classical theorems on RP2

Remark on projective duality:

point A = (a1 : a2 : a3) ←→ line lA : a1x1 + a2x2 + a3x3 = 0
A ∈ lB ←→ B ∈ lA
line through A,B ←→ point of intersection: lA ∩ lB
3 collinear points ←→ 3 concurrent lines
... ←→ ...

Proposition 4.14 (On dual correspondence). The interchange of words “point” and
“line” in any statement about configuration of points and lines related by incidence does
not affect validity of the statement.

Proof. The relation a1x1 + a2x2 + a3x3 = 0 is symmetric with respect to the coordi-
nates of the point X and the line lA, applying duality we only change the geometric
interpretation of the equations. Algebra remains the same.

Theorem 4.15 (Pappus’ theorem). Let a and b be lines, A1, A2, A3 ∈ a, B1, B2, B3 ∈
b. Let P3 = B1A2 ∩A1B2, P2 = B1A3 ∩A1B3, P1 = B3A2 ∩A3B2. Then the points
P1, P2, P3 are collinear.

Proof.

- Let P ′
2 = B1A3 ∩ P1P3, let C = B1A3 ∩ A1B2.

We need to show that P2 = P ′
2, see Fig. 44, left.
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- Consider a composition f of 3 projections:

B1A3
A1−→ b

A2−→ B2A3
P3−→ B1A3,

where l1
A−→ l2 denotes a projection of l1 to l2 from A, see Fig. 44, right.

- Notice that f takes C → B2 → B2 → C, so f(C) = C.
Also it takes B1 → B1 → B1A2 ∩B2A3 → B1, so f(B1) = B1.
One can check similarly that f(A3) = A3 and f(P2) = P ′

2.

- So, this is a projective transformation of the line B1A3 preserving the points
C,B1, A3. By Theorem 4.7 (b), f is identity map.

- Since f(P2) = (P ′
2) we conclude that P2 = P ′

2.

C B3

B2

B1

A3A2A1

P1P2P3

B3

B2

B1

A3A2A1

P1

P2
P3

Figure 42: Pappus’ Theorem and its proof by composition of 3 projections.

Remark. Sketch of another proof of Pappus’ Theorem:

- By Proposition 4.11 there exists a projective map taking the points A1A2B2B1

to vertices of a unit square.

- So, we may assume that the points A1, A2, A3 are (0, 1), (1, 1), (a, 1) and the
points B1, B2, B3 are (0, 0), (1, 0), (b, 0).

- Then it is easy to compute the coordinates of the points P1, P2, P3 and check that
the points are collinear.

- To establish collinearity of the points, check that the vectors P1P2 and P1P3 are
proportional.

A1 A2 A3 = (a, 1)

B1 B2 B3 = (b, 0)

Figure 43: Another proof of Pappus’ Theorem.
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Remark 4.16 (Dual statement to Pappus’ theorem). Let A and B be points and
a1, a2, a3 be lines through A, and b1, b2, b3 be lines through B.
Let p1 be a line through b2 ∩ a3 and a2 ∩ b3,

p2 be a line through b1 ∩ a3 and a1 ∩ b3,
p3 be a line through b2 ∩ a1 and a2 ∩ b1.

Then the lines p1, p2, p3 are concurrent.

(This is actually the same statement as Pappus’ theorem itself!)

B

A p2

p1

p3

a1
a2a3

b1

b2
b3B3

B2

B1

A3A2A1

P1

P2
P3

a

b

Figure 44: Pappus’ Theorem and the dual statement.

Remark 4.17. Pappus’ theorem is a special case of Pascal’s Theorem (see Fig. 45):

If A,B,C,D,E, F lie on a conic then the points AB ∩DE, BC ∩ EF , CD ∩ FA are
collinear.

A

B
C

D

E

F

Figure 45: Pascal’s Theorem.

We leave Pascal’s Theorem without proof, you can find the proof in

- V. V. Prasolov, V. M. Tikhomirov. Geometry, (2001). Section 4.2, p. 71.
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P1

P2

P3

P4

P5

P6

Figure 46: Brianchon’s Theorem.

Remark 4.18. Dual to Pascal’s Theorem is Brianchon’s Theorem (see Fig. 46):

Let P1P2P3P4P5P6 be a hexagon formed by 6 tangent lines to a conic. Then the lines
P1P4, P2P5, P3P6 are concurrent.

B3

B2

B1

A3

A2

A1

S P2

P1

P3

Figure 47: Desargues’ Theorem.

Theorem 4.19 (Desargues’ theorem). Suppose that the lines joining the corresponding
vertices of triangles A1A2A3 and B1B2B3 intersect at one point S Then the intersection
points P1 = A2A3 ∩B2B3, P2 = A1A3 ∩B1B3, P3 = A1A2 ∩B1B2 are collinear.

Proof. The idea of the proof is as follows. First, we will show a 3-dimensional analogue
of the statement (and this will be short and easy part (a)). Then, in part (b) of
the proof, we will get the 2-dimensional statement as a limit of deformation of the
3-dimensional configuration.

(a) Let α be a plane in R3 containing points A1, A2, A3, and β be a plane containing
points B1, B2, B3. Let l = α ∩ β be the intersection line. And suppose that
the lines joining the corresponding vertices of triangles A1A2A3 and B1B2B3

intersect at one point S. Notice that the lines AiAj and BiBj lie in one plane
(passing through P,Ai, Aj and Bi, Bj), so, they are either parallel or intersect.
The intersection point of AiAj ∈ α and BiBj ∈ β can only lie on l = α ∩ β),
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see Fig. 48, left. (In particular, if AiAj is parallel to BiBj, we may understand
this as intersection at the point at infinity on the line l). So, all three points
Pk = AiAj ∩BiBj, (k = 1, 2, 3, k ̸= i ̸= j) belong to l.

(b) - Now, we consider the 2-dimensional configuration (we place it into a hori-
zontal plane γ in 3-dimensional space).

- Let O /∈ γ be any point such that the plane OA2B2 ⊥ γ,, see Fig. 48, right.

- Choose a point A′
2 ∈ OA2, and consider a point B′

2 = OB2 ∩ SA2.

- Consider the triangle A1A
′
2A3 and B1B

′
2B3, denote the planes containing

them by α and β respectively. By part (a) of the proof, the three intersection
points constructed for these triangles lie on the line l = α ∩ β.

- Now, we start to move the point A′
2 towards A2. The planes α and β

approach the initial horizontal plane γ. The intersection line l = α ∩ β
approaches some line in γ. This line at the limit will be the line containing
all three points P1, P2, P3 ∈ γ.

B2

B3

O

A3
A′

2

S

B′
2

B1A1

A2B3

B2

B1

A1

A2 A3

S

l

Figure 48: Proof of Desargues’ Theorem.

4.4 Topology and metric on RP2

Remark 4.20 (Topology of RP2). RP2 is a set of lines through O in R3, in other words
RP2 = S2/ ∼ , i.e. the sphere with antipodal points identified, which is equivalent to
a disc with the opposite points identified.

It includes a Möbius band, so, it is one-sided and non-orientable.

Figure 49: Topology of RP2.
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Remark 4.21 (Elliptic geometry).

- As RP2 = S2/ ∼, one can use the spherical metric to introduce the metric on the
set of points of RP2. Then RP2 with this metric will be locally isometric to S2,

i.e. a small domain on RP2 is isometric to a small domain on S2.

- However, most projective transformations to not preserve this metric. So, this
metric is not a notion of projective geometry.

- The geometry of RP2 with spherical metric (and a group of isometries acting on
it) is called elliptic geometry and has the following properties:

(1) For any two distinct points there exists a unique line through these points;

(2) Any two distinct lines intersect at a unique point;

(3) For any line l and point p (which is not a pole for l) there exists a unique
line l′ such that p ∈ l′ and l ⊥ l′.

(4) The group of isometries acts transitively on the points (and lines) of this
geometry.

Remark 4.22 (Conic sections).

- Quadrics, i.e. the curves of second order on R2 (such as ellipse, parabola and
hyperbola) may be obtained as conic sections (sections of a round cone by a
plane, see Fig. 50).

- Ellipse, parabola and hyperbola are equivalent under projective transformations
(to see this, one can use projections of one plane to another from the tip of the
cone).

- To find out more about conic sections see

V. Prasolov, V. M. Tikhomirov. Geometry, (2001). Chapter 4. Conics and
Quadrics.Section 4.1. Plane curves of second order. pp.61-69.

This will constitute Additional 4H reading and will be examinable for students
enrolled to Geometry V (MSc students).

Figure 50: Conic sections: ellipse, parabola and hyperbola.
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4.5 Polarity on RP2 (NE)

(Non-examinable section!)

Consider a trace of a cone C = {(x, y, z) ∈ R3 | x2 + y2 = z2} on the projective plane
RP2 - a conic.

Definition. Points A = (a1, a2, a3) and B = (b1, b2, b3) of RP2 are called polar with
respect to C if a1b1 + a2b2 = a3b3.

Example:

1. Points of C are self-polar.

2. Point (2 : 1 : 2) is polar to (1 : 2 : 2).

Definition. Given a point A ∈ RP2, the set of all points X polar A is the line
a1x1 + a2x2 − a3x3 = 0, it is called the polar line of A.

Example. Let A = (0, 0, 1) - the North Pole of the sphere, then its polar is the line
defined by x3 = 0, i.e. all points with coordinates (a1, a2, 0). So, the line a1x1+a2x2 = 0
is the polar line for the point A = (0, 0, 1).

How to find the polar line:

Lemma 4.23. A tangent line to C at a point B = (b1, b2, b3) is x1b1 + x2b2 = x3b3.

We skip the proof of the lemma.

Proposition 4.24. Let A be a point “outside” C, let lP and lQ be tangents to C at P
and Q, where P,Q ∈ C, s.t. A = lP ∩ lQ. Then PQ is the line polar to A.

Proof. As A ∈ lP , we have a1p1 + a2p2 = a3p3, so P is polar to A.
As A ∈ lQ, we have a1q1 + a2q2 = a3q3, so Q is polar to A.
Therefore, PQ is the line polar to A, see Fig. 51, left.

A
AA

lA

lA

lA

P

Q

P

Q

Figure 51: Polar line lA for a point A inside, on and outside of the conic.

Proposition 4.25. If A ∈ C then the tangent lA at A is the polar line to A.
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Proof. The line x1a1 + x2a2 = x3a3 is tangent at A by Lemma 4.23 and is polar to A
by definition of the polar line.

Proposition 4.26. Let A be a point “inside” of the conic C. Let p and q be two lines
through A. Let P and Q be the points polar to the lines p and q. Then PQ is the line
polar to A with respect to C.

Proof. P is polar to A, Q is polar to A, hence, PQ is polar to A, see Fig. 51, right.

Remark 4.27. 1. Polarity generalise the notion of orthogonality.

2. More generally, for a conic C = {x ∈ R3 | xTAx = 0}, where A is a symmetric
3× 3 matrix, the point a is polar to the point b if aTAb = 0.

3. We worked with a diagonal matrix A = diag{1, 1,−1}.

4. If we take an identity diagonal matrix A = diag{1, 1, 1} we get an empty conic
x2 + y2 + z2 = 0, which gives exactly the same notion of polarity as we had on
S2.
(Indeed, the point (a1 : a2 : a3) is polar to a1x1 + a1x2 + a3x3 = 0 which is the
orthogonal plane (x,a) = 0).

4.6 Hyperbolic geometry: Klein model

Historic remarks:

• Parallel postulate (or Euclid’s Vth postulate) claims that

Given a line l and a point A /∈ l, there exists a unique line l′ such that l||l′
and A ∈ l′.

• For centuries, people tried to derive Euclid’s Vth postulate from other postulates.

• In 1870s it turned out that Euclid’s Vth postulate is independent of others, i.e.
there exists a geometry where

- all other postulates hold;

- parallel postulate is substituted by
“Given a line l and a point A /∈ l, there exists more than one (infinitely
many) line l′ such that l ∩ l′ = ∅ and A ∈ l′.

• Names:

- Gauss, Lobachevsky, Bolyai - derived basic theorems of hyperbolic geometry;

- Beltrami, Cayley, Klein, Poincaré - constructed various models.

More detailed exposition of history can be found in many books, for example in
A. B Sossinsky, Geometries, Providence, RI : American Mathematical Soc. 2012.
One can find the book in the library, see also Chapter 11 (p.119) here.

Klein Model: in interior of unit disc.

65

https://library.dur.ac.uk/record=b2771389~S1&holdings
https://ium.mccme.ru/postscript/f11/sossinskii-GeoBook-part1.pdf


- Points of the model are interior points of the unit disc;

- Lines are chords.

- Distance between two points is defined by:

d(A,B) =
1

2

∣∣ln[A,B,X, Y ]
∣∣,

where

· X, Y are the endpoints of the chord through AB, see Fig. 52, left;

· [A,B,X, Y ] = |XA|
|XB|

/
|Y A|
|Y B| is the cross-ratio;

· |PQ| denotes the Euclidean length of the segment PQ.

Y

A
B

X

Figure 52: Klein model.

Remark:

1. Axioms of Euclidean geometry are satisfied in the model
(except for Parallel Axiom!).

2. Parallel Axiom is obviously not satisfied (see Fig. 52, right):

Given a line l and a point A /∈ l, there are infinitely many lines l′ s.t. A ∈ l and
l ∩ l′ = ∅.

Remark: We will spend a large part of the next term looking at hyperbolic geometry.
Our closest aims are to show that

(1) The distance introduced above satisfies axioms of metric;

(2) Isometries act transitively on the points in this model.

Theorem 4.28. The function d(A,B) satisfies axioms of distance, i.e.

(1) d(A,B) ≥ 0 and d(A,B) = 0⇔ A = B;
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(2) d(A,B) = d(B,A);

(3) d(A,B) + d(B,C) ≥ d(A,C).

Proof. (1) d(A,B) ≥ 0 by definition.
Let us show that d(A,B) = 0 if and only if A = B. Indeed,

d(A,B) = 0 ⇔ ln[A,B,X, Y ] = 0 ⇔ [A,B,X, Y ] = 1

⇔ x− a
x− b

/y − a
y − b = 1 ⇔ x− a

x− b ·
y − b
y − a = 1,

where a, b, x, y are coordinates of the points A,B,X, Y on the line AB.
Notice that x−a

x−b
≥ 1 and y−b

y−a
≥ 1, which implies that the product of these

numbers equal to 1 if and only if both of them are equal to 1, which is equivalent
to the condition a = b, i.e. A = B.

(2) d(A,B) = d(B,A) since [A,B,X, Y ] = −[B,A, Y,X] (which we know from
HW 7.8).

(3) We are left to show the triangle inequality d(A,B)+ d(B,C) ≥ d(A,C), this will
be done in Lemma 4.30 below.

Remark 4.29. On hyperbolic line:

- Let [y, x] ∈ R be an interval. For a, b ∈ [y, x] (as in Fig. 52, left) we define

d(a, b) =
1

2

∣∣ ln[a, b, x, y]∣∣ = 1

2

∣∣∣ln(x− a
x− b

/y − a
y − b )

∣∣∣.
Notice that the logarithm makes sense as the argument is positive for all
a, b ∈ [y, x].

- d(a, a) = 0.

- d(a, b)→∞ when b→ x or a→ y.

- Since ln[a, b, x, y] = −ln[a, b, y, x] (as [a, b, x, y] = 1/λ when [a, b, y, x] = λ), we
conclude that the endpoints X and Y are “equally good”, i.e. the line is not
oriented.

- For c ∈ [y, x] we have ±d(a, b)± (b, c)± d(c, a) = 0, since(
x− a
x− b ·

y − b
y − a

)(
x− b
x− c ·

y − c
y − b

)(
x− c
x− a ·

y − a
y − c

)
= 1.

- If c ∈ [a, b] then d(a, c) + d(c, b) = d(a, b).

Lemma 4.30 (Triangle inequality). Let A,B,C be three points in Klein model. Then
d(A,B) + d(B,C) ≥ d(A,C).

Proof. (1) We start the proof with the following additional construction:

- Extend the sides of the triangle ABC till the boundary of the disc to obtain
the chords XY , X1Y2 and Y2X1 respectively (see Fig. 53, left).
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Y1 X1

Y2 X2

X ′ Y ′

P

Y
A B

C

C ′
X Y ′ A C ′ X ′ X

ε

Figure 53: Proof of triangle inequality.

- Define P := X1X2 ∩ Y1Y2.
- Define X ′ = Y X ∩X1X2 and Y ′ = Y X ∩ Y1Y2.
- Define C ′ = PS ∩XY ∈ [AB].

(2) Consider the projection from P to the segment XY . As it preserves cross-ratios,
we get [A,C,X1, Y2] = [A,C ′, X ′, Y ′] and [C,B,X2, Y1] = [C ′, B,X ′, Y ′].

(3) Claim: [A,C ′, X ′, Y ′] > [A,C ′, X, Y ] and [C ′, B,X ′, Y ′] > [C ′, B,X, Y ].

Proof of the claim. We need to move the endpoints of the segments to the outside
of the segment. We will show [A,C ′, X ′, Y ′] > [A,C ′, X, Y ′] and then applying
similar movement (i.e. shifting Y to Y ′) we will get the statement.

Let a, c′, x′, y′, x denote the coordinates of the points A,C ′, X ′, Y,X and suppose
x− x′ = ε, see Fig. 53, right. Then

[a, c′, x′, y′]− [a, c′, x, y′] =
y′ − c′
y′ − a

(
x′ − a
x′ − c′ −

x′ − a+ ε

x′ − c′ + ε

)
=
y′ − c′
y′ − a

ε(c′ − a)
(x′ − c)(x′ − c′ + ε)

> 0,

which proves the claim.
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(4) Finally, we compute:

d(A,C) + d(C,B)
def
=

1

2
ln[A,C,X1, Y2] +

1

2
ln[C,B,X2, Y1]

=
1

2
ln([A,C,X1, Y2] · [C,B,X2, Y1])

(2)
=

1

2
ln([A,C ′, X ′, Y ′] · [C ′, B,X ′, Y ′])

(3)
>

1

2
ln([A,C ′, X, Y ] · [C ′, B,X, Y ])

=
1

2
ln(

x− a
x− c′ ·

y − c′
y − a ·

x− c′
x− b ·

y − b
y − c′ )

=
1

2
ln[a, b, x, y] = d(A,B).

Isometries of Klein model

By isometries we mean transformations of the model preserving the distance, i.e. pre-
serving the disc and the cross-ratios.

α

β

D

E

Figure 54: To the proof of Theorem 4.31.

Theorem 4.31. There exists a projective transformation of the plane that

- maps a given disc to itself;

- preserves cross-ratios of collinear points;

- maps the centre of the disc to an arbitrary inner point of the disc.

Proof. We will give a sketch of a proof here.

1. Let C be the cone x2 + y2 = z2, let the disc D = C ∩ α be the horizontal section
of the cone C by a plane α defined by z = const.

2. Let β be a plane s.t. β ∩ C is an ellipse E, see Fig. 54, left.

3. Let P be the projection of the disc D to the plane β from the apex S of the cone:
the projection takes the disc D to the ellipse E, this map is a projective trans-
formation (due to Corollary 4.13).
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4. Let i ∈ Isom(E3) be an isometry such that i(β) = α, suppose also that i takes
the centre of the ellipse to the centre of the disc D.

5. Consider an affine transformation A of the plane α which takes the ellipse i(E)
to the disc D.

6. Then the composition A◦ i ◦ P takes D to D. The map A◦ i takes the centre of
the ellipse to the centre of the disc, while P(0) lies as far from the centre as we
want depending on the choice of plane β, see Fig. 54, right.

7. The map A ◦ i ◦ P is a projective transformation, as it is the composition of
a projective transformation, isometry and affine transformation (i.e. of three
projective maps), see Fig. 55.

P
proj

i

isom A
aff

Figure 55: To the proof of Theorem 4.31.

Corollary 4.32.

- Isometries act transitively on the points of Klein model.

- Isometries act transitively on the flags in Klein model.

Proof. The theorem shows transitivity on points. To show transitivity on flags one
can:

- map a given point to the centre of the disc;

- then rotate the disc about the centre (it is an isometry in the sense of the model,
since it clearly preserves all cross-ratios, and hence preserves the distance).

- reflect the disc (in Euclidean sense) with respect to a line through O (again, it is
an isometry as cross-ratios are preserved).

Remark.

1. In general, angles in Klein model are not represented by Euclidean angles.
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2. Angles at the centre are Euclidean angles.
Indeed, two orthogonal (in Euclidean sense) chords make equal hyperbolic angles
(as one can take one of them to another by an isometry of the hyperbolic plane),
so, these angles are π/2. Similarly, all (Euclidean) angles of size π/n, n ∈ Z
represent hyperbolic angles of size π/n, and moreover, the angles coincide with
Euclidean ones for all π-rational angles. Finally, by continuity we conclude that
all angles at the centre of the disc coincide with Euclidean angles.

3. Right angles are shown nicely everywhere in the Klein model (see Proposition 4.33).

Proposition 4.33. Let l and l′ be two intersecting lines in the Klein model. Let t1
and t2 be tangent lines to the disc at the endpoints of l. Then l ⊥ l′ ⇔ t1 ∩ t2 ∈ l̃′,
where l̃′ is the Euclidean line containing the chord representing l′.

Proof. - We know that at the centre of the disc right angles are shown by two
perpendicular diameters l0 and l⊥0 . Consider the lines p1, p2 tangent to the disc
at the endpoints of l0, see Fig. 56, left. Then l⊥0 is the line through O parallel
to the lines p1, p2. In other words, l⊥ is the line through O and the intersection
p1 ∩ p2 (which does not exist in E2 but is well-defined in RP2.

- Let f be a projective transformation which maps the disc to itself, takes l0 to
l and O to l ∩ l′ (it does exist in view of Corollary 4.32). Notice that f is an
isometry of the model (as it preserves the disc and the cross-ratios). Hence, it
takes a pair of perpendicular lines to perpendicular (in the sense of hyperbolic
geometry) lines.

- Notice that the lines f(p1) = t1 and f(p2) = t2 are the tangent lines to the disc
at the endpoints of l (indeed, they should contain the endpoints of l but should
only have one intersection with the disc, being the images of the tangent lines
p1 and p2). So, f(l⊥0 ) is the line through f(O) and f(p1) ∩ f(p1), which exactly
means that l′ ⊥ l if and only if it passes through t1 ∩ t2. See Fig. 56, right.

l

l′
t1

t2

l0

l⊥0p1 p2

Figure 56: Right angles in the Klein model.
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Pairs of lines in hyperbolic geometry: two lines in hyperbolic geometry are called

- intersecting if they have a common point inside hyperbolic plane;

- parallel if they have a common point on the boundary of hyperbolic plane;

- divergent or ultra-parallel otherwise.

Figure 57: Pairs of lines in the Klein model: intersecting, parallel and ultra-parallel.

Proposition 4.34. Any pair of divergent lines has a unique common perpendicular.

Proof. See Fig. 58.

l1
l2

Figure 58: Common perpendicular for any ultra-parallel lines l1 and l2.
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4.7 References

- Sections 4.1 and 4.2 (on projective line and projective plane) closely follow Lec-
ture II and Lecture III of
V. V. Prasolov, Non-Euclidean Geometry.
You can find the same material in Section 3.1 of
V. V. Prasolov, V. M. Tikhomirov, Geometry.

- Section 4.3 “Some classical theorems” follows the section on Pappus’ and Desar-
gues’ theorems in Chapter 3 of
V. V. Prasolov, V. M. Tikhomirov, Geometry.

- Most part of the material of Sections 4.4 and 4.5 (topology of projective plane
and polarity on projective plane) may be found in Part II of
E. Rees, Notes on Geometry, Universitext, Springer, 2004.
(the book is available on DUO in Other Resources).

- Section 4.6 follows Lecture IV of Prasolov’s book (or see pp.89-93 in Prasolov,
Tikhomirov).

- A very nice overview of projective geometry is provided by
R. Schwartz, S. Tabachnikov, Elementary Surprises in Projective Geometry

- Elliptic geometry is briefly described in
A. B Sossinsky, Geometries, Providence, RI : American Mathematical Soc. 2012.
One can find the book in the library, see also Section 6.7 (p.75) here.

- A very nice course on projective geometry is
N. Hitchin, Projective Geometry
(the notes are available on DUO in Other Resources).

- For an overview of history of non-Euclidean geometry see
A. B Sossinsky, Geometries, Providence, RI : American Mathematical Soc. 2012.
One can find the book in the library, see also Chapter 11 (p.119) here.

- Video:

- Why slicing cone gives an ellipse - video on Grant Sanderson’s YouTube
channel 3Blue1Brown.
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5 Möbius geometry

Hierarchy of geometries

By now, we have considered a number of geometries - Euclidean, spherical, affine,
projective, even a bit of hyperbolic. But how are they related to each other?

One answer to this is given by Arthur Caley: “Projective geometry is all geometry.”
And indeed, as one can see from Fig. 59, Euclidean, affine spherical and the Klein model
of hyperbolic geometry are all subgeometries of projective geometry.

S2 E2 H2

Sym(2)

Aff(2)

RP(2)

E3

Möb

Figure 59: Hierarchy of geometries

At the same time, when hyperbolic geometry is considered in the Klein model, it
allows to nicely see the lines, but is not very convenient for working with angles, which
are not represented well there. Our first aim now will be to consider Möbius geometry
- geometry of linear fractional maps on C which are angle-preserving. This geometry
will provide other models for hyperbolic geometry - the models where the lines look
more complicated, but the angles are just Euclidean angles.

(And Möbius geometry will not be a part of projective geometry - so, projective
geometry is not all geometry after all!).

5.1 Group of Möbius transformations

Definition 5.1. A map f : C ∪ {∞} → C ∪ {∞} given by f(z) = az+b
cz+d

, a, b, c, d ∈ C,
ad− bc ̸= 0 is called a Möbius transformation or a linear-fractional transformation.

Remark. It is a bijection of the Riemann sphere C = C ∪ {∞} to itself.

Theorem 5.2. (a) Möbius transformations form a group (denoted Möb) with respect
to the composition, this group is isomorphic to

PGL(2,C) = GL(2,C)/{λI | λ ̸= 0}.

(b) This group is generated by z → αz, z → z + 1 and z → 1/z, where α, β ∈ C.
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Proof. (a) Given a matrix A =

(
a b
c d

)
∈ GL(2,C), let fA(z) = az+b

cz+d
. In this way we

can obtain any Möbius transformation. Moreover, since λaz+λb
λcz+λd

= az+b
cz+d

, we may
assume that ad− bc = ±1. Furthermore, we get a bijection between elements of
PGL(2,C) and linear-fractional maps. It is straight-forward to check that this
bijection respects the group structure, i.e.

fB ◦ fA = fBA.

(b) Consider any linear-fractional transformation f = az+b
cz+d

. We can write

f(z) =
az + b

cz + d
=

a
c
(cz + d) + b− ad

c

cz + d
=
a

c
+

bc− ad
c(cz + d)

= f3 ◦ f2 ◦ f1(z),

where

f1(z) = cz + d, f2(z) =
1

z
, f3(z) =

bc− ad
c

z +
a

c
.

Clearly, each of f1, f2, f3 can be obtained as a composition of transformations
z → αz, z → z + β and z → 1/z. Furthermore, z → z + β = β( z

β
+ 1) is a

composition of z → αz and z → z + 1. So, we conclude that f (and, hence,
any linear-fractional transformation) is a composition of z → αz, z → z + 1 and
z → 1/z.

Example 5.3. The generators az, z + 1 and 1/z (a, b ∈ C) can be represented by
matrices (

a 0
0 1

)
,

(
1 1
0 1

)
and

(
0 1
1 0

)
respectively.

Theorem 5.4. (a) Möbius transformations act on C ∪ {∞} triply-transitively.

(b) A Möbius transformation is uniquely determined by the images of 3 points.

Proof. We need to construct a map f ∈Möb taking three given distinct points z′1, z
′
2, z

′
3

in C∪{∞} to any other three given distinct points z1, z2, z3. We will construct a Möbius
transformation f0 : (0, 1,∞) → (z1, z2, z3). Then f = f0 ◦ g−1

0 , where g0 : (0, 1,∞) →
(z′1, z

′
2, z

′
3).

Construction: we will construct f0 =
az+b
cz+d

.

- We will assume that z1, z2, z3 ̸=∞, otherwise, we will precompose with 1/(z+d).

- f0(0) = b/d = z1, which is equivalent to b = z1d.

- f0(∞) = a/c = z3, which is equivalent to a = z3c.

- Hence, f0(1) =
z3c+z1d

c+d
= z2, and we get c = (z2−z1)d

(z3−z2)
.

- We have obtained a, b, c (all of them proportional to d), so we can cancel d (i.e.
assume d = 1) to get representative of f0 which takes (0, 1,∞) to the required
points.
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- The constructed map is a Möbius transformation since

ad− bc = z3cd− z1cd = (z3 − z1)
z2 − z1
z3 − z2

d2 ̸= 0,

(as zi ̸= zj by assumption). This proves part (a).

Uniqueness of the Möbius transformation f0 : (0, 1,∞) → (z1, z2, z3) follows imme-
diately from the computation. If there are two maps f and h taking (z′1, z

′
2, z

′
3) →

(z1, z2, z3) then f ◦ g0 and h ◦ g0 are two maps taking (0, 1,∞)→ (z1, z2, z3), which is
impossible. This implies part (b).

Theorem 5.5. Möbius transformations

(a) take lines and circles to lines and circles;

(b) preserve angles between curves.

Proof. It is sufficient to check the statements for the generators:

• z → az: is a rotation about 0 by argument of a composed with a dilation by |a|;

• z → z + 1: translation by 1;

• z → 1/z: composition of a reflection z → z̄ and an inversion z → 1/z̄
(see Fig. 60, left for the action of z → 1/z̄).

All these transformations satisfy (a) and (b) (for z → 1/z recall the results from
Complex Analysis II - we will also show it independently below in Theorems 5.14
and 5.15).

Example.

1. See Fig. 60, left, for the action of z → 1/z̄.

2. Transformation z → 1/z takes the real line to itself and the circle (z− 1
2
)2 = (1

2
)2

to the line Re z = 1. The right angle between these two curves is preserved (see
Fig. 60, right).

1
z

0 1 0

x = 1z

z̄

1
z̄

Figure 60: Left: Transformation z → 1/z̄. Right: an angle preserved by z → 1/z.
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5.2 Types of Möbius transformations

Consider the fixed points of the transformation f(z) = az+b
cz+d

, i.e., the points satisfying

z =
az + b

cz + d
.

This is a quadratic equation with respect to z, so it has exactly two complex roots
(these roots may coincide, in which case f has a unique fixed point).

Definition 5.6. AMöbius transformation with a unique fixed point is called parabolic.

Example: z → z+ b, where b ∈ C∗ is a parabolic transformation (with a unique fixed
point ∞).

Proposition 5.7. Every parabolic Möbius transformation is conjugate in the group
Möb to z → z + 1.

Proof. Suppose that f is a parabolic transformation with z0 = f(z0).
Let g(z) = 1

z−z0
, notice that g(z0) =∞. Then the transformation

f1(z) := g ◦ f ◦ g−1(z)

has a unique fixed point at∞ (here we use the same reasoning as in Proposition 1.18(a)).
This implies that f1(z) =

az+b
cz+d

with c = 0 (as f1(∞) =∞). By scaling a and b we may
assume f1(z) = az+ b. Since f1 has a (double) root at infinity (and no other roots) we
see that the equation z = az + b, has the only solution z = − b

a−1
at infinity, which is

only possible when a = 1. We conclude that f1 = z+ b, so f is conjugate to z → z+ b.
Finally, let h(z) = bz. Then

f2(z) := h−1 ◦ f1(z) ◦ h(z) =
1

b
(bz + b) = z + 1,

So, we conclude that f is conjugate to z → z + 1.

Proposition 5.8. Every non-parabolic Möbius transformation is conjugate in Möb
to z → az, a ∈ C \ {0}.

Proof. Let z1, z2 be the fixed points of a Möbius transformation f . The transformation
g(z) = z−z1

z−z2
sends them to 0 and ∞. So, f1(z) = gfg−1(z) has fixed points at 0,∞.

Hence, f1(z) = az, and we see that f is conjugate to z → az.

Definition 5.9. A non-parabolic Möbius transformation conjugate to z → az is called

(1) elliptic, if |a| = 1;

(2) hyperbolic, if |a| ≠ 1 and a ∈ R;

(3) loxodromic, otherwise.
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Remark 5.10. Consider the dynamics of various types of elements when they are
iterated many times (see Fig. 61). We draw each type twice: in the first row all fixed
points a visible, while in the second row one fixed point is mapped to ∞ (but the
picture is more simple).
Parabolic elements are best understood when the fixed point is ∞ - then it is transla-
tion of all points by the same vector. Applying a Möbius transformation we see that
iterations of such a transformation move points a long circles through the fixed point.

All other elements are best viewed when the fixed points are 0 and ∞:
elliptic elements just rotate points around two equally good fixed points, while hyperbolic
and loxodromic elements have one one attracting fixpoint and one repelling.

Two fixpoints of a hyperbolic or a loxodromic transformation have different prop-
erties: one is attracting another is repelling.
Elliptic transformations have two similar fixpoints (neither attracting nor repelling).

Parabolic Elliptic Hyperbolic Loxodromic

Figure 61: Dynamics of parabolic, elliptic, hyperbolic and loxodromic elements.

Dynamics of Möbius transformations is nicely illustrated in the 2-minute video by
Douglas Arnold and Jonathan Rogness.

5.3 Inversion

Definition 5.11. Let γ ∈ C be a circle with centre O and radius r. An inversion Iγ
with respect to γ takes a point A to a point A′ lying on the ray OA s.t. |OA|·|OA′| = r2,
see Fig. 62.

Proposition 5.12. (a) I2γ = id.

(b) Inversion in γ preserves γ pointwise (Iγ(A) = A for all A ∈ γ).

Proof. This immediately follows from the definition.

Lemma 5.13. If P ′ = Iγ(P ) and Q
′ = Iγ(Q) then △OPQ is similar to △OQ′P ′.
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A

A′

O

r

Figure 62: Inversion: |OA| · |OA′| = r2.

Proof. Since |OP | · |OP ′| = r2 = |OQ| · |OQ′| we have

|OP |
|OQ| =

|OQ′|
|OP ′| ,

see Fig. 63. As ∠POQ = ∠P ′OQ′, we conclude that △POQ ∼ △Q′OP ′ (by sAs).

P

P ′

O Q′ Q

Figure 63: Inversion: △OPQ ∼ △OQ′P ′.

Theorem 5.14. Inversion takes circles and lines to circles and lines. More precisely,

1. lines through O are mapped to lines through O;

2. lines not through O are mapped to circles through O

3. circles not through O are mapped to circles not through O.

Proof. Consider an inversion Iγ with respect to a circle γ.

1. This part is evident from the definition.

2. Let l be a line, O /∈ l. Let Q ∈ l be a point such that OQ ⊥ l, see Fig. 64. Let
P ∈ l be any point of l and let P ′ = Iγ(P ), Q′ = Iγ(Q).

By Lemma 5.13, △POQ ∼ △Q′OP ′, so ∠OP ′Q′ = π/2. This implies that P ′

lies on the circle with diameter OQ′ (by converse of E26). This implies that Iγ(l)
is the circle with the diameter OQ′.
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P

P ′

O Q′ Q

l

Figure 64: Inversion takes lines not through origin to the circles through origin.

3. Let γ0 be a circle O /∈ γ0. Let l be a line through O and the centre of γ0.
Let {P,Q} = l ∩ γ0, R ∈ γ0, and let Iγ takes the points P,Q,R to P ′, Q′, R′

respectively, see Fig. 65.

Be Lemma 5.13, we have ∠OPR = ∠OR′P ′ which implies ∠RPQ = ∠P ′R′R.
Also, we have ∠OQR = ∠OR′Q′. Since PQ is the diameter of γ0, we have
∠PRQ = π/2, which implies that ∠RPQ+∠OQR = π/2. Therefore, ∠Q′R′P ′ =
π/2, and hence, R′ lies on the circle with diameter Q′R′.

PP ′ QO Q′
l

R

R′

γ0

Figure 65: Inversion takes circles not through origin to the circles not through origin.

See Inversion Tool on Cut-The-Knot portal for hands-on illustration of Theorem 5.14.

Theorem 5.15. Inversion preserves angles.

Proof. Let Iγ be the inversion with respect to the circle γ. Let l be a line such that
O /∈ l, see Fig. 66. Then Iγ(l) is a circle γ through O and the tangent line to γ line at
the point O is parallel to l (one can see it for example from the symmetry with respect
to the line orthogonal to l dropped from O). This implies that if l1, l2 are two lines not
through the origin, then the angle between them is preserved by the inversion.

For two circles (or a line and a circle) we measure the angles between tangent lines
to them (and this angle is preserved as shown above).

If one or both of l1, l2 pass through O then it the image of such line is still parallel
to initial line, so the angle is still preserved.
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l

l′

γ1

γ

Figure 66: Inversion preserves angles.

Remark. Inversion may be understood as “reflection with respect to a circle”.

Example 5.16. Let I1 be inversion with respect to the unit circle centred at the
origin, and I√2 be the inversion with respect to the circle of radius

√
2 centred at −i,

see Fig. 67. Notice that I√2 takes the unit circle to the real line.

0

−i

−1 1

Figure 67: Reflection is a conjugated inversion.

Define r := I√2I1I
√
2. Then r(x) = x for every x ∈ R, and it is easy to see that r

swaps the half-planes defined by the real line.
As r is a composition of inversions, it preserves the angles, which (together with

preserving all points of real line) implies that r is a reflection, see Fig. 68.

Theorem 5.17. Every inversion is conjugate to a reflection by another inversion.

Proof. As in Example 5.16, given an inversion Iγ with respect to a circle γ, consider
an inversion I with respect to a circle forming angle π/4 with γ: then I ◦ Iγ ◦ I is a
reflection.

Theorem 5.18. Every Möbius transformation is a composition of even number of
inversions and reflections.

Proof. By Theorem 5.2 Every Möbius transformation is a composition of transforma-
tions az, z+1, 1/z. We will check that each of these transformations is a composition
of inversions and reflections.
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r

Figure 68: r preserves all real points and preserves angles, hence r is a reflection.

- az = |a|eiArg az is a composition of a dilation and a rotation. A rotation by angle
α is a composition of reflections with respect to the lines meeting at angle α/2 (by
Example 1.13). Dilation D : z → r2z (r ∈ R) is a composition of two inversions
I1 and Ir with respect to circles of radius 1 and r centred at the origin:

Ir ◦ I1(z) = Ir(
1

z̄
) = r2z = D(z).

- Translation z + 1 is a composition of two reflections (again by Example 1.13).

- The map f : z → 1/z is a composition of an inversion 1/z̄ and a reflection z̄:
f = z̄ ◦ 1

z̄
.

Notice that we described each of the generators as a composition of even number
of reflections and inversions.

Remark 5.19. Inversion and reflection change orientation of the plane, but Theo-
rem 5.18 says that a Moöbius transformation is expressed through even number of
them. Hence, it shows that Möbius transformations preserve orientation.

See here for an animation demonstrating properties of inversion (by M. Christersson).

5.4 Möbius transformations and cross-ratios

Definition 5.20. For z1, z2, z3, z4 ∈ C ∪ {∞}, the complex number

[z1, z2, z3, z4] =
z3 − z1
z3 − z2

/
z4 − z1
z4 − z2

∈ C ∪ {∞}

is called the cross-ratio.

Theorem 5.21. Möbius transformations preserve cross-ratios.

Proof. This is an easy computation for each of the generators az, z + 1, 1/z (check!).

Corollary 5.22. A Möbius transformation is determined by images of 3 points.

Proof. If f ∈ Möb, f : a, b, c → a′, b′, c′ and y = f(x), then y can be computed from
the linear equation [a, b, c, x] = [a′, b′, c′, y].
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Remark 5.23. Points z1, z2, z3 ∈ C are collinear if and only if z1−z2
z1−z3

∈ R (i,e. when
vectors z1 − z2 and z1 − z3 are proportional over R).

Proposition 5.24. Points z1, z2, z3, z4 ∈ C∪ {∞} lie on one line or circle if and only
if [z1, z2, z3, z4] ∈ R.

Proof. By Theorem 5.4 there exists a Möbius transformation f which takes z1, z2, z3
to 0, 1,∞. Let x ∈ C and y = f(x). It is easy to see (using Remark 5.23) that y lies
on a real line if and only if [0, 1,∞, y] is real. Hence, x lies on the same line or circle
as z1, z2, z3 if and only if [z1, z2, z3, z4] ∈ R.

Remark 5.25. Geometric proof of Proposition 5.24:
Consider 4 points on the same circle. By E28, ∠z1z4z2 = ∠z1z4z3, which means
that Arg( z3−z1

z3−z2
) = Arg( z4−z1

z4−z2
). This implies that [z1, z2, z3, z4] = z3−z1

z3−z2

/
z3−z1
z3−z2

∈ R.
Conversely, if z4 does not lie on the same circle as z1, z2, z3, then the angles at z3 and
z4 are different and the cross-ratio is not real.

z4

z3

z1

z2

α

α

Figure 69: Geometric meaning of real cross-ratio.

Proposition 5.26. Given four distinct points z1, . . . , z4 ∈ C ∪∞, one has

[z1, z2, z3, z4] ̸= 1.

Proof. Suppose that [z1, z2, z3, z4] = 1. Then by Proposition 5.24 the points lie on one
line or circle, so we may assume that [z1, z2, z3, z4] = [x, 0, 1,∞], where x ∈ R (here we
use triple transitivity of Möb). So, [z1, z2, z3, z4] =

1−x
1−0

/∞−x
∞−0

= 1− x, this only equals
to 1 when x = 0, which is impossible as the points z1, z2, z3, z4 (and hence, the points
x, 0, 1,∞) are distinct by assumption.

Example 5.27. (a) Two parallel lines are notMöb-equivalent to two concentric cir-
cles (as circles are disjoint while lines are tangent at ∞, i.e. sharing one point).

(b) Let lx be a line given by Re(z) = x, x ∈ R. Is there a Möbius transformation
taking l0, l1, l2 to l0, l1, l3?
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To answer the question consider a line or circle γ orthogonal to all three of l0, l1, l2.
It is easy to see that γ is a line orthogonal to li (justify this!). Let A,B,C,D be
the points where γ intersects respectively l0, l1, l2 (where D =∞). Then

[A,B,C,D] = [0, 1, 2,∞] =
2− 0

2− 1

/∞− 0

∞− 1
= 2/1 = 2.

Similarly, let A′, B′, C ′, D′ be the points where γ intersects respectively l0, l1, l3
(where D′ =∞). Then

[A′, B′, C ′, D′] = [0, 1, 3,∞] =
3− 0

3− 1

/∞− 0

∞− 1
=

3

2
.

As for λ = 2 none of λ, 1− λ, 1
λ
, 1
1−λ

, −λ
1−λ

, 1−λ
−λ

coincides with 3
2
, we conclude that

there is no Möbius transformation taking l0, l1, l2 to l0, l1, l3.
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