	models of hyperbolic Scolled y			
model	Poincaré disk	Upper half-plane	Klein disk	two-sheet hyperboloid
\mathbb{H}^2	$\{z \in \mathbb{C} \mid z < 1\}$	$\{z \in \mathbb{C} \mid Imz > 0\}$	$\{z \in \mathbb{C} \mid z < 1\}$	$\begin{cases} v \in \mathbb{R}^{2,1} \mid \langle v, v \rangle = -1, \ v_3 > 0 \\ \\ \text{where } \langle v, u \rangle = v_1 u_1 + v_2 u_2 - v_3 u_3 \end{cases}$
$\frac{\partial \mathbb{H}^2}{(\text{absolute})}$	$\{z \in \mathbb{C} \mid z = 1\}$	$\{z\in\mathbb{C}\mid Imz=0\}$	$\{z \in \mathbb{C} \mid z = 1\}$	$ \{ v \in \mathbb{R}^{2,1} \mid \langle v, v \rangle = 0, \ v_3 > 0 \} $ $ v \sim \lambda v $
lines	Y A B X		Y A B X	$\{v \langle v,a angle=0\}$ where $\langle a,a angle>0$
distance	d(A,B) = ln[A,B,X,Y] X,Y = the "endpoints" of the line AB		$d(A,B) = \frac{1}{2} ln[A,B,X,Y] $	$d(A,B) = \frac{1}{2} ln[A,B,X,Y] $ cross-ratio of four lines*
formula		$\cosh d(u, v) =$ $1 + \frac{ u-v ^2}{2Im(u)Im(v)}$		$\begin{split} Q &= \left \frac{\langle u, v \rangle^2}{\langle u, u \rangle \langle v, v \rangle} \right \\ & \text{if } \langle u, u \rangle < 0, \ \langle v, v \rangle < 0 \\ Q &= \cosh^2 d(pt, pt) \\ & \text{if } \langle u, u \rangle < 0, \ \langle v, v \rangle > 0 \\ Q &= \sinh^2 d(pt, line) \\ & \text{if } \langle u, u \rangle > 0, \ \langle v, v \rangle > 0 \\ Q &= \cosh^2 d(pt, line) \\ & \text{if } \langle u, u \rangle > 0, \ \langle v, v \rangle > 0 \\ Q &= 1, \text{ intersecting lines} \\ Q &= \cos^2 \alpha \\ Q &= 1, \text{ parallel lines} \\ Q &= \cosh^2 d(line, line) \end{split}$
isometries**	Möbius transformations		Projective tr	Linear transformations of $\mathbb{R}^{2,1}$
orientation- preserving isometries		$\begin{array}{c} \displaystyle \frac{az+b}{cz+d}\\ a,b,c,d\in\mathbb{R}, \ ad-bc=1 \end{array}$		
orientation- reversing isometries		$\frac{a\bar{z}+b}{c\bar{z}+d}$ $a,b,c,d \in \mathbb{R}, \ ad-bc = -1$		
reflections	Euclidean inversions or reflections			$r_a(v) = v - 2\frac{\langle v, a \rangle}{\langle a, a \rangle}a$
circles	Euclidean circles		ellipses	plane sections of the hyperboloid
angles	angles=Euclidean angles		distorted angles good for right angles***	

Models of hyperbolic geometry

* Cross-ratio of four lines lying in one plane and passing through one point is the cross-ratio of four points at which these lines are intersected by an arbitrary line l (it does not depend on l!).

**We only list the type of the transformations not specifying that they preserve the model.

 $\ast\ast\ast$ See the next page.

***Right angles in the Klein model.

Let l be a hyperbolic line.

Let \overline{l} be a Euclidean line containing the segment which represents l in the Klein model.

Let $X_1(l)$ and $X_2(l)$ be the endpoints of l (intersections of \overline{l} with the unit circle).

Let $t_1(l)$ and $t_2(l)$ be tangent lines to the unit circle at the points $X_1(l)$ and $X_2(l)$.

Let $T(l) = t_1(l) \cap t_2(l)$ (if $t_1 || t_2$, i.e. *l* is represented by a diameter, then T(l) is a point at infinity).

Thm. l' is orthogonal to l if and only if $T(l) \in l'$.

In particular, if l is represented by a **diameter**, then $l' \perp l$ if and only if $\bar{l}' \perp \bar{l}$ (in Euclidean sinse).

