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1 Problems Class 1: Reflections on E2, geometric

constructions

17 October 2023

Question 1.1. Is the following statement true of false?

“The isometries of E2 taking (0, 0) to (0, 0) and (0, 1) to (0, 2) form a group”

Solution: A map taking (0, 0) to (0, 0) and (0, 1) to (0, 2) is not an isometry. So, the
set of such maps is empty. The empty set contains no identity element - which means
it cannot be a group.

Answer: NO.

Question 1.2. Let RA,φ and RB,ψ be rotations with 0 < φ,ψ ≤ π/2. Find the type
of the composition f = RB,ψ ◦RA,φ.

Solution: This is an example of using reflections to study compositions of isometries
(we will write everything as a composition of reflections, making our choices so that
some of them will cancel).

Notice that f preserve the orientation. Hence, it is either identity map, or rotation
or translation. Furthermore, uniqueness part of Theorem 1.10 implies that f = id if
and only if RA,φ = R−1

B,ψ. In other words, f = id if and only if A = B and φ = −ψ.
To determine when f is a rotation and when it is a translation we write each of

RA,φ and RB,ψ as a composition of two rotations (so that f = r4 ◦ r3 ◦ r2 ◦ r1). Let l
be the line through A and B. Then there exist lines l′ and l′′ such that RB,ψ = rl′′ ◦ rl
and RA,φ = rl ◦ rl′ . Hence,

f = rl′′ ◦ rl ◦ rl ◦ rl′ == rl′′ ◦ rl′ .

Therefore f is a translation if l′||l′′ and a rotation otherwise.
Finally, since RB,ψ = rl′′ ◦rl, the angle from l to l′′ is ψ/2. Also, since RA,φ = rl ◦rl′ ,

the angle from l′ to l equals φ/2, see Fig.1. Since 0 < φ,ψ < π/2, we see that f is
always a rotation.
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Figure 1: Question 1.1.
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Question 1.3. Let A and B be two given points in one half-plane with respect to a
line l. How to find a shortest path, which starts at A then travels to l and returns to
B? (How to find the point where this path will reach the line l?)

Solution: Consider the point B′ symmetric to B with respect to the line l. Then the
shortest path from A to B′ is the segment AB′. Let M = AB′∩ l, see Fig. 2. We claim
that the broken line AMB (travelling from A toM and then to B) is the shortest path
from A to B visiting a point on l.

Indeed, for any path γ from A to B visiting a point Q ∈ l there exists a path γ′

from A to Q and then from Q to B′ such that the length of γ is the same as the length
of γ′ (we just reflect the part QB with respect to l). Since AB′ is the shortest path
from A to B′, the broken line AMB is shorter than any other path from A to B vising
the line l.
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M l

Figure 2: Question 1.2.

Question 1.4 (Geometric constructions). By geometric constructions we mean con-
structions with ruler and compass. Here, a ruler is an instrument allowing to draw a
line AB through two given points A and B. And a compass is an instrument allowing
to draw a circle CA(AB) with the centre A and radius AB. In this question we discuss
how to construct the following sets:

(a) perpendicular bisector,

(b) midpoint of a segment,

(c) perpendicular from a point to a line,

(d) angle bisector,

(e) circumscribed circle for a triangle,

(f) inscribed circle for a triangle.
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Solution:

(a) Perpendicular bisector. Given a segment AB, we need to construct a line
l such that l ⊥ AB and the point M = l ∩ AB is a midpoint for AB (i.e.
AM =MB).

Construction: Let A and B be two points. To construct their perpendicular
bisector, consider the circles CA(AB) and CB(AB) of radius AB centred at A
and B respectively. Let X and Y be the two points of intersection of these two
circles. (Their existence is due to continuity axiom - or we can obtain the point
by a computation on R2). Then the line lXY through the points X and Y is the
perpendicular bisector for AB.

Proof: Let M = XY ∩ AB. We need to show that AM = MB and ∠AMX =
∠BMX. Notice that △AXY ∼= △BXY (by SSS), and hence, ∠AXY = ∠BXY .
Furthermore,△AXM ∼= △BXM (by SAS), and henceAM = BM and ∠AMX =
∠BMX.

Remark. Notice that we just proved that the locus of points on the same
distance from A and B is the perpendicular bisector (E14).

X

Y

BA

X

Y

A BM

Figure 3: Question 1.3 (a): Construction of perpendicular bisector

Remark. (Extracted from the chat during the problems class).
One can do the same construction with circles centred at A and B of any equal
radii - I do not need to require this radius to be AB. Then the same proof
(which did not use that AX = AB!) will show that the construction still works.
As the proof only uses that the points X, Y lie on the same (and now random!)
distance from A and B, this proves in addition that the locus of points on the
same distance from A and B coincides with the perpendicular bisector!

(b) Midpoint for a segment. This immediately follows from the construction (a).
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(c) Perpendicular from a point to a line. Given a line l and a point A /∈ l we
need to construct a line l′ such that A ∈ l′ and l′ ⊥ l.

Construction: Let CA(r) be a circle centred at A with radius r > d(A, l) (where
d(A, l) denotes distance from A to the closest point of l). Consider the points X
and Y where t CA(r) intersects l (they do exist as r is big enough). Let l′ be the
perpendicular bisector to XY . We claim that A ∈ l′ and l′ ⊥ l.

Proof: Since l = XY and l′ is perpendicular to XY we have l′ ⊥ l. So, we only
need to prove that A ∈ l′. We know that AX = AY and that the perpendicular
bisector is the locus of points on the same distance from X and Y (E14), so, we
conclude that A ∈ l′.

A

XY

l

Figure 4: Question 1.3 (c): Construction of a perpendicular from a point to a line

(d) Angle bisector. Given an angle ∠BAC, we need to construct a ray AM such
that ∠BAM = ∠MAC.

Construction: Let Ca(r) be a circle centred at A of any radius r. Let X =
Ca(r) ∩ AB and Y = Ca(r) ∩ AC. Let l be the perpendicular bisector for the
segment XY . Then l is the angle bisector for ∠BAC.

Proof: Notice that since AX = AY = r, we conclude that A ∈ l (as the perpen-
dicular bisector for XY is the locus of points on the same distance from X and
Y by E14). Now, let M = XY ∩ l. Then △AXM ∼= △Y AM by SSS, which
implies that ∠XAM = ∠Y AM .

Remark-Exercise. An angle bisector is a locus of points on the same distance
from the sides of the angle.

Hint: Given a point N on the angle bisector (resp. on the same distance from the
sides of the angles), drop perpendiculars NX ′ and NY ′ on the sides of the angle
and notice that △ANX ′ ∼= △ANY ′ (why?). Conclude from this that N lies on
the same distance from the sides of the angle (resp. lies on the angle bisector).

(e) Circumscribed circle for a triangle. Given three non-collinear points A,B,C,
we need to construct a circle through these points.

Construction: Let lA be the perpendicular bisector for BC and lB be the per-
pendicular bisector for AC. Then O = lA ∩ lB is the centre of the required
circle.
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Figure 5: Question 1.3 (d): Construction of an angle bisector

Proof: We need to show that OA = OB = OC. Note that OB = OC since
O ∈ lA, also OA = OC since O ∈ lB. This implies the statement.

Corollary. The three perpendicular bisectors in a triangle are concurrent.

Proof: As OA = OB, i.e. O lies on the same distance from A and B, we conclude
(again by E14) that O lies on the perpendicular bisector for AB. So, the three
perpendicular bisectors are concurrent at O.

(f) Inscribed circle for a triangle. Given a triangle ABC, we need to construct
a circle which is tangent to all three sides of ABC.

Construction: Let lA be the angle bisector for ∠A and lB be the angle bisector
for ∠B. Then O = lA ∩ lB is the centre of the required circle. To find the radius
we drop a perpendicular from O to one of the sides.

Proof: We need to show that O lies on the same distance from the lines AB, AC
and BC. As O ∈ lA, we know that O lies on the same distance from AB and AC
(see the remark above!), and as O ∈ lB, we see that O lies on the same distance
from AB and CB. We conclude that O lies on the same distance from all three
sides (so, if r is that distance then the circle CO(r) is tangent to all three sides
and hence is the inscribed circle for △ABC).

Corollary. The three angle bisectors in a triangle are concurrent.

Proof: As O lies on the same distance from all three sides, we conclude that it
also lies on the angle bisector lC for angle ∠BCA. So, three angle bisectors are
concurrent at the point O.

Remarks:

- A solution for a construction question should always contain two parts:
(i) construction (i.e. the algorithm for the construction) and
(ii) justification (i.e. the proof that the construction provides the required object).

- One does not really need to have a ruler and a compass to solve questions on ruler
and compass constructions. Moreover, I think that using the real instruments
and drawing ideal diagrams does not really help to solve the questions but just
distracts.
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Remark on constructability. Not everything is contractible with ruler and compass.
Here are several classical examples.

- Squaring a circle: given a circle, construct a square of the same area as the
circle. This is equivalent to constructing a segment of the length

√
π given a

segment of the length 1.

- Duplicating a cube: given a cube of volume V construct the cube of volume
2V . This is equivalent to constructing a segment of length 21/3 given a segment
of length 1.

- Trisecting an angle: Given an angle θ, construct and angle of size θ/3.

For explanations why these constructions are impossible one can use field extensions,
see

• Gareth Jones, Algebra and Geometry, Section 8.

(You will be able to find the notes by Gareth Jones on Ultra, in the Other Resources
section).
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2 Problems Class 2: Group actions on E2

1 November 2022

Question 2.1. Let g1, . . . , gn be isometries of E2. Let G = ⟨g1, . . . , gn⟩ be the group
generated by g1, . . . , gn (i.e. the minimal group containing all of g1, . . . , gn). Show that
the group G acts on E2.

Solution: By definition, G = {g±1
ik

◦ · · · ◦ g±1
i1
} (where it ∈ {1, 2, . . . , n}) is the minimal

group containing g1, . . . , gn. So, this collection of the elements makes a group (as is
closed, contains e = id, contains an inverse for every element and the operation is
associative). For every g ∈ G the element fg := g : E2 → E2 is a bijection and for
every two elements g, h ∈ G we have fgh(x) = fg ◦ fh(x) for every x ∈ E2. So, G acts
on E2.

Question 2.2. Let G be a group generated by two reflections on E2. When G is
discrete?

Solution: Let r1 and r2 be reflections with respect to l1 and l2. Consider three cases.

• Suppose that the lines l1 and l2 intersect at a point O forming an angle α = p
q
π,

p, q ∈ Z, q ̸= 0. Consider the set S of lines m1, . . . ,mq through the point l1 ∩ l2,
such that m1 = l1 and the angle between mi and mi+1 equals π

q
, see Fig. 7.

Notice that applying r1 (respectively, r2) takes the set S to itself (not pointwise:
the lines are permuted by the reflections). Furthermore, the lines m1, . . . ,mq cut
the plane into 2q sectors, and there are only two isometries of E2 taking a given
sector to itself. This implies that for every point x ∈ E2 the orbit orb(x) of x has
at most two points in any of the sectors. Hence, every orbit is finite, and hence,
the group it discrete.

Figure 6: Question 2.1: case of rational angle (here, α = 2π/5).

• Suppose that the lines l1 and l2 intersect at a point O forming an angle α = aπ
where a /∈ Q. Then r2 ◦ r1 is a rotation of infinite order. Thus, given a point
x ̸= O, the orbit orb(x) contains infinitely many points on the same circle centred
at O, and therefore has an accumulation point on that circle.

• Finally, suppose that l1||l2. We leave it as an exercise to show that in this case
G is always discrete.

Answer: The group is discrete unless the lines intersect forming a π-irrational angle.
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Question 2.3. Let T be a triangle with angles π
2
, π
4
, π
4
. Let r1, r2, r3 be the reflection

with respect to the sides of T , and let G be the group generated by r1, r2, r3. In the
lecture we have checked that G : E2 discretely. Find a fundamental domain of this
action.

Solution: We will show that the triangle T is a fundamental domain:

(1) It is easy to see that the images ∪g∈GgF of the closure of T cover the plane.

(2) To see that gF ∩ F = ∅, notice, that there are exactly 2 isometries in Isom(E2)
taking F to gF for a given g ∈ G (one of them is orientation-preserving and
another is orientation-reversing). We will see that only one of these isometries
lies in G.

Indeed suppose g1F = g2F , where g1 is orientation-preserving and g2 is orientation-
reversing. Colour the tiling in two colours so that adjacent triangles are coloured
differently and notice that each application of a generating reflection changes
the colour of a triangle. In particular, this means that g1F and g2F should be
coloured differently, and hence cannot coincide as a set.

(3) We need to check that there are finitely many elements of g such that F ∩gF ̸= ∅.
But as we have seen above, the group elements correspond to the triangles in the
tiling, and every point of E2 belongs to at most 8 triangles. So, the statement
follows.

Figure 7: Question 2.2: tiling of the plane by the triangles.

Question 2.4. Find the orbit-space for the action introduced in Question 2.3.

Solution: We need to identify some boundary points of triangle T - when there are
elements of the group G taking a point to “another” point of the boundary. But there
are no such point on the boundary of the triangle. So, T = E2/G is the orbit space and
the distance function on T = E2/G coincides with the restriction to T of the distance
on E2.
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Question 2.5. Let X be a regular triangle on E2. Let G = ⟨r1, r2⟩ where r1 and r2 are
two distinct reflections taking X to itself. Find a fundamental domain of the action
G : X. Find also the orbit-space.

Solution: The triangle X can be tiles by three triangles with angles 2π/3, π/6, π/6, see
Fig 8. However, such a triangle is not a fundamental domain for the action. Indeed, if
the three triangles are P, r1P and r2P then the triangles r2P and r1r2PX coincide as
sets with the triangle Q in the middle of Fig 8, but they does not coincide pointwise:
they are mapped to each other with different orientation.

One can cut the triangle X into two halves - triangles T with angles π/2, π/3, π/6.
Then it is straightforward to check that such a triangle is a fundamental domain. (The
closure of it’s images cover the space, interiors of the six images do not intersect, and
every boundary point belongs to finitely many images). The orbit space coincides with
the fundamental domain T .

Q

P
r2

r1

Figure 8: Question 2.4.

Question 2.6. Let G be a group generated by rotation through angle 2π
3
on the plane.

Find the orbit-space of the action G : E2. Are there closed geodesics in this orbit-space?
Are there bi-infinite open geodesics?

Solution: The orbit space is a cone (which you can obtain by gluing the two boundary
rays of the cone). Such a surface with a “cone singularity” - non-flat point at the tip
of the cone - is called an “orbifold”.

There are no closed geodesics on this orbit space, as every line cutting through a
triangle with angles 2π/3, π/6, π/6 will meet the two identified sides at different angles.

There are bi-infinite open geodesics (i.e. geodesics which one can extend infinitely
in both directions). To see such a geodesics we just draw a line on E2 and take the
quotient to see it’s trace on the quotient space (one can see that such a geodesic will
intersect itself before escaping to the infinity).

Figure 9: Question 2.5.
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3 Problems Class 3: Spherical geometry

14 November 2023

Question 3.1. Let G : S2 be an action. G acts discretely if and only if |G| <∞.

Solution: If the groupG is finite, then every orbit is finite and cannot have accumulation
points, so the action is discrete.

Conversely, assume that |G| = ∞. It is enough to show that there is at least one
infinite orbit, then, as S2 is compact this orbit will have an accumulation point. To see
that there is an infinite orbit, notice that an isometry of the sphere is determined by
the images of 3 non-collinear points A1, A2, A3. So, if the orbits orb(Ai), i = 1, 2, 3 are
all finite, then there are only finitely many possibilities for the elements of G, which
contradicts to the assumption that G is an infinite group.

Question 3.2. Let G : X be an action and suppose that F is its fundamental domain.
Then one can show that the action G : X is discrete.

Idea of Solution: Suppose that the action is not discrete, i.e. there are points p, q ∈ X
such that p is an accumulation point of points of orbit of q. Since F is a fundamental
domain, there exist g ∈ G such that p ∈ gF . If p ∈ gF , then there are infinitely many
points of the orbit of q in gF , and it is easy to see that there is an element h ∈ G such
that hG∩ gG ̸= ∅, which implies that G∩ h−1gG ̸= ∅. If p ∈ ∂F , then p lies in a finite
number of copies giF , g ∈ G, and at least one of giF contains infinitely many points
of the orbit of q. This as before contradicts to the assumption that g ∩ gF = ∅ for all
g ̸= id in G.

Question 3.3. Let g be a reflection, h ∈ Isom(S2). Show that if there exists an
isometry f ∈ Isom(S2) such that fgf−1 = h then h is a reflection too.

Solution: If h = fgf−1 for some isometry f , then Fixh = f(Fixg) (see Proposi-
tion 1.18). Since g is a reflection, Fixg is a line, and hence f(Fixg) is a line. We
conclude that Fixh is a line, which implies that h is a reflection by Remark 2.35.

Question 3.4. Let S2 be a sphere of radius R. Show that the length of a circle of
(spherical) radius r equals to 2πR sin r

R
.

Solution: Let is find a Euclidean radius of the circle on the sphere defining the spherical
circle of spherical radius r on a sphere of radius R. Let O be the centre of the sphere and
N (North Pole) be the centre of the spherical circle, see Fig. 10 Then the circle is made
of points X such that ∠XON = r/R. The spherical circle then is the intersection of
the sphere with the horizontal Euclidean plane given by z = R cos r

R
, and the Euclidean

radius of the circle is R sin r
R
. Hence, the length l(C) of the circle is l(C) = 2πR sin r

R
.

Remark: We computed that for the sphere of radius R, the length of the cir-
cle of radius r will be 2πR sin( r

R
). When R → ∞ we see that r

R
→ 0 and, hence,

2πR sin( r
R
) → 2πr.
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R

R

R sin r
R

Figure 10: Question 3.4: length of a spherical circle.

Another solution: In the previous solution we used that S2 ⊂ E3, but we can also show
the same statement based on intrinsic computations (we will compute for the unit
sphere here).

Consider a regular n-gon P inscribed into a circle of radius r. When r → ∞, the
perimeter of this n-gon tends to the length of the circle. Let A,B be two adjacent
vertices of P , and let M be the midpoint of AB. Let O be the centre of the circle.
Then OA = r, ∠AOM = π/n, and from the sine rule applied to the right-angled
triangle AOM we see that

sinAM

sin π
n

=
sinOA

sin π
2

which implies sinAM = sin r sin(π/n). So, we obtain that the length l(r) of a circle of
radius r on the unit sphere is

l(r) = lim
n→∞

2n sin r sin
π

n
= 2 sin r lim

n→∞
π
sin π

n
π
n

= 2π sin r.

Question 3.5. Let S2 be a sphere of radius R. Let α and β be two parallel planes
crossing S2. Let h be the distance between α and β. Find the area of the part of S2

lying between the planes α and γ.

Solution: Let O = (0, 0, 0) be the centre of the sphere of radius R. We will compute
the area of a very thin slice Sh of the width h defined by the planes α given by z = z0
and γ given by z = z0 + h. We will approximate the area of the slice with very small
Euclidean rectangles whose one side approximate the circle S2∩α and the opposite side
approximate S2 ∩ β. Denote AA′C ′C the vertices of such a rectangle, where A,A′ ∈ α,
C,C ′ ∈ γ (here we imagine that C and C ′ are almost lying on the same meridians of
the sphere as A and A′ respectively). Then the total area of the side surface of the
slice is the total length of the bases multiplied by the length AC of another side of the
rectangle. Denote B = (0, 0, z0) and suppose that ∠AOB = φ. Then AB = R sinφ
is the radius of the circle S2 ∩ α, and hence, the length of that circle (the total length
of all bases) equals 2πR sinφ. To find the length AC notice that its projection to the
vertical line is of length h and the angle to the horizontal line coincides with φ (as AC
is tangent to the circle, i.e. orthogonal to OA, and the horizontal line is orthogonal the
vertical line). Hence, AC = h

sinφ
. This implies that the area Sh of a very thin h-slice

can be computed as follows:

Sh = 2πBC · AC = 2πR sinφ · h

sinφ
= 2πRh,
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which does not depend on α but only depends on h!
In particular, if α is given by z = R/2 then it cuts the upper hemisphere into two

parts of equal area.

O

ϕ

A A′

C C′

A B

C

ϕ

A

C

h

Figure 11: Question 3.5: area of a spherical slice.

Question 3.6. One can also discuss ruler and compass constructions on S2, similarly to
the ones on E2 (of course, with spherical ruler and compass - which can draw spherical
lines and circles).

• The following constructions will work exactly the same way as on E2:
- perpendicular from a point to a line,
- midpoint of a segment,
- perpendicular bisector,
- angle bisector,
- circumscribed circle for a triangle,
- inscribed circle for a triangle.

• Additional constructions for S2:
- a pole for a line,
- a polar line for a pole,
- polar triangle.

• Example of a construction:
Construct vertices of a regular tetrahedron
(i.e. construct a triangle with angles (2π/3, 2π/3, 2π/3)).

One can show that the following steps give the required construction:
- Draw any regular triangle;
- Construct angle 2π/3;
- Construct length 2π/3 (by crossing the sides of angle 2π/3 with the line polar
to the vertex of the angle);
- Construct length π/3 (by taking a midpoint);
- Construct a triangle with the lengths (a, b, c) = (π/3, π/3, π/3);
- By Bipolar Theorem, the polar triangle has required angles (2π/3, 2π/3, 2π/3)).

• Can you construct the vertices of an octahedron and a cube?

• Given an angle π/5, can you construct the vertices of an icosahedron and a
dodecahedron?
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Here you can find a construction of vertices of iscosahedron and dodecahedron
(and an instruction how to easily draw both on paper).

4 Problems Class 4: Projective geometry

28 November 2023

Question 4.1. Find a projective transformation f which takes

A = (1 : 0 : 0) to (0 : 0 : 1)
B = (0 : 1 : 0) to (0 : 1 : 1)
C = (0 : 0 : 1) to (1 : 0 : 1)
D = (1 : 1 : 1) to (1 : 1 : 1)

Find the image of X = AD ∩BC under this transformation f .

Solution: We will search for this transformation as for a 3 × 3 matrix with indefinite
coefficients. First, from looking at the image of the point A we knowa d g

b e h
c f i

1
0
0

 =

ab
c

 = k

0
0
1


This implies a = b = 0, and we may assume c = 1 (c ̸= 0 as detA ̸= 0). Next, using
the point B we know that0 d g

0 e h
1 f i

0
1
0

 =

de
f

 = l

0
1
1

 ,

hence, d = 0 and e = f . Furthermore, from the point C we have0 0 g
0 e h
1 e i

0
0
1

 =

gh
i

 = m

1
0
1

 ,

hence, h = 0 and i = g. Finally, from the point D we get0 0 g
0 e 0
1 e g

1
1
1

 =

 g
e

1 + e+ g

 = n

1
1
1

 ,

which implies g = e = 1 + e + g, i.e. e = 1 + 2e, and hence e = −1. So, we arrive to
the projective transformation given by

f =

0 0 −1
0 −1 0
1 −1 −1

 .

To find the image of X = AD∩BC, consider the points A,B,C,D in the unit cube
with vertex O = (0, 0, 0), see Fig. 12. Then BCO span the plane x = 0 and AOD span

14

https://www.maths.dur.ac.uk/users/anna.felikson/Geometry/Geometry22/Dodecahedron.pdf


the plane y = z. These two planes intersect by the line through the point X = (0, 1, 1).
The image f(X) of this point is

f(X) =

0 0 −1
0 −1 0
1 −1 −1

0
1
1

 =

−1
−1
−2

 .

B

X

C

O A

D

Figure 12: Question 4.1.

Question 4.2. Find [A,B,C,D] for the points above. (Does it exist?)
For E = (1 : 1 : 0), F = (1 : 2 : 0) find [A,B,E, F ].

Solution: The cross-ratio [A,B,C,D] is not defined as the points do not lie on one line.
The points A,B,E, F all belong to the line defined by z = 0, so we can find their

cross-ratio using cross-ratio of the four lines OA,OB,OE,OF . This cross-ratio can be
computed as a cross-ratio of the points obtained by intersection of the lines with any
given line l. Choose l to be the line x = 1 (on the plane z = 0), see Fig. 13, left. Notice
that the points A,E, F already lie on that line, and the intersection of OB with the
line l is B′ = ∞ Then

[A,B,E, F ] =
|EA|
|EB′|

/ |FA|
|FB|

=
1

∞
/ 2

∞
=

1

2

Remark: If you don’t trust this computation due to B′ = ∞, you can cross the four
lines by any other line lying in the plane and check that you get the same answer. (For
example, if you chose the line 2x + y = 2 the computation is still very short and the
numbers are nice).

Question 4.3. Check explicitly, that the transformation f from Question 1 preserves
the value of [A,B,E, F ].

Solution: We know the images f(A) and f(B). Let us compute f(E) and f(F ):

f(E) =

0 0 −1
0 −1 0
1 −1 −1

1
1
0

 =

 0
−1
0

 , f(F ) =

0 0 −1
0 −1 0
1 −1 −1

1
2
0

 =

 0
−2
−1

 .

The points all four points f(A), f(E), f(F ) and f(B) lie in the plane x = 0
(see Fig. 13, right), so, the corresponding points of the projective plane collinear
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Figure 13: Questions 4.2 and 4.3.

and the cross-ratio makes sense. Furthermore, inside the plane x = 0, the points
f(A), f(E), f(F ) lie in the line y − z = −1 (of the plane x = 0), so, we project f(B)
to the point B′′ of the same line. Then we get

[f(A), f(B), f(E), f(F )] = [0,∞, 1, 2] =
1− 0

1−∞
/ 2− 0

2−∞
=

1

2
,

which agrees with the computation for [A,B,E, F ] above.

Question 4.4. Let A1, A2, A3, A4 be points on a line a, let B1, B2, B3, B4 be points on
a line b. Denote by pi the line through Ai and Bi. Show that if the lines p1, p2, p3, p4
are concurrent, then the points Ai+1Bi ∩ AiBi+1 (i = 1, 2, 3) are collinear.

Solution: To show that the points are collinear, we apply a projective transformation
(which preserves collinearity), so that the configuration will get simpler. Namely, let
P be a point where the lines pi meet, and let Q = a ∩ b. Consider a projective
transformation f which takes the line PQ to the line at infinity. Then f takes the
lines p1, . . . , p4 to four parallel lines and the lines a and b to a pair of parallel lines, see
Fig. 14. Applying an affine transformation g we can assume that the two lines obtained
from a, b are orthogonal to the four line obtained from p1, . . . , p4. The configuration we
obtained consists of 3 rectangles attached to each other back to back - and the points
considered in the question are mapped to the centres of these three rectangles, which
obviously lie in one line (parallel to g(f(a) and g(f(b))). Hence, the original points are
also collinear.

Question 4.5. Formulate and prove the statement dual to the one in Question 4.

Solution: Here is the dual statement:

Given the points A and B and the lines a1, a2, a3, a4 though A and lines b1, b2, b3, b4
through B, consider the points Pi = ai ∩ bi. Let Qi = ai+1 ∩ bi and Ri = ai ∩ bi+1 for
i = 1, 2, 3. If the points P1, . . . , P4 are collinear, then the lines QiRi are concurrent.
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Figure 15: Question 4.5.

To prove the statement, we map (by a projective map f) the points A and B to
points on the line at infinity. Applying additionally an affine map g , we may assume
that we obtain a configuration of four parallel lines intersected orthogonally by another
four parallel lines. The configuration looks like a table of 3 × 3 rectangles with the
points g(f(Pi)) lying “on the main diagonal”. Moreover, we can assume that the images
of the points P1 and P2 lie on the diagonal of a square, not a general rectangle. Then
from the assumption that the points P1, P2, P3, P4 are collinear, we see that the points
P2 and P3 are also lying on a diagonal of a square, and the same is true for P3 and P4.
Then, all three lines QiRi are also diagonal of the squares - so they are parallel to each
other (i.e. concurrent at some point at infinity).

Remark. (On using transformation groups to simplify questions).
Here is what we really did in solutions of Questions 4.4 and and 4.5 above:

1. We get a question about points and lines in R2.

2. We notice that the question only deals with properties preserved by projective
map.

3. Hence, we consider R2 as a (finite) part of RP2 (embedded to RP2 as intersection
of all objects with the plane z = 1).

4. Apply a projective map to simply the questions.

5. Solve the simplified question.

6. Since the projective transformation preserves the properties we are looking at,
we can conclude about the original, more harder, question.
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