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Abstract. We prove that for every smooth Jordan curve γ ⊂ C and for every set Q ⊂ C of six
concyclic points, there exists a non-constant quadratic polynomial p ∈ C[z] such that p(Q) ⊂ γ. The

proof relies on a theorem of Fukaya and Irie. We also prove that if Q is the union of the vertex sets

of two concyclic regular n-gons, there exists a non-constant polynomial p ∈ C[z] of degree at most
n − 1 such that p(Q) ⊂ γ. The proof is based on a computation in Floer homology. These results

support a conjecture about which point sets Q ⊂ C admit a polynomial inscription of a given degree

into every smooth Jordan curve γ.

1. Introduction.

In a sequence of papers, we introduced symplectic geometry into the study of inscription problems
in the plane. Given a finite set of points Q, a Jordan curve γ, and a set M of continuous maps of the
plane R2 → R2, the inscription problem asks whether there exists a map f ∈ M such that f(Q) ⊂ γ.
The prototype is the well-known and unsolved Square Peg Problem due to Toeplitz [21]: in this case,
Q is the vertex set of a square and M = Sim+(R2) is the set of orientation-preserving similarities.
Another unsolved (although see [23]) variant is due to Grünbaum [9]: in this case, Q is the vertex set
of a regular hexagon and M = Aff(R2) is the set of affine transformations.

The relevance of symplectic geometry stems from the observation that some inscription problems
can be recast as problems about Lagrangian intersections. For example, we proved that if Q ⊂ R2 is a
set of four concyclic points and γ ⊂ R2 is a smooth Jordan curve, then there exists f ∈ Sim+(R2) such
that f(Q) ⊂ γ [7]. (Points are called concyclic if they lie on a common circle, while a set of concyclic
points is called cyclic.) The proof is based on the result of Polterovich and Viterbo that a Lagrangian
embedding of the torus T2 in the symplectic vector space (C2, ωstd) contains a loop of Maslov index
2 [16, 22]. The result is also optimal in the sense that if Q ⊂ R2 is not cyclic, and γ is a circle, then
there does not exist f ∈ Sim+(R2) such that f(Q) ⊂ γ.

Polynomials. Under the identification R2 = C, the set Sim+(R2) is identified with the set of degree-1
polynomials with complex coefficients. Thus, the preceding result asserts that every set Q ⊂ C of four
concyclic points admits a linear inscription into every smooth Jordan curve γ ⊂ C. This perspective
leads us to consider inscriptions by polynomials of higher degree. Let d ≥ 1, and consider the space of
non-constant complex polynomials of degree ≤ d:

C[z]∗d := C[z]d \ C.

We say that a set Q ⊂ C admits a degree-d inscription into γ if there exists p ∈ C[z]∗d such that
p(Q) ⊂ γ, and we write

I∗d (Q, γ) := {p ∈ C[z]∗d : p(Q) ⊂ γ}
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for the moduli space of degree-d inscriptions of Q into γ. We drop the ∗ if we wish to include constant
polynomials. A parameter-counting heuristic below shows that the expected dimension of this space
is 0 when |Q| = 2(d + 1). In this case, I∗d (Q, γ) generically consists of a finite number of degree-d
inscriptions. Thus, our motivating problem is:

For which sets Q ⊂ C of 2(d+1) points it is the case that Q admits
a degree-d inscription into every smooth Jordan curve γ ⊂ C?

Conjecture 1.7 below gives our conjectured answer, and we build up to it gradually.

In line with our earlier result in the case d = 1, we first pose the following:

Conjecture 1.1. If Q ⊂ C is a set of 2(d+ 1) concyclic points and γ ⊂ C is a smooth Jordan curve,
then there exists a degree-d inscription of Q in γ.

Our main result confirms Conjecture 1.1 in the case d = 2:

Theorem 1.2. If Q ⊂ C is a set of six concyclic points and γ ⊂ C is a smooth Jordan curve, then
there exists a quadratic inscription of Q into γ.

The symplectic method applies as follows. Suppose that Q ⊂ C consists of 2(d + 1) points. We
show that Id(Q, γ) is parametrized by the set of intersections between a pair of (d+1)-dimensional tori
in Cd+1. Remarkably, when the points of Q are concyclic, the tori are Lagrangian in the symplectic
vector space (Cd+1, ωstd), and the constant inscriptions form a clean loop of intersection between them.
By smoothing away this loop, we see that I∗d (Q, γ) is parametrized by the set of self-intersections of
a Lagrangian immersion of the manifold S1 × (Td#Td) into (Cd+1, ωstd). This immersion has the
property that the circle fiber S1 × {pt} has Maslov index 2(d + 1), generalizing the fact that when
d = 1, it is a Lagrangian immersion of the torus T2 with minimum Maslov number 4. We pose the
following:

Conjecture 1.3. In every Lagrangian embedding S1× (Td#Td) ↪→ (Cd+1, ωstd), d ≥ 2, the circle fiber
has Maslov index 2.

We discuss Conjecture 1.3 in the subsection on Lagrangian embeddings. Arguing as above, we shall
establish the following:

Proposition 1.4. Conjecture 1.3 implies Conjecture 1.1.

Proof of Theorem 1.2. Fukaya sketched a proof that if L is a compact, relatively spin, displaceable,
aspherical Lagrangian in a symplectic manifold (M,ω), then there exists a loop in L with Maslov index
2 whose centralizer has finite index in π1(L) [6, Theorem 12.1]. Irie put the proof onto firm footing by
resolving a transversality issue left open by Fukaya [10]. The hypotheses of the Fukaya-Irie theorem
hold for a Lagrangian embedding S1 × (T2#T2) ≈ S1 × Σ2 ↪→ (C3, ωstd). A loop with finite index in
π1(S

1 × Σ2) is homotopic to a multiple of the circle fiber S1 × {pt}, and since S1 × Σ2 is orientable,
every class has even Maslov index. It follows that the loop guaranteed by the Fukaya-Irie theorem is
homotopic to the circle fiber with some orientation. This confirms the case d = 2 of Conjecture 1.3, so
the case d = 2 of Proposition 1.4 yields the desired result. □

As further evidence for Conjecture 1.1, define a 2(d + 1)-pinwheel to be the union of the set of
vertices of a regular (d+ 1)-gon with its image under a rotation through some angle about the center
of the polygon.

Theorem 1.5. A 2(d+ 1)-pinwheel admits a degree-d inscription into every smooth Jordan curve.
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The proof of Theorem 1.5 uses Floer theory. In this case, the parametrizing Lagrangian tori are
monotone and Hamiltonian isotopic, hence their Floer homology is unobstructed. They also admit a
symmetry which we are able to exploit in order to compute their pearl Floer chain complex [20]. The
case d = 1 gives a new argument, albeit a variation on a theme, that rectangles admit linear inscriptions
into smooth Jordan curves. Using this pair of tori and more Floer theoretic methods in the case d = 1,
we were able to prove the existence of linear inscriptions of an intervals’ worth of rectangles into all
rectifiable Jordan curves [8, Theorem A]. Although we do not study polynomial inscriptions of point
sets into non-smooth Jordan curves here, pinwheels stand out as a natural candidate for further study.

Optimality. By contrast with the result about linear inscriptions of cyclic quadrilaterals, Theorem 1.2
does not account for all six-point sets which admit quadratic inscriptions into all smooth Jordan curves.
Indeed, fix a set P ⊂ C of four concyclic points and a point c ∈ C, and let Q consist of six elements
of c +

√
P = {z ∈ C : (z − c)2 ∈ P}. It is easy to arrange that the points of Q are not concyclic. On

the other hand, if γ is a smooth Jordan curve, then there exists a linear inscription az + b of P into
γ, so p(z) = a(z − c)2 + b is a quadratic inscription of Q into γ. We call such a point set Q cyclically
reducible.

On the other hand, not every six-point set admits a quadratic inscription into every smooth Jordan
curve. For instance, if Q consists of six colinear points, then there does not exist a quadratic inscription
of Q into a circle. This may be argued from Bézout’s theorem: the image of a line containing Q under
a non-constant quadratic polynomial defines a degree-2 algebraic curve in the plane, which intersects
the circle (another such curve) in no more than four points with multiplicity. More generally, six points
quadratically inscribe into a circle if and only if they lie on a Cassini oval1, although we do not know
a versatile characterization of this property.

Complementing Theorem 1.2, we pose the following:

Conjecture 1.6. A set Q ⊂ C of six points admits a quadratic inscription into every smooth Jordan
curve γ ⊂ C if and only if Q is either cyclic or cyclically reducible.

More generally, call a set Q ⊂ C of 2(d + 1) points cyclically reducible if there exist integers a ≥ 2
and b ≥ 1 and a polynomial p ∈ C[z]∗a such that ab ≤ d and p(Q) is a set of ≤ 2(b + 1) concyclic
points. Conjecture 1.1 implies in this case that Q admits a degree-d inscription into every smooth
Jordan curve. Most generally, we pose:

Conjecture 1.7. A set Q ⊂ C of 2(d + 1) points admits a degree-d inscription into every smooth
Jordan curve γ ⊂ C if and only if Q is either cyclic or cyclically reducible.

An affirmative answer to Conjecture 1.7 would therefore solve our motivating problem.

Lagrangian embeddings. We give a little more context for Conjecture 1.3. Audin conjectured that
every Lagrangian embedding of the n-torus Tn in the symplectic vector space (Cn, ωstd) contains a
loop of Maslov index 2 [1]. This conjecture stimulated a lot of work, beginning with the result of
Polterovich and Viterbo, and continuing beyond its solution by Cieliebak-Mohnke [4, Theorem 1.2(b)].
The state-of-the-art result is due to Fukaya and Irie, who proved that every Lagrangian embedding
of a closed aspherical manifold (i.e. a K(π, 1) space) in a symplectic vector space contains a loop of
Maslov index 2. On the other hand, there exist closed Lagrangian submanifolds in a symplectic vector
space without a loop of Maslov index 2: for example, S1 × S2 admits a Lagrangian embedding in C3

1“Cette ligne est une maniere d’ellipse dans laquelle les rectangles faits par les lignes tirées de la planette à l’un et
à l’autre foyer font toûjours égaux. . .” [3].



4 JOSHUA EVAN GREENE AND ANDREW LOBB

of vanishing Maslov class [5, Corollary 1.6]. Beyond the condition of asphericity, there is not yet a
good conjectural picture tying the topology of Lagrangian submanifolds L ⊂ Cn to the Maslov class
µ ∈ H1(L;Z). Following Fukaya, such a picture should involve the string topology of the free loop
space of L, and the case of a connected sum of tori is not yet well understood.

Parameter counting. The following heuristic justifies studying the case |Q| = 2(d+1); it also offers
a glimpse as to how the parametrizing tori appear. Every set Q of d + 1 points admits a degree-d
inscription into every Jordan curve γ. Indeed, if Q = {q1, . . . , qd+1} and we select arbitrary targets
z1, . . . , zd+1 ∈ γ, then there exists a unique polynomial p ∈ C[z]d such that p(qi) = zi, i = 1, . . . , d+1.
It follows that, including the constant inscriptions, the moduli space Id(Q, γ) is a (d+ 1)-dimensional
torus Td+1, parametrized by the images (p(q1), . . . , p(qd+1)) ∈ γd+1. If instead Q = {q1, . . . , qk}
contains k ≥ d + 1 points, then the moduli space Id(Q, γ) is cut out from this torus by imposing the
conditions that p(qi) ∈ γ for each value d + 1 < i ≤ k. Heuristically, each point condition cuts down
the dimension by 1, the codimension of γ ⊂ R2. Throwing out the constant inscriptions, it follows that
I∗d (Q, γ) has expected dimension d+ 1− (k − d− 1) = 2(d+ 1)− k. In particular, we expect I∗d (Q, γ)
to consist of a finite number of points when |Q| = 2(d + 1). This threshold case is a natural case to
consider and hence the focus of this paper.

Plan of the paper. Section 2 develops the symplectic method necessary to prove Theorem 1.2, and
Section 3 develops the Floer theory necessary to prove Theorem 1.5.

Convention. We set n = d+ 1.

Acknowledgements. The authors gratefully acknowledge conversations or exchanges of emails with
Paul Biran, Octav Cornea, Kenji Fukaya, and Yankı Lekili.
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2. Polynomials, circles, and symplectic forms.

In this section, we consider the problem of finding a C[z]∗n−1-inscription of a set of 2n points Q ⊂ S1

into a smooth Jordan curve γ ⊂ C, recasting it into a problem in symplectic geometry. We start
with 2n distinct cyclically ordered points α1, β1, . . . , αn, βn ∈ C. From this we will define a map
F β
α ∈ GLn(C) so that intersection points γn ∩ F β

α (γ
n) ⊂ Cn correspond to inscriptions p ∈ C[z]n−1

of {α1, β1, . . . , αn, βn} into γ (Proposition 2.1). Furthermore, when the points are concyclic, we shall
exhibit a symplectic 2-form ψα

β ∈ Ω2(Cn) (Proposition 2.3) with the property that γn, F β
α (γ

n) ⊂ Cn

are both Lagrangian with respect to ψα
β (Corollary 2.4).

We note that (Cn, ψα
β ) is symplectomorphic via a diagonal linear map to (Cn, ωstd), so that we may

appeal to results about this latter space.

Define the diagonal loop

∆(γ) := {(a, a, . . . , a) : a ∈ γ} ⊂ Cn.

It is a clean loop of intersection between the two Lagrangians γn, F β
α (γ

n) (Corollary 2.6). The points
of ∆(γ) correspond to the constant inscriptions (Proposition 2.1), so that self-intersections of the
immersed Lagrangian smoothing L of γn ∪F β

α (γ
n) along ∆(γ) correspond to non-constant polynomial

inscriptions p ∈ C[z]∗n−1.

More precisely, L ⊂ Cn is the image of a Lagrangian immersion of S1 × (Tn−1#Tn−1) in Cn

(Lemma 2.7). The circle fiber S1 × {pt} has Maslov index 2n > 2. Hence we can conclude Proposi-
tion 1.4, that Conjecture 1.3 implies Conjecture 1.1.

2.1. Two tori in Cn. We now develop the set-up in earnest.

Let α = (α1, . . . , αn) denote an n-tuple of distinct points of C. The map

evα : C[z]n−1 −→ Cn : p 7−→ (p(α1), . . . , p(αn))

defines a linear isomorphism between complex vector spaces. With respect to the basis {1, z, z2, . . . , , zn−1}
of C[z]n−1 and the standard basis of Cn, it is given by the Vandermonde matrix

V α =


1 α1 α2

1 . . . αn−2
1 αn−1

1

1 α2 α2
2 . . . αn−2

2 αn−1
2

...
...

...
. . .

...
...

1 αn α2
n . . . αn−2

n αn−1
n

 .

If β = (β1, . . . , βn) denotes another n-tuple of distinct points of C, then we define the C-linear auto-
morphism

F β
α := evβ ◦ (evα)−1 : Cn −→ Cn.

Write Q = {α1, . . . , αn, β1, . . . , βn}, and recall the moduli spaces of inscriptions

I∗n−1(Q, γ) := {p(z) ∈ C[z]∗n−1 : p(Q) ⊂ γ},

In−1(Q, γ) := {p(z) ∈ C[z]n−1 : p(Q) ⊂ γ}.

Proposition 2.1. Given a Jordan curve γ ⊂ C, there is a one-to-one correspondence

γn ∩ F β
α (γ

n)
∼−→ In−1(Q, γ),

and it carries (γn ∩ F β
α (γ

n)) \∆(γ) to I∗n−1(Q, γ).
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Proof. Elements of γn ∩ F β
α (γ

n) correspond via ev−1
β to elements of ev−1

β (γn) ∩ ev−1
α (γn) ⊂ C[z]n−1.

Such elements are polynomials p ∈ C[z]n−1 satisfying

(p(α1), . . . , p(αn)), (p(β1), . . . , p(βn)) ∈ γn,

which is to say that p(z) ∈ In−1(Q, γ). Moreover, ev−1
β carries the thin diagonal ∆(C) ⊂ Cn into the

set of constant polynomials C ⊂ C[z]n−1. Hence it carries ∆(γ) into the set of constant inscriptions.
This establishes the second part of the result. □

2.2. Two Lagrangians in Cn. In this subsection we shall restrict to the case when the point set is
contained in the unit circle: Q ⊂ S1. We shall then use this assumption to find a symplectic form on
Cn for which γn and F β

α (γ
n) are simultaneously Lagrangian.

Let zk = xk +
√
−1yk, k = 1, . . . , n, denote coordinates on Cn = R2n.

Definition 2.2. A complexified 2-form ω ∈ Ω2
CCn = Ω2(Cn)⊗C is called diagonal if it takes the form

ω =

n∑
k=1

λk · dzk ∧ dzk

for some coefficients λk ∈ C. The form ω is called real if each λk ∈ R
√
−1 and positive if furthermore

λk
√
−1 < 0.

The reason for the notation is firstly that positive real diagonal 2-forms ω live in the subspace
Ω2(R2n) ⊂ Ω2

CCn (hence ‘real’). Secondly, when written in the standard basis of Ω2(R2n), they take
the form

ω =

n∑
k=1

µk · dxk ∧ dyk

where each µk > 0 (hence ‘positive diagonal’). Note that γn is Lagrangian for any such form – we wish
to find such a form for which F β

α (γ
n) is also Lagrangian. Working in the bigger complexified space

Ω2
CCn will be convenient for our proofs.

Proposition 2.3. Suppose that α, β ∈ (S1)n are n-tuples of points on the unit circle such that

(α1, β1, α2, β2, . . . , αn, βn) ∈ (S1)2n

is a cyclically ordered 2n-tuple of distinct points. Then we have the following:

(i) If we write ∆n ⊂ Ω2
C(Cn) for the subspace of diagonal forms, then the complex vector space

∆n ∩ (F β
α )

∗∆n

is 1-dimensional.
(ii) Furthermore, we can find positive real diagonal forms ψβ

α and ψα
β such that

(F β
α )

∗ψα
β = ψβ

α.

The point of this proposition is the following corollary.

Corollary 2.4. Both γn and F β
α (γ

n) are Lagrangian with respect to the symplectic form ψα
β .

Proof. Note that γn is Lagrangian with respect to ψβ
α = (F β

α )
∗(ψα

β ), so that F β
α (γ

n) is Lagrangian with
respect to ψα

β . And γn is also itself Lagrangian with respect to this form ψα
β , so we are done. □

The second part of the statement of Proposition 2.3 is therefore what mainly interests us. The first
part is there to guide us through the proof.
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Proof of Proposition 2.3. In what follows we identify C[z]n−1 with Cn via the linear isomorphism

a0 + a1z + . . . an−1z
n−1 7−→


a0
a1
...

an−1


(i) We begin by looking for diagonal forms ωβ

α, ω
α
β ∈ ∆n such that

ωβ
α = (F β

α )
∗ωα

β = ((ev∗α)
−1 ◦ ev∗β)ωα

β

or, equivalently,
(ev∗α)ω

β
α = (ev∗β)ω

α
β ∈ Ω2

C(C[z]n−1).

If we write

ωβ
α =

n∑
k=1

λk · dzk ∧ dzk and ωα
β =

n∑
k=1

µk · dzk ∧ dzk

then we have

(ev∗α)ω
β
α =

n∑
k=1

λk · (ev∗αdzk) ∧ (ev∗αdzk) =
∑

1≤i,j,k≤n

λk · (V α
kidzi) ∧ (V α

kjdzj)

=
∑

1≤i,j,k≤n

λk · V α
kiV

α
kj · dzi ∧ dzj =

∑
1≤i,j,k≤n

λk · αi−1
k αj−1

k · dzi ∧ dzj

=
∑

1≤i,j,k≤n

λk · αi−j
k · dzi ∧ dzj

and similarly

(ev∗β)ω
α
β =

∑
1≤i,j,k≤n

µk · βi−j
k · dzi ∧ dzj .

It follows that (ev∗α)ω
β
α = (ev∗β)ω

α
β exactly when we have

(1)

n∑
k=1

λkα
i−j
k − µkβ

i−j
k = 0

for all choices 1 ≤ i, j ≤ n. In other words, we are looking for coefficients λk, µk ∈ C for 1 ≤ k ≤ n
that satisfy the matrix equation

(
λ1 λ2 · · · λn −µ1 · · · −µn

)


α1−n
1 α2−n

1 · · · 1 · · · αn−1
1

α1−n
2 α2−n

2 · · · 1 · · · αn−1
2

...
...

. . .
...

. . .
...

α1−n
n α2−n

n · · · 1 · · · αn−1
n

β1−n
1 β2−n

1 · · · 1 · · · βn−1
1

...
...

. . .
...

. . .
...

β1−n
n β2−n

n · · · 1 · · · βn−1
n


= 0.

The matrix appearing in this equation with 2n rows and 2n− 1 columns we call V . The square matrix
obtained by deleting the final row we call W .

The determinant of W is non-zero, since it becomes a Vandermonde matrix after multiplying each
row by the final entry of that row. Hence V is of rank 2n−1 so there is a 1-dimensional space of vectors
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λ1 λ2 · · · λn −µ1 · · · −µn

)
satisfying the equation, from which we fix a non-zero vector to

give the coefficients λk, µk ∈ C of ωα
β and ωβ

α.

(ii) Now we wish to see that there exists a complex number σ ∈ C× such that

ψα
β = σωα

β and ψβ
α = σωβ

α

are both positive real diagonal forms. We shall take σ =
√
−1/µn. So it remains to show that µn ̸= 0

and that λj/µn and µj/µn are positive real numbers for 1 ≤ j ≤ n.

We begin by postmultiplying the matrix equation in (i) byW−1. This results in the matrix equation

(
λ1 λ2 · · · λn −µ1 · · · −µn

)


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

(β1−n
n β2−n

n · · · βn−1
n )W−1

 = 0.

From this we see firstly that µn ̸= 0, since otherwise only the zero vector would be a solution to this
equation. Secondly, from this equation we are able to read off the quotients λj/µn and µj/µn; indeed,
if we write ρj for the jth entry of the final row of the second matrix in this product then we have

λj
µn

= ρj for 1 ≤ j ≤ n, and
µj

µn
= −ρj+n for 1 ≤ j ≤ n− 1.

We compute for 1 ≤ j ≤ n− 1 (where the second equality follows from properties of Vandermonde
inverses)

λj
µn

= ρj =

(
αj

βn

)n−1 ∏
k ̸=j

βn − αk

αj − αk

∏
k ̸=n

βn − βk
αj − βk

=
∏
k ̸=j

(
αj

βn

)
βn − αk

αj − αk

∏
k ̸=n

βn − βk
αj − βk

=
∏
k ̸=j

1− αkβn
1− αkαj

∏
k ̸=n

βn − βk
αj − βk

=
∏
k ̸=j

βn − αk

αj − αk

∏
k ̸=n

βn − βk
αj − βk

=
∏
k ̸=j

∣∣∣∣βn − αk

αj − αk

∣∣∣∣2 αj − αk

βn − αk

∏
k ̸=n

βn − βk
αj − βk

=

∣∣∣∣βn − αn

αj − αn

∣∣∣∣2 (αj − αn)(βn − βj)

(αj − βj)(βn − αn)

∏
k ̸=j,n

∣∣∣∣βn − αk

αj − αk

∣∣∣∣2 (αj − αk)(βn − βk)

(αj − βk)(βn − αk)

=

∣∣∣∣βn − αn

αj − αn

∣∣∣∣2 [αj , βn;αn, βj ]
∏

k ̸=j,n

∣∣∣∣βn − αk

αj − αk

∣∣∣∣2 [αj , βn;αk, βk] > 0

where the final inequality follows since every cross-ratio appearing is positive. For j = n we have
similarly

λn
µn

= ρn =

(
αn

βn

)n−1 ∏
k ̸=n

βn − αk

αn − αk

∏
k ̸=n

βn − βk
αn − βk

=
∏
k ̸=n

∣∣∣∣βn − αk

αn − αk

∣∣∣∣2 (αn − αk)(βn − βk)

(αn − βk)(βn − αk)
=

∏
k ̸=n

∣∣∣∣βn − αk

αn − αk

∣∣∣∣2 [αn, βn;αk, βk] > 0.
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And on the other hand we have

µj

µn
= −ρj+n = −

(
βj
βn

)n−1 ∏
k

βn − αk

βj − αk

∏
k ̸=j,n

βn − βk
βj − βk

= −βn − αn

βj − αn

∏
k ̸=n

(
βj
βn

)
βn − αk

βj − αk

∏
k ̸=j,n

βn − βk
βj − βk

= −βn − αn

βj − αn

∏
k ̸=n

∣∣∣∣βn − αk

βj − αk

∣∣∣∣2 βj − αk

βn − αk

∏
k ̸=j,n

βn − βk
βj − βk

= −
∣∣∣∣βn − αj

βj − αj

∣∣∣∣2 (βn − αn)(βj − αj)

(βn − αj)(βj − αn)

∏
k ̸=j,n

∣∣∣∣βn − αk

βj − αk

∣∣∣∣2 (βj − αk)(βn − βk)

(βj − βk)(βn − αk)

= −
∣∣∣∣βn − αj

βj − αj

∣∣∣∣2 [βn, βj ;αn, αj ]
∏

k ̸=j,n

∣∣∣∣βn − αk

βj − αk

∣∣∣∣2 [βj , βn;αk, βk] > 0

where the final inequality follows since all cross-ratios appearing in the product are positive apart from
[βn, βj ;αn, αj ], which is negative. □

2.3. Polynomials, circles, and real subspaces. The previous subsection showed that the problem
of finding intersection points between the two tori γn and F β

α (γ
n) is a symplectic problem of finding

intersection points between two Lagrangians. As we have noted, there is a circle of intersection points
corresponding to inscriptions by constant polynomials. In this subsection we show that the circle of
intersection is clean. This property is necessary both for performing Lagrangian surgery in the proof
of Proposition 1.4 and for studying the pearl Floer complex in Section 3.

Proposition 2.5. Suppose that α1, β1, . . . , αn, βn are distinct cyclically ordered points on S1. Then

• F β
α (Rn) ∩ Rn = ⟨1⟩, where 1 = (1, . . . , 1), and

• F β
α (1) = 1, i.e. 1 is an eigenvector of F β

α with eigenvalue 1.

The point of this proposition is the following corollary.

Corollary 2.6. The diagonal loop ∆(γ) = {a · 1 : a ∈ γ} is a clean component of intersection between
γn and F β

α (γ
n).

Proof. Let a ∈ γ and let v ∈ Taγ ⊂ TaC ∼= C denote a nonzero tangent vector. Then

T(a·1)γ
n = {(λ1v, . . . , λnv) : λi ∈ R, 1 ≤ i ≤ n} = vRn ⊂ Cn ∼= ⊕n

k=1TaC.

and

T(a·1)F
β
α (γ

n) = (F β
α )∗T(a·1)(γ

n) = (F β
α )∗(vRn) = v(F β

α )∗(Rn) ⊂ Cn ∼= ⊕n
k=1TaC.

The differential of a linear map agrees with the linear map after identifying the tangent spaces with
the underlying ambient space. Since F β

α (Rn) ∩ Rn = ⟨1⟩, it follows that

T(a·1)γ
n ∩ T(a·1)F β

α (γ
n) = v(Rn ∩ F β

α (Rn)) = v⟨1⟩ = T(a·1)∆(γ).

Hence ∆(γ) is a clean component of intersection of γn ∩ F β
α (γ

n). □

Proof of Proposition 2.5. Suppose that

v ∈ Rn and F β
α (v) = w ∈ Rn.
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Then there exists a polynomial p ∈ C[z]n−1 such that

evα(p) = v and evβ(p) = w.

In particular, p maps the 2n distinct values α1, β1, . . . , αn, βn ∈ S1 to R. Write p(x+ iy) = p1(x, y) +
ip2(x, y) with x, y real variables, p1, p2 ∈ R[x, y], and deg p1,deg p2 ≤ n−1. The points x+iy which get
sent by p to R satisfy the polynomial equation p2(x, y) = 0. The points on S1 satisfy x2 + y2 − 1 = 0.
These are two polynomial equations in two indeterminates of respective degrees ≤ n− 1 and 2. Hence
the common solution set has cardinality ≤ 2(n− 1) or else contains a component of positive dimension
of the individual solution sets. Here we invoke Bézout’s theorem, which for plane curves was already
known to Newton [2, 13]. Since p maps 2n distinct points on S1 to R, the second case must occur.
Since x2 + y2 − 1 is irreducible, this implies that p(S1) ⊂ R. Since p is holomorphic, the maximum
principle implies that p(D2) is contained in the region bounded by p(S1) ⊂ R. This implies that p is
constant: p = λ ∈ R. Hence v = w = λ · 1, which completes the proof. □

2.4. Lagrangian smoothing and Proposition 1.4. We now wish to consider the result of a La-
grangian smoothing of γn ∪ F β

α (γ
n) along the circle of clean intersection ∆(γ).

Lemma 2.7. The Lagrangian smoothing of γn ∪ F β
α (γ

n) along ∆(γ) is a Lagrangian immersion of
S1 × (Tn−1#Tn−1) into Cn.

Proof. The result of the smoothing will be an immersion of a manifold obtained by splicing together
two n-tori which have had tubular neighborhoods of circle fibers removed. Precisely, an immersion of

Tn \ (T1 ×Dn−1) ∪ϕ Tn \ (T1 ×Dn−1)

where T1 is a circle factor of Tn and ϕ is a gluing map given by a smooth choice of identifications
SOn−1(R) ∋ ϕp : {p}×Sn−2 → {p}×Sn−2 for p ∈ T1. So there are a priori infinitely many possibilities
for the result of the smoothing for n = 3, and two possibilities for each n ≥ 4. We wish to verify
that ϕp is a null-homotopic loop in SOn−1(R) to conclude that the smoothing is an immersion of
S1 × (Tn−1#Tn−1).

Pozniak’s thesis provides a local picture for the neighbourhood of a clean intersection [18]. In our
case, when the clean intersection is topologically a circle, the local picture is the manifold

M = S1 × (−1, 1)× (−1, 1)n−1 × (−1, 1)n−1

with coordinates s ∈ R/Z, t, x1, . . . xn−1, y1, . . . , yn−1 and symplectic form

ω = ds ∧ dt+ dx1 ∧ dy1 + · · · dxn−1 ∧ dyn−1,

which contains two Lagrangians

LX = {p ∈M : t(p) = y1(p) = · · · = yn−1(p) = 0}, LY = {p ∈M : t(p) = x1(p) = · · · = xn−1(p) = 0}

cleanly intersecting along the central circle of M .

We note that for p ∈ M the images of { ∂
∂xi

: 1 ≤ i ≤ n − 1} and of { ∂
∂yi

: 1 ≤ i ≤ n − 1} are dual

bases of transverse Lagrangian planes inside TpM/⟨ ∂
∂s ,

∂
∂t ⟩ with respect to the induced symplectic form

on the quotient.

For each λ ∈ S1, we see two transversely intersecting Lagrangians with respect to this quotient form

LX,λ, LY,λ ⊂Mλ := {p ∈M : s(p) = λ, t(p) = 0}

where LX,λ = LX ∩Mλ and LY,λ = LY ∩Mλ. The smoothing of the clean intersection is performed
by making the same smoothing of each of these transverse intersections as λ varies over S1 (how one
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smooths a transverse intersection is described by Polterovich [17]). This discussion indicates how to
construct our reference loop in SOn−1(R), which we now proceed to do.

For each a ∈ γ, choose an ordered basis Ba of Ta·1γ
n/Ta·1∆(γ). With respect to the symplectic form

induced by ψα
β on the quotient Ta·1Cn/Ta·1∆(C), we let Ca be the ordered basis of Ta·1F

β
α (γ

n)/Ta·1∆(γ)

that is dual to Ba. Then (F β
α )

−1
∗ Ca = (F β

α )
−1Ca gives another basis for Ta·1γ

n/Ta·1∆(γ) (here we have
abused notation by writing (F β

α )
−1 for the linear map induced by (F β

α )
−1 on a subquotient). By

comparing these bases we get a loop of elements of GLn−1(R) parametrized by a ∈ γ. By noting that
orientations must be preserved we thus get a loop in SOn−1(R) following a deformation retraction.

We next proceed to make good choices of Ba to show that this resulting loop is contractible.

We first choose a unit-speed parametrisation of γ, making the abuse of notation between γ and its
parametrization γ : R → C, and arrange that γ′(0) = 1 ∈ C = Tγ(0)C. Then we choose a basis B0

for Tγ(0)·1γ
n/Tγ(0)·1∆(γ). Noting that multiplication by non-zero complex numbers gives real-linear

automorphisms of Cn, for each s ∈ R we take the basis Bs = γ′(s)B0 of Tγ(s)·1γ
n/Tγ(s)·1∆(γ). As

above, we write Cs for the corresponding dual basis of Tγ(s)·1F
β
α (γ

n)/Tγ(s)·1∆(γ). Note that γ′(s)C0 is

also a basis for Tγ(s)·1F
β
α (γ

n)/Tγ(s)·1∆(γ) by complex-linearity of F β
α . Indeed, since ψ

α
β is real diagonal,

we see that γ′(s)C0 is dual to γ′(s)B0 = Bs, so that we have Cs = γ′(s)C0.
Finally we obtain the loop in GLn−1(R) by comparing the bases Bs = γ′(s)B0 with the bases

(F β
α )

−1(Cs) = (F β
α )

−1(γ′(s)C0) = γ′(s)(F β
α )

−1(C0).
But this just gives a constant loop, and in particular a contractible loop. □

We are now ready to conclude Proposition 1.4.

Proof of Proposition 1.4. We have seen that points of (γn ∩F β
α (γ

n)) \∆(γ) correspond to inscriptions
p ∈ C[z]∗n−1 of {α1, . . . , αn, β1, . . . , βn} in γ (Proposition 2.1). Lemma 2.7 establishes that these points
correspond to self-intersections of a Lagrangian immersion of S1 × (Tn−1#Tn−1) into Cn.

In the homology of the torus γn, the loop ∆(γ), when oriented appropriately, represents the element

(1, 1, . . . , 1) ∈
n⊕

i=1

H1(γ,Z) = H1(γ
n,Z)

via the Künneth identification. Since the Maslov index of a loop depends only on its homology class,
we conclude that the Maslov index of ∆(γ) is 2n with respect to γn.

Thus the circle factor of S1× (Tn−1#Tn−1) is of Maslov index 2n. Since Conjecture 1.3 tells us that
this loop is of Maslov index 2 when the immersion is an embedding, it must be that the immersion has
points of self-intersection. □
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3. Pinwheels.

This section establishes Theorem 1.5, which concerns polynomial inscriptions of pinwheels. Sec-
tion 3.1 establishes nice features for the pair of parametrizing tori for a pinwheel. In particular, their
Floer homology is unobstructed. We then explain how Theorem 1.5 follows from a computation in pearl
Floer homology (Proposition 3.5). Section 3.2 reviews the construction of the pearl Floer homology of
a pair of cleanly intersecting Lagrangians. Section 3.3 then specializes the construction to the case of
the pinwheel tori. It concludes with the proof of Proposition 3.5.

3.1. Pinwheel tori. We specialize the construction of Section 2 to the case of pinwheels. Fix n ≥ 2.

Definition 3.1. Let ω = e2iπ/n be a primitive nth root of unity. For 1 ≤ j ≤ n and 0 < θ < 2π/n we
define

αj = ωj and βj = eθ
√
−1ωj

to be the vertices of the θ-pinwheel Qθ.

Thus, Qθ is a rectangle whose diagonals meet at angle θ in the case n = 2. Since F β
α only depends on

θ, we write F β
α = Fθ. The cyclic group Z/n acts on Cn by cyclic permutation of the coordinates, and

the action preserves ωstd.

Pinwheel tori have the following nice features:

Proposition 3.2. The tori γn and Fθ(γ
n) are Lagrangian, monotone, Z/n-equivariant, and Hamil-

tonian isotopic in (Cn, ωstd).

We build up to its proof after two lemmas.

Lemma 3.3. The isotopy

R/(2πZ) −→ GLn(C) : θ 7−→ Fθ

defines a Hamiltonian circle action of (Cn, ωstd).

Proof. By definition, the map Fθ factors as V β(V α)−1. By inspection, V β = V αDθ, where Dθ denotes

the diagonal matrix whose k-th diagonal entry equals e(k−1)θ
√
−1. The map Dθ is the time-θ flow of

the Hamiltonian

h : (Cn, ωstd) −→ R : (z1, . . . , zn) 7−→ −1

2

n∑
k=1

(k − 1)|zk|2.

Hence θ 7−→ ϕθh = Dθ defines a Hamiltonian circle action of Cn. The map 1√
n
V α is a unitary trans-

formation of Cn and hence a symplectomorphism of (Cn, ωstd). (Incidentally, it is the discrete Fourier
transform.) Since it conjugates Dθ into Fθ, it follows that Fθ is the time-θ flow of the Hamiltonian
H := h ◦ ( 1√

n
V α)−1 : (Cn, ωstd) → R. Hence θ 7−→ ϕθH = Fθ defines a Hamiltonian circle action. □

Lemma 3.4. The map F2π/n acts by a single cyclic shift of the coordinates of Cn:

F2π/n(z1, z2, . . . , zn) = (z2, . . . , zn, z1), ∀ (z1, . . . , zn) ∈ Cn.

Proof. When θ = 2π/n, the vector β is a single cyclic shift of the coordinates of α. It follows that the
evaluation map evβ(p) is a single cyclic shift of the coordinates of evα(p), for every p ∈ C[z]n−1. The
map F2π/n sends the second vector to the first, hence it acts as claimed. □
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Proof of Proposition 3.2. The torus γn is clearly Lagrangian, monotone, and Z/n-equivariant. By
Lemma 3.3, Fθ(γ

n) is Hamiltonian isotopic to it. By Lemma 3.3 and Lemma 3.4, it is Z/n-equivariant
as well, since

Fθ(γ
n) = Fθ(F2π/n(γ

n)) = ϕ
θ+2π/n
H (γn) = F2π/n(Fθ(γ

n)). □

We reduce Theorem 1.5 to the following Floer theoretic result. Pearl homology is a variation of
Lagrangian Floer homology that we will review in Section 3.2.

Proposition 3.5. Let n be prime. Assume that γn and Fθ(γ
n) intersect only along the locus ∆(γ).

Then the pearl homology of this pair is defined, unobstructed, and nonzero with Z/n-coefficients.

Proof of Theorem 1.5. By Proposition 3.2, the pair of tori γn, Fθ(γ
n) are monotone and Hamiltonian

isotopic. Hence their Lagrangian Floer homology is unobstructed. Since they are displaceable, their
Floer homology vanishes, for any choice of coefficients. If γn ∩ Fθ(γ

n) = ∆(γ), then the tori intersect
cleanly by Corollary 2.6, so their pearl complex is defined. However, when n is prime, these facts
contradict Proposition 3.5. It follows that the assumption of Proposition 3.5 does not hold: γn ∩
Fθ(γ

n) ̸= ∆(γ). By Proposition 2.1, it follows that there exists a degree-(n− 1) inscription of Qθ into
γ, as desired. If instead n is composite, then let ℓ denote a prime factor. Letting p1(z) = zn/ℓ, we see
that p1(Qθ) is the θ(n/ℓ)-pinwheel on 2ℓ vertices. By the case we have just established, there exists a
polynomial p2 ∈ C[z]∗ℓ−1 such that p2(p1(Qθ)) ⊂ γ. Thus, p2 ◦ p1 gives the desired inscription in this
case. □

As the proof makes apparent, Theorem 1.5 is of greatest interest when n is prime, as the case that n
is composite corresponds to a cyclically reducible pinwheel.

The proof of Proposition 3.5 will proceed as follows. We shall see that the pearl chain complex of
the pair of pinwheel tori exhibits a symmetry: the relevant strips joining two points on ∆(γ) come in
orbits of size n. If there are no intersection points between the tori away from the thin diagonal, then
the Floer homology group with coefficients in Z/n has total dimension two.

3.2. Pearl homology: review. Let L0 and L1 denote a pair of compact, spin, monotone Lagrangians
in (Cn, ω). Suppose either that both Lagrangians have minimum Maslov number ≥ 3 and the same
monotonicity constant, or else that they are Hamiltonian isotopic. In both cases, the pair (L0, L1) is
unobstructed: their Floer chain complex is defined, following the choice of some auxiliary data, and
its homology depends only on the Hamiltonian isotopy classes of the Lagrangians.

Suppose that L0 and L1 intersect cleanly. We review the pearl complex of the pair (L0, L1), following
the construction in Schmäschke’s thesis [20]. Its definition requires some auxiliary data:

• a choice J ∈ J (Cn, ω) of smooth, ω-compatible, almost-complex structure;
• a Morse function f : L0 ∩ L1 → R;
• a metric g on L0 ∩ L1 that makes (f, g) a Morse-Smale pair; and
• a field F.

The pearl complex CF (L0, L1; J, f, g,F) is generated as an F-vector space by the finite set of critical
points Crit(f). The choice of field is typically taken to be a Novikov field, as in [20]. However, any
choice will suffice for the construction in the cases under consideration, as we will explain in this section.
We will vary the choice of F in the next section.

The differential on the pearl complex counts rigid pearl trajectories, as follows. A pearl trajectory
from x ∈ Crit(f) to y ∈ Crit(f) consists of a finite, alternating sequence of Morse trajectories of (f, g)



14 JOSHUA EVAN GREENE AND ANDREW LOBB

(the ‘string’ of a pearl necklace) and finite energy, non-constant J-holomorphic strips

u : R× [0, 1] −→ Cn : (s, t) 7−→ u(s, t)

with boundary on (L0, L1) (the ‘pearls’ of a pearl necklace). Each trajectory is defined on a closed
interval. The initial endpoint of the first interval is −∞, and the first trajectory limits to x at −∞;
while the terminal endpoint of the final interval is +∞, and the last trajectory limits to y at +∞.
Every other endpoint is a finite value. They glue up by the rule that each J-holomorphic strip limits
as s → −∞ to the terminal point of the Morse trajectory which precedes it and limits as s → +∞
to the initial point of the Morse trajectory which follows it in sequence. Two special cases of pearl
trajectories appear below in Lemma 3.6.

Each pearl trajectory has an expected dimension determined by the Morse indices of x and y and
the Maslov-Viterbo indices of the strips appearing in it. A rigid pearl trajectory is one for which
the expected dimension, after dividing out by R-reparametrization, is 0. A pair of pearl trajectories
from x to y of the same expected dimension differ, up to homotopy, by a pair of classes, one in
π2(M,L0), one in π2(M,L1), whose Maslov indices sum to 0. Because L0 and L1 are monotone with
the same monotonicity constant, the trajectories therefore have the same symplectic area. There exists
a comeager subset Jreg ⊂ J (Cn, ω) of regular almost complex structures such that for all J ∈ Jreg,
and for every non-constant J-holomorphic strip u with bounded energy and satisfying the Lagrangian
boundary conditions, the linearization D∂J ,u

surjects. Since L0 are L1 are spin, it follows that the

space of rigid pearl trajectories M(x, y) is an oriented 0-manifold, for all x, y ∈ Crit(f). Since the rigid
pearl trajectories from x to y all have the same symplectic area, Gromov-Floer compactness ensures
that M(x, y) is compact. Fix one such J , and let ∂(x, y) ∈ F denote the signed count of rigid pearl
trajectories from x to y. Let ∂ denote the endomorphism of CF (L0, L1; J, f, g,F) defined on generators
by the rule ∂(x) =

∑
y ∂(x, y)y. Then ∂ is a differential — ∂2 = 0 — and the resulting homology group

computes HF (L0, L1;F).
Schmäschke proves the preceding result under the assumption that the minimum Maslov number of

the Lagrangians is ≥ 3. The proof that ∂2 = 0 uses the fact that there is no disk bubbling in this case.
He also works over a Novikov field, adjusting ∂(x, y) by a monomial depending on the symplectic area.
However, this is only necessary to do if the Lagrangians have different monotonicity constants, in which
case M(x, y) may not be compact. The proof also goes through in the case in which the minimum
Maslov number is 2 and the Lagrangians are Hamiltonian isotopic, using the fact that Maslov index 2
disk bubbles occur in canceling pairs [14, 15].

3.3. Pearl homology of pinwheel tori. Now let L0 = γn and L1 = Fθ(L0). Suppose for a con-
tradiction that L0 ∩ L1 = ∆(γ). We aim towards the proof of Proposition 3.5. Granted that, the
contradiction is resolved in the proof of Theorem 1.5 above.

Define a Morse function f : ∆(γ) → R with a single index-1 critical point x and a single index-0
critical point y. Recall that the cyclic group Z/n ⊂ Symp(Cn, ω) acts by cyclic permutations of the
coordinates, and that L0 and L1 are Z/n-equivariant (Proposition 3.2). A decent neighborhood U for the
pair (L0, L1) is a Z/n-equivariant tubular neighborhood of the thin diagonal ∆(C) with the property
that U ∩L0 and U ∩L1 are tubular neighborhoods of ∆(γ) within the respective tori. The existence of
decent neighborhoods follows from the verification that the intersection ∆(γ) is clean (Corollary 2.6).

Lemma 3.6. Every rigid pearl trajectory for (L0, L1) is either (a) a single Morse trajectory from x
to y or else (b) a constant Morse trajectory at y, followed by a J-holomorphic strip of Maslov-Viterbo
index 2 from y to x, and finished by a constant Morse trajectory at x.
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Proof. The proof is based on the numerology of the expected dimensions of pearl trajectories [20,
Lemma 10.2.1]. It implies that for a rigid pearl trajectory from x to y, the Maslov-Viterbo indices of
the strips must sum to 0, while for a rigid pearl trajectory from y to x, they must sum to 2.

Choose a pair of points z± ∈ ∆(γ), and consider pairs of paths given by continuous maps u : R ×
{0, 1} → C2 : (s, t) 7→ u(s, t) with u(R × {i}) ⊆ Li for i = 0, 1, and limiting to z± as s → ±∞,
respectively. Such pairs of paths fall into homotopy classes. The symplectic area of a strip extending
such a pair of paths is independent of the extension, and it is constant over the homotopy class of the
pair of paths. In addition, the Maslov-Viterbo index of the strip is equal to the Robbin-Salamon index
of the pair of paths comprising its boundary [19].

Let v be such a pair of paths with v(s, 0) = v(s, 1) for all s ∈ R. Then v runs along the clean
intersection L0∩L1 = ∆(γ), so TL0 and TL1 intersect in a 1-dimensional subspace at each point along
it. It follows that the Robbin-Salamon index of v is 0 by the (ZERO) axiom [19]. Every other pair of
paths is homotopic to v after possibly taking a connected sum with appropriate representatives of classes
in H1(L0) and H1(L1). The homotopy does not affect the Robbin-Salamon index (HOMOTOPY), and
the connected sum changes it by the Maslov indices of the classes (CATENATION). Since L0 and L1

are orientable, these Maslov indices are even. This shows that the Maslov-Viterbo index of a strip u
limiting to z± is even. Moreover, L0 and L1 are monotone with monotonicity constant λ equal to half
the area bounded by γ ⊂ C. This shows that the Maslov-Viterbo index of u is equal to the symplectic
area of u divided by λ, hence is positive. In particular, if u is non-constant, then its index equals 2.

It follows that a rigid pearl trajectory from x to y cannot involve any strips, while a rigid pearl
trajectory from y to x involves a unique strip. This implies that rigid pearl trajectories take the stated
form. □

Lemma 3.7. If u is a J-holomorphic strip in a rigid pearl trajectory and U is a decent neighborhood
of (L0, L1), then the image of u exits U .

Proof. We establish the contrapositive. Suppose that u is a J-holomorphic strip joining points z± ∈
L0 ∩ L1 with im(u) ⊂ U . Because U ∩ L0 and U ∩ L1 are closed tubular neighborhoods of L0 ∩ L1

within the respective Lagrangians, the boundary arcs of u can be homotoped rel endpoints into L0∩L1.
Summing the new arcs with copies of L0 ∩ L1 brings them into a pair of identical simple arcs, which
has Robbin-Salamon index 0, as in the proof of Lemma 3.6. The loop L0 ∩ L1 has Maslov index 2n
in each of L0 and L1. It follows that µ(u) ≡ 0 (mod 2n). By Lemma 3.6, it follows that u cannot
contribute to a rigid pearl trajectory of (L0, L1). □

Establishing the existence of a regular Z/n-equivariant almost complex structure will be the final
ingredient in establishing Proposition 3.5.

Lemma 3.8. Suppose that n is prime, and let U denote a decent neighborhood of (L0, L1). Then there
exists a regular almost complex structure J for (L0, L1) such that (a) J is Z/n-equivariant on Cn \ U
and (b) J |U = Jstd|U .

Proof. We wish to follow the proof of [11, Theorem 3.1.2]. The extra complication in our situation is
that we are working with equivariant almost-complex structures, and this means we need to pay more
attention to the universal moduli space. We set this up as follows.

For any ℓ ≥ 0, let J ℓ denote the space of Cℓ ω-compatible almost complex structures on Cn.
The action by Z/n on Cn \ U is free, since n is prime and ∆(C) ⊂ U . Therefore, the quotient

M = (Cn \ U)/Z/n is a manifold with boundary, and it carries a quotient symplectic form ω. Let J ℓ

U

denote the space of Cℓ ω-compatible almost complex structures on M which agree on ∂M with the
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image of Jstd under the quotient map. This space is a Banach manifold whose tangent space to J ∈ J ℓ

U

is the space of Cℓ-sections of the bundle End(M,J, ω) that vanish on ∂M (see [11, Section 3.4] for a

description of this bundle). We can identify J ℓ

U with the subspace J ℓ
U ⊂ J ℓ of Z/n-equivariant almost

complex structures which agree with Jstd on U . Thus, J ℓ
U has the structure of a Banach manifold.

Now consider the universal moduli space Mℓ consisting of pairs (J, u), where J ∈ J ℓ
U and u is a

finite energy, J-holomorphic strip which satisfies the Lagrangian boundary conditions and has Maslov-
Viterbo index 2. We wish to establish that the space Mℓ is a Banach manifold, which is an analogue
of [11, Proposition 3.4.1], straightforwardly adapted to the setting of Lagrangian Floer homology. Here
we must use Aronszajn’s theorem, as indicated in the footnote to that proof; see as well [12, Proposition
3.2.1 and Remark 3.2.3]. Once we have this, then the proof of [11, Theorem 3.1.2] carries over to our
setting and we will have established Lemma 3.8.

The one addition to [11, Proposition 3.4.1] that must be made is that, because we use Z/n-equivariant
almost complex structures which are fixed on U , we must argue that for each (J, u) ∈ Mℓ, there exists
a point z0 ∈ R× [0, 1] such that

u(z0) ∈ Cn \ U, du(z0) ̸= 0, u−1(Z/n · u(z0)) = {z0}.

Granted this, the proof carries through as in [11].

Given such a pair (J, u), consider the mapping

v : (R× [0, 1])× Z/n→ Cn, v(z, σ) = σ · u(z).

We record a few basic observations about this map. Its domain consists of n pairwise disjoint strips. It
is J-holomorphic, since u is J-holomorphic and J is Z/n-equivariant. Its restriction to each component
of its domain has Maslov-Viterbo index 2. Its image is not contained in U , since im(u) ⊂ im(v), and
im(u) ̸⊂ U by Lemma 3.7. Lastly, it has finite energy: that is because the map u has finite energy,
since L0 and L1 intersect cleanly.

The desired point z0 for the pair (J, u) exists provided we can show that there exists a point (z0, σ)
in the domain of v such that

v(z0, σ) ∈ Cn \ U, dv(z0, σ) ̸= 0, v−1(v(z0, σ)) = {(z0, σ)}.

The second and third conditions mean that (z0, σ) is an injective point of v. By [11, Proposition 2.3.1],
either (a) the set of injective points of v is a dense open set of its domain, or else (b) v is multiply-
covered: : v = w ◦ ϕ, where ϕ is a non-trivial branched covering map and w is J-holomorphic. In case
(a), we may therefore locate an injective point (z0, σ) of v whose image under v is not contained in U ,
since im(v) ̸⊂ U . The proof now reduces to showing that case (b) cannot occur.

Suppose for a contradiction that v is multiply-covered. It follows that there exists a component
(R× [0, 1])× {σ} of the domain of v to which ϕ restricts as a non-trivial branched covering map. The
only space which a strip non-trivially branch-covers is a disk with a single boundary puncture: D\{1}.
The boundary conditions on v imply that wσ(∂(D \ {1})) ⊂ L0 ∩ L1. It follows that vσ maps the
boundary of the strip into L0 ∩ L1. This implies that its Maslov-Viterbo index is a multiple of 2n as
in the proof of Lemma 3.7, hence not equal to 2, a contradiction. □

Proof of Proposition 3.5. Fix a Morse function f and metric g as above, a decent neighborhood U ,
and an almost-complex structure J as in Lemma 3.8. A rigid pearl trajectory of (L0, L1) with image
contained in U is a Morse trajectory of (f, g) by Lemma 3.7, and the two have opposite signs. A rigid
pearl trajectory with image exiting U occurs in an orbit of such rigid pearl trajectories of size n under
the Z/n-action, since J is Z/n-equivariant by Lemma 3.8 and the pair (L0, L1) is Z/n-equivariant by
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Proposition 3.2. Furthermore, after choosing for each of L0, L1 one of the two Z/n-equivariant spin
structures, we see that all of the rigid pearl trajectories within such an orbit have the same sign. It
follows that the differential on CF (L0, L1; J, f, g,Z/n) vanishes. Thus, the homology HF (L0, L1;Z/n)
is two-dimensional, generated by the classes of x and y. □
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18. Marcin Poźniak, Floer homology, Novikov rings and clean intersections, Ph.D. thesis, University of Warwick, 1994.

19. Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844. MR 1241874
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