Math 167: Mathematical Game Theory – Homework 3

Due: January 27, 2017

Exercise 1 (Partisan subtraction game).

We consider the partian version of the subtraction game, as introduced during the lectures. PI may remove 1 or 4 chips and PII may remove 2 or 3 chips from a pile of positive number of chips. They take turns, and wins who removes the last chip. Determine the value of the function W (which describes who wins at each game state, i.e. $W : \mathbb{N} \cup \{0\} \times \{I, II\} \rightarrow \{I, II\}$) for each $(x, i) \in \{0, \ldots, 8\} \times \{I, II\}$.

Describe the value W(n, i) for arbitrary $n \in \mathbb{N}$ and $i \in \{I, II\}$.

Exercise 2.

Consider the *misère* version of the impartial subtraction game, i.e. players have to remove up to 4 chips, but who removes the last chip, loses. Is is possible to say that all game positions are either in the sets N or P in this case? For all $n \in \mathbb{N} \cup \{0\}$ describe, whether $n \in P$, $n \in N$ or none of them. Justify your answers.

Exercise 3.

Exercise 1.4 from the book of Karlin and Peres (page 32).

Bonus question: solve the same question supposing misère play as well. (The bonus points can be used for other homework papers having not full scores).

Exercise 4.

Exercise 1.6 from the book of Karlin and Peres (page 32).