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1 Introduction

Historically, root systems came from the study of objects called Lie algebras
which is a big motivation towards the study of root systems. So to motivate
us as to why we want to look at root systems we will look at an example of a
Lie algebra based on an example from section 12.2.2 of the Math426 lecture
notes [1, p.105]. A definition of a Lie algebra can be found in Definition 3.1

Consider the set of 3-by-3 matrices over the complex numbers whose diagonal
entries sum to equal zero i.e. the set of 3-by-3 trace-free matrices over C.
This set is traditionally denoted by sl(3,C) because of its relationship to the
set of special linear matrices (matrices whose determinant equals 1) [2, p.2].
For more details about this relationship look at Example 4.5(ii).

We can write a general element of sl(3,C) as follows x a b
d y c
e f −x− y


with all entries being complex numbers.
It is clear that sl(3,C) forms a vector space since it contains the zero matrix,
additive inverses and is closed under matrix addition and scalar multiplica-
tion, so let us find a basis for it.
Let us define Mij to be the 3-by-3 matrix with zeros everywhere except in
the i, j position for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3 for example

M1,2 =

0 1 0
0 0 0
0 0 0


and define

H1 =

 1 0 0
0 0 0
0 0 −1

 , H2 =

 0 0 0
0 1 0
0 0 −1

 .

Then a basis for sl(3,C) is

{H1, H2, M1,2, M2,1, M1,3, M3,1, M2,3, M3,2}.
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An important operation on sl(3,C) is the commutator bracket denoted by
[, ] where for X, Y ∈ sl(3,C) we have [X, Y ] = XY − Y X. We can see that
this operation is closed on sl(3,C) as if we take X, Y ∈ sl(3,C) we can use
standard properties of the trace to get

tr([X, Y ]) = tr(XY − Y X) = tr(XY )− tr(Y X) = tr(XY )− tr(XY ) = 0,

hence [X, Y ] ∈ sl(3,C). In fact, sl(3,C) together with the commutator
bracket form a Lie algebra [2, p.2].

The subspace h of all diagonal matrices in sl(3,C) forms something called
a Cartan subalgebra of sl(3,C) and is very important in constructing root
systems from Lie algebras [3, p.211]. A definition of a Cartan subalgebra can
be found in Definition 3.12.

We have that a general element H ∈ h will have the form

H =

θ1 0 0
0 θ2 0
0 0 θ3

 ,

where θ1 + θ2 + θ3 = 0.

Now let us look at what happens when we take the commutator bracket of
H with the basis elements of sl(3,C). Since H1, H2 and H are all diagonal
matrices, they commute with each other so

[H,H1] = HH1 −H1H = HH1 −HH1 = 0,

[H,H2] = HH2 −H2H = HH2 −HH2 = 0.

For M1,2 we have

[H,M1,2] =

θ1 0 0
0 θ2 0
0 0 θ3

 0 1 0
0 0 0
0 0 0

−
 0 1 0

0 0 0
0 0 0

θ1 0 0
0 θ2 0
0 0 θ3


=

 0 θ1 0
0 0 0
0 0 0

−
 0 θ2 0

0 0 0
0 0 0


= (θ1 − θ2)M1,2.

In fact through similar calculations we get that

[H,Mi,j] = (θi − θj)Mi,j,
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and since θ3 = −θ1 − θ2 we have

[H,M1,2] = (θ1 − θ2)M1,2,

[H,M2,1] = (−θ1 + θ2)M2,1,

[H,M1,3] = (θ1 − θ3)M1,3 = (2θ1 + θ2)M1,3

[H,M3,1] = (−θ1 + θ3)M3,1 = (−2θ1 − θ2)M3,1

[H,M2,3] = (θ2 − θ3)M2,3 = (θ1 + 2θ2)M2,3

[H,M3,2] = (−θ2 + θ3)M3,2 = (−θ1 − 2θ2)M3,2.

Notice how each Mi,j are actually eigenvectors of H with respect to the com-
mutator bracket instead of matrix multiplication with eigenvalue θi − θj.

Now if we plot each of the non-zero eigenvalues on a coordinate axis where
we fix a basis {θ1, θ2} and write the eigenvalues with respect to this basis,
we get the following picture.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

(1,−1)

(−1, 1) (2, 1)

(−2,−1)

(1, 2)

(−1,−2)

θ1

θ2

This is not a very enlightening picture as the points seem to not have much
symmetry and form an outline of an irregular hexagon.
But now let us plot these points where the axes are 2π

3
radians apart instead

of π
2

radians.
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(−1, 1) (2, 1)

(−2,−1)
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(−1,−2)
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θ2

Now we can see the points form a regular hexagon. Details on why we plot
the axis in this way can be found in Example 3.20

Let us consider these points as vectors in R2 and let Φ denote the collection
of these vectors. The vectors don’t form a subspace of R2 since it does not
contain the zero vector although it is clear that they span R2. Let us discuss
some nice properties of Φ.

First let us label the vectors like so.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

β1

α1 α3

β3

α2

β2

θ1

θ2

We have labelled them in this way as we have βi = −αi. So our first property
is that if α ∈ Φ then −α ∈ Φ.

Now let us consider the reflections of Φ in the line orthogonal to α1 and β1

i.e the line θ1 = θ2.
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So α1 is sent to β1, α2 is sent to α3 and β3 is sent to β2. Hence a reflection
of a vector in Φ in this line will send it to another vector in Φ.

The same thing happens if we look at the reflections in other lines orthogonal
to vectors in Φ.

−3 −2 −1 1 2 3
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α1 α3
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α2

β2
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α2

β2

θ1

θ2

Hence Φ is unchanged by a reflection in a line orthogonal to a vector in Φ.

Our final property is that if we consider the orthogonal projection of a vector
α ∈ Φ onto the line through a different root β ∈ Φ and the origin, then the
projected α is equal to a half integer multiple of β.
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So in the picture, the red arrow represents the orthogonal projection of α2

onto the line through α3 and the origin. We can see that α2 is being pro-
jected to 1

2
α3.

In fact Φ is a root system called A2. We can apply similar methods to other
Lie algebras to construct other root systems. These root systems actually
determines the Lie algebra up to isomorphism and since root systems tend
to be simpler than Lie algebras it can make certain questions such as how
to classify Lie algebras easier to answer. We can also construct Lie algebras
from root systems which lead to the construction of Lie algebras that would
have otherwise been very hard to define such as the Lie algebra G2.

Since root systems are simpler we will focus on root systems by themselves in
the next chapter and then in chapter 3 discuss Lie algebras and their relation-
ship with root systems. In chapter 4 we will then go over some applications
of root systems and Lie algebras in other areas of maths and physics.

2 Root Systems

This section is mainly based around the ideas from sources [2] and [5]. [2]
follows a structure of briefly discussing reflections then going into the axioms
of root systems and constructing the 2D examples. After that it discusses
simple systems (or bases as the source calls them) and the Weyl group which
leads to Coxeter graphs and Dynkin Diagrams which leads to the classifica-
tion theorem.

The structure for this section will be the same but the approaches to of
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some of the topics will differ by bringing ideas from [5]. In particular we
will go into more detail on reflections by talking about more results and
our discussion of the Weyl group will mainly take ideas from [5]. We will
use the approach of proving the existence of simple systems from [5] which
differs from the approach in [2]. Finally we will approach the proof of the
classification theorem differently from [2] by taking ideas from the proof and
introducing them as their own lemmas or propositions.

2.1 Axioms

Before we define a root system we should first discuss what exactly we mean
by a reflection since a key property of root systems is its reflectional symme-
try.

Let V be a finite dimensional real inner product space. That is V is a vector
space over R with a map (, ) : V × V → R that is bilinear, symmetric and
positive-definite which we call an inner product. If V is 2-dimensional then a
reflection in V is a linear transformation that fixes a line in the vector space
and sends any vector orthogonal to that line to its negative. These properties
uniquely define the linear map [2, p.42].

Now we want to define reflections in higher dimensions which is where the
notion of a hyperplane comes in. A hyperplane of V is a subspace of V
whose dimension is one less then that of V [4]. So for 1 dimension the hyper-
plane is a point, for 2 dimensions it is a line and for 3 dimensions it is a plane.

Hence a reflection can be generally defined as a linear transformation on V
that fixes some hyperplane in V and sends any vector orthogonal to that
hyperplane to its negative.
Using the inner product (, ) on V we can define an explicit formula for re-
flections as follows.

Definition 2.1. [2, p.42][5, p.3] Let α ∈ V, let Pα = {β ∈ V : (β, α) = 0} be
the hyperplane in V orthogonal to α, and let σα be the transformation on V
representing the reflection in Pα.
Then σα acts on β ∈ V by

σα(β) = β − 2(β, α)

(α, α)
α,

i.e. β is sent to σα(β) when reflecting in Pα.
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We will use the constant 2(β,α)
(α,α)

quite frequently so to simplify things let

〈β, α〉 = 2(β,α)
(α,α)

so that the formula becomes

σα(β) = β − 〈β, α〉α.

One property of reflections is that they preserve the lengths of vectors and
angles of between vectors. Since the inner product determines both of these,
we can state this property of reflections as the following.

Proposition 2.2. Let α, β, γ ∈ V. Then (σαβ, σαγ) = (β, γ) i.e. reflections
are orthogonal transformations.

Proof. Using the fact that inner products are bilinear and symmetric we get

(σαβ, σαγ) = (β − 〈β, α〉α, γ − 〈γ, α〉α)

= (β, γ)− 〈γ, α〉(β, α)− 〈β, α〉(α, γ) + 〈β, α〉〈γ, α〉(α, α)

= (β, γ)− 2
(γ, α)(β, α)

(α, α)
− 2

(β, α)(α, γ)

(α, α)
+ 4

(β, α)(γ, α)

(α, α)

= (β, γ).

Another intuitive property of reflection is that a reflection applied to a vector
twice does not change the vector i.e. a reflection composed with itself gives
the identity map.

Proposition 2.3. Let α ∈ V. Then σασα is the identity map on V i.e. for
all β ∈ V we have σασα(β) = β.

Proof. Let β ∈ V. Since inner products are bilinear then 〈, 〉 is linear in the
first argument hence

σασα(β) = σα(β − 〈β, α〉α)

= β − 〈β, α〉α− 〈β − 〈β, α〉α, α〉α
= β − 〈β, α〉α− 〈β, α〉α + 〈β, α〉〈α, α〉α
= β − 2〈β, α〉α + 〈β, α〉〈α, α〉α

= β − 4(β, α)

(α, α)
α +

2(β, α)

(α, α)

2(α, α)

(α, α)
α

= β − 4(β, α)

(α, α)
α +

4(β, α)

(α, α)
α

= β.
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Another property of reflections are that they are injective

Proposition 2.4. Let α ∈ V. Then σα is an injective map.

Proof. Let β1, β2 ∈ V. Then we have

σαβ1 = σαβ2 =⇒ σασαβ1 = σασαβ2 =⇒ β1 = β2.

Hence σα is injective.

In our initial example we saw that the root system A2 has the following
properties.

� All the roots are non-zero and span R2.

� If α is a root then −α is also a root.

� The set of roots is invariant under reflections in lines orthogonal to
roots.

� The orthogonal projection of a root α onto a line though a different
root β and the origin will be a half integer multiple of β.

Now let us axiomatise these properties.

Definition 2.5. [2, p.42] Let V be a finite dimensional vector space over R
with inner product denoted by (, ). Φ ⊂ V is a root system if the following
hold.

(R1) Φ is a finite set that spans V and does not contain 0.

(R2) If α ∈ Φ then −α ∈ Φ and Φ contains no other multiples of α.

(R3) If α ∈ Φ then the reflection in the hyperplane orthogonal to α leaves
Φ invariant.

(R4) If α, β ∈ Φ then 2 (β,α)
(α,α)

∈ Z.

For such a set Φ we call its elements roots.

Remark 2.6. Sometimes when root systems are define, (R2) is omitted and
what we defined above is called a reduced root system [2, p.42]. Similarly
sometimes (R4) is omitted and a root system with axiom (R4) is called a
crystallographic root system [5, p.39]. For our purposes we will simply call
anything satisfying the above definition a root system.
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Remark 2.7. (R4) is the formalised version of the final property we saw in the
initial example. This was the property that the orthogonal projection of a
root α onto a line though a different root β will be a half integer multiple of β.

From now on we will assume that V is a real inner product space and Φ ⊂ V
is a root system. So using these axioms let us construct some root systems.

Example 2.8. If V is 1-dimensional then by (R2) if α is a root then so is
−α and Φ contains no other multiples of α. Since V is 1-dimensional it is
just the real number line so any other vectors in V will be some multiple of
α and so cannot be roots hence the only possible 1-dimensional root system
is the root system only containing the roots α and −α which is called A1 [2,
p.43].

0 α−α

A1

Now let us find the 2-dimensional examples.
Recall that for α ∈ V, |α| = (α, α)

1
2 defines a norm on V and for α, β ∈ V we

have the formula (β, α) = |β||α| cos θ, where θ is the angle between β and α.
Hence

〈β, α〉 =
2(β, α)

(α, α)
=

2|β||α| cos θ

|α||α| cos(0)
= 2
|β|
|α|

cos θ,

and so

〈α, β〉〈β, α〉 = 2
|α|
|β|

cos θ × 2
|β|
|α|

cos θ = 4 cos2 θ.

By (R4), 〈α, β〉, 〈β, α〉 ∈ Z and since 0 ≤ 4 cos2 θ ≤ 4, α and β must have
the same sign and their product must be at most 4.
So let us assume that α 6= ±β and |β| ≥ |α|. Then we can consider the pair
of integers satisfying these conditions and use the formulas 〈α, β〉〈β, α〉 =

4 cos2 θ and 〈β, α〉 = 2 |β||α| cos θ to find θ and |β|
|α| .

This gives the following table [2, p.45].
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〈α, β〉 〈β, α〉 θ |β|
|α| Example

0 0 π
2

undetermined Example 2.9
1 1 π

3
1 Example 2.10

−1 −1 2π
3

1 Example 2.10

1 2 π
4

√
2 Example 2.11

−1 −2 3π
4

√
2 Example 2.11

1 3 π
6

√
3 Example 2.12

−1 −3 5π
6

√
3 Example 2.12

2 2 0 1 None
−2 −2 0 1 None

‘

Note that the case where 〈α, β〉 = ±2 implies that β = ±α meaning that
this cannot be a 2-dimensional root system since if it was a root system, it
would only contain α and −α which cannot span R2 and so does not satisfy
(R1). Hence we may discard these two cases.

Example 2.9. [2, p.44] In the case where 〈α, β〉 = 〈β, α〉 = 0 we can scale
the lengths however we want. So if we let |β| = |α| then since θ = π

2
we have

β ∈ Pα and α ∈ Pβ so the only other vectors we get when reflecting in Pα
and Pβ are −α and −β.
Hence we have 2 copies of A1 so the root system we get is A1 × A1.

α−α

β

−β

A1 × A1

Example 2.10. [2, p.44] In the case where 〈α, β〉 = 〈β, α〉 = −1 we have
that β and α are the same length. So if we plot α on the x-axis then the
angle between α and β needs to be 2π

3
so we get the following.
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α

−β

We can then find the other roots by looking at the reflections in Pα and Pβ
of each root. This then gives our initial example of A2.

α

β

−α

σα(β)

σα(−β) −β

Pα

Pβ

A2

We will also get A2 for the case where 〈α, β〉 = 〈β, α〉 = 1

Example 2.11. [2, p.44] Using the same method as above for 〈α, β〉 = −1
and 〈β, α〉 = −2 we get the root system called B2.

α

β
Pα Pβ

B2

We also get B2 when 〈α, β〉 = 1 and 〈β, α〉 = 2.

Example 2.12. [2, p.44] Then for 〈α, β〉 = −1 and 〈β, α〉 = −3 we get the
root system called G2.
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α

β

Pα Pβ

G2

We also get G2 when 〈α, β〉 = 1 and 〈β, α〉 = 3.

2.2 Simple Systems

When we constructed the 2-dimensional examples, we only needed the roots
α and β in order to determine the rest of the root system as we can find the
other roots by considering the reflections in Pα and Pβ of ±α and ±β.
If we recall the formula for the reflection in Pα of β i.e.

σα(β) = β − 〈β, α〉α,

then since 〈β, α〉 ∈ Z, we can see that this means that in each of our examples
every root can be written as a Z-linear combination of α and β. This then
motivates us to make the following definition.

Definition 2.13. [2, p.47][5, p.8] Let Φ be a root system in a real inner
product space V. Then ∆ ⊂ Φ is a simple system with its elements called
simple roots if

(S1) ∆ is a basis for V .

(S2) Each α ∈ Φ is a Z-linear combination of ∆ such that each coefficient
has the same sign.

Remark 2.14. Sometimes a simple system is called a base. [2, p.47]

Example 2.15. In A2 we have

σα(β) = β − 〈β, α〉α = β + α,

σα(−β) = −β + 〈β, α〉α = −β − α,

so the roots are α, β,−α,−β, α + β,−α − β. Hence a simple system for A2

is α, β.
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Now the natural question to ask is for any root system do we have a simple
system? This would be very useful if we do as then we only need to consider a
subset of the roots to determine properties for the whole root system. While
currently we do not know if simple systems always exist, something we do
know always exists are positive systems.

Definition 2.16. [5, p.8] Choose an ordered basis B = {v1, . . . , vn} of V
and let β ∈ Φ be a root such that β =

∑n
i=0 λivi for λi ∈ R. Then we call

β positive with respect to B if 0 < λk, where k is the smallest index i such
that λi 6= 0. If λk < 0 then we call β negative with respect to B

Remark 2.17. Since V is finite we may assume that dim(V ) = n for n ∈ N
and since by (R1) β 6= 0 for all β ∈ Φ, a smallest index k such that λk 6= 0
always exists.

We then denote the collection of positive roots with respect to some basis
by Φ+ and call Φ+ a positive system and similarly we let Φ− denote the
collection of negative roots and call it a negative system. It is clear that for
any root system we have a positive system since we always have a basis of V.

Proposition 2.18. [5, p.8] Let Φ be a root system with positive and negative
systems Φ+ and Φ− with respect to some basis. Then

(i) Φ+ ∩ Φ− = ∅ and Φ = Φ+ ∪ Φ− i.e. Φ+ and Φ− form a disjoint union
of Φ.

(ii) |Φ+| = |Φ−|. Moreover Φ− = −Φ+ := {−α : α ∈ Φ+}

Proof. (i) Clearly the zero vector is the only vector that is both positive and
negative but by (R1), Φ does not contain the zero vector so Φ+ ∩ Φ− = ∅.
Moreover, since Φ does not contain the zero vector, every element of Φ must
be positive or negative and belong to at most one of the sets Φ+ and Φ−.
This means that we have the disjoint union Φ = Φ+ ∪ Φ−.

(ii) By (R2) roots come in pairs {α,−α} and if α ∈ Φ+ then −α ∈ Φ− so
the result follows.

Proposition 2.19. If ∆ is a simple system in Φ then there exists a unique
positive system containing ∆.

Proof. We refer to the proof from [5, p.8].

Example 2.20. A simple system in B2 is ∆ = {α, β} so then we get the
following positive system.

15



α

α + β 2α + β
β

B2

Since we are on the topic of positive systems, let us take a short digression
from showing the existence of simple systems to how reflections act on pos-
itive systems. If α ∈ Φ+ then we have σαα = −α ∈ Φ− so positive systems
are not invariant under reflections but it turns out that if we remove α from
the positive system then this set is invariant under the reflection σα.

Proposition 2.21. [5, p.10] Let ∆ be a simple system of Φ contained in a
positive system Φ+. If α ∈ ∆, then σα(Φ+\{α}) = Φ+\{α}.

Proof. We give will give a sketch of this proof, a full proof can be found here
[5, p.10].
Firstly, if we let α ∈ ∆, then the premise of the proof is to take an element
β ∈ Φ+\{α} and show that σα maps it into Φ+\{α}.

We can do this by first writing β as a linear combination of simple roots i.e.
β =

∑
γ∈∆ λγγ. Since β 6= ±α, there exists δ ∈ ∆\{α} such that λδ > 0.

We can then do the following calculation giving an expression of σαβ as a
linear combination of ∆ (note that this calculation is not in [5, p.10]).

σαβ = β − 〈β, α〉α =
∑
γ∈∆

λγγ − 〈β, α〉α = (λα − 〈β, α〉)α + λδδ +
∑

γ∈∆\{α,δ}

λγγ.

λδ > 0 implies that σαβ is positive and it can be shown by contradiction that
σαβ 6= α so this proves the claim.

Another way to characterise this proposition is that if σα maps a positive
root β to a negative root then we must have β = α.

Example 2.22. Returning back to B2, in the pictures below we have high-
lighted the positive roots and the lines of reflections for σα and σβ where α
and β are simple roots. We can see that these reflections follow Proposition
2.21.
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α

α + β 2α + ββ

α

α + β 2α + ββ

B2

We know that every simple system determines a unique positive system so to
show existence of simple systems we want to show the other direction holds
i.e. every positive system determines a unique simple system. So given a
positive system Φ+, how would we go about construct a simple system? A
naive way to construct one would be just to take a subset Γ of Φ of minimal
size such that each root in Φ+ can be expressed as a non-negative linear
combination of Γ. It is clear that such a subset exists and it turns out that Γ
is in fact a simple system but before we can show that we need the following
result.

Lemma 2.23. [5, p.9] Let Γ be as stated above and let α, β ∈ Γ such that
α 6= β. Then (α, β) ≤ 0.

Proof. We refer to the proof from [5, p.9].

Since simple systems clearly satisfies the condition of Γ we also get the fol-
lowing corollary.

Corollary 2.24. Let ∆ be a simple system in Φ and let α, β ∈ ∆ such that
α 6= β. Then (α, β) ≤ 0.

We now have all the tools we need to show that simple systems exist.

Theorem 2.25. Every positive system in Φ contains a unique simple system.

Proof. We will give a sketch of a proof, a full proof can be found here [5,
p.8].
The proof involves letting ∆ be a subset of Φ of minimal size such that each
root in Φ+ can be expressed as a non-negative linear combination of ∆. The

17



only thing we then need to do to show that ∆ is a simple system is to show
it is linearly independent. If we assume that ∆ is linearly dependent then we
can write

∑
β∈∆1

λββ−
∑

γ∈∆2
µγγ = 0 where ∆1 and ∆2 are disjoint subsets

of ∆ and λβ and µγ are strictly positive. Positive definiteness and Lemma
2.23 implies that 0 ≤ (

∑
β∈∆1

λββ,
∑

γ∈∆2
µγγ) ≤ 0 so

∑
β∈∆1

λββ = 0 which
is a contradiction.

So from now on we will assume that Φ has a simple system ∆ and positive
system Φ+ with respect to ∆.

2.3 The Weyl Group

One of the important properties of root systems is the reflectional symmetry
which can be expressed as a group called the Weyl group.

Definition 2.26. [2, p.43] The Weyl group of Φ denoted by W is the sub-
group of GLn(R) generated by the reflections σα for α ∈ Φ.

This group will help us prove certain properties of root systems and also
connects root systems to other areas of mathematics such as group theory.

Proposition 2.27. [5, p.6] If w ∈ W and α ∈ Φ then wσαw
−1 = σwα.

Proof. We have

wσαw
−1(wα) = wσαα = w(−α) = −wα,

so wσαw
−1 sends wα to its inverse so we only need to show that wσαw

−1

fixes the hyperplane Pwα.
Now let λ ∈ Pα meaning that σα fixes λ. By Proposition 2.2, we have

(wλ,wα) = (λ, α) = 0,

so wλ lies in Pwα if and only if λ lies in Pα.
Hence

wσαw
−1(wλ) = wσαλ = wλ

so wσαw
−1 fixes Pwα hence wσαw

−1 = σwα.

Example 2.28. Let us look at A2 with the roots and hyperplanes labelled.
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α

β

−α

α + β

−α− β −β

Pα
Pβ

Pα+β

A2

Note that the hyperplane orthogonal to γ ∈ Φ+ is the same as the hyperplane
orthogonal to −γ ∈ Φ− so σγ = σ−γ hence W is equal to the group generated
by the reflections σα, σβ and σα+β.
Then according to the above Proposition we should have
σασβσα = σσα(β) = σα+β.
So let us consider the following.

σασβσα(α + β) = σασβ(β) = σα(−β) = −α− β,
σασβσα(β) = σασβ(α + β) = σα(α + β) = β.

So σασβσα sends α+β to its negative and fixes the roots orthogonal to α+β
which is exactly what we expect according to the Proposition.

Example 2.29. Let us look at B2.

α

α + β 2α + β
β

Pα
Pβ

Pα+β

P2α+β

B2

We have that W is generated by the reflections σα, σβ, σα+β and σ2α+β.
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But notice that

σα+β(α) = α = σασα(α),

σα+β(β) = −2α− β = σασβ(β),

σα+β(α + β) = −α− β = σβσασβ(α + β),

σα+β(2α + β) = −β = σβσα(2α + β).

Similarly we can write the reflection σ2α+β in terms of σα and σβ. Hence σα
and σβ generates all the reflections of B2 and so they generate W.

Since the roots in B2 outline a square let us consider the dihedral group of
order 8 i.e. the symmetry group of a square denoted by D8. The group can
be thought as being generated by a rotation π

2
anticlockwise about the origin

denoted by a and a reflection in a line of symmetry of the square denoted b.
Then in terms of reflections we can write these generators as a = σασβ and
b = σα. So W = 〈σα, σβ〉 = 〈σα, σασβ〉 = 〈a, b〉 = D8 hence W = D8 as we
would expect.

Motivated by the previous example, our next goal is to show that in general
the Weyl group of Φ can be generated by σα for α ∈ ∆. Phrased another
way, if we let W ′ be the subgroup of W generated by σα for α ∈ ∆ then we
want to show that W ′ = W . The following definition and lemma will help
us show this.

Definition 2.30. Let β ∈ Φ and write β =
∑

α∈∆ λαα. The height of β is
htβ =

∑
α∈∆ λα.

Lemma 2.31. Let β ∈ Φ+ and choose γ ∈ W ′β ∩ Φ+ such that γ has the
smallest height in W ′β ∩ Φ+. Then γ ∈ ∆.

Proof. We refer to the proof from [5, p.11].

Remark 2.32. Note that W ′β ∩Φ+ is non-empty as W ′ contains the identity
element since it is a subgroup of W so β ∈ W ′β ∩ Φ+. This means it makes
sense for us to choose an element in that set.

Theorem 2.33. [5, p.11] W is generated by the reflections σα for α ∈ ∆,
i.e. W ′ = W.

Proof. Let β ∈ Φ+. Lemma 2.31 implies that there exists w ∈ W ′ such that
wβ = α for some α ∈ ∆. Hence β = w−1α ∈ W ′∆ so Φ+ ⊂ W ′∆.
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Now let β ∈ Φ−. Then similarly there exists w ∈ W ′ such that −wβ = α for
some α ∈ ∆. Then

β = −w−1α = w−1(−α) = w−1σαα ∈ W ′∆.

Hence Φ− ⊂ W ′∆ meaning that Φ ⊂ W ′∆.

Now let σβ ∈ W. Since β ∈ Φ ⊂ W ′∆, we know there exists w ∈ W ′ and
α ∈ ∆ such that β = wα. Then by Proposition 2.27 we have

σβ = σwα = wσαw ∈ W ′

hence W ⊂ W ′ so W = W ′.

This proof gives us the following corollary.

Corollary 2.34. For every β ∈ Φ there exists w ∈ W such that wβ ∈ ∆.

2.4 Coxeter Graphs and Dynkin Diagrams

Our next goal is to classify all possible root systems up to isomorphism. By
isomorphism we mean that root systems Φ and Φ′ in respective vector spaces
V and V ′ are isomorphic if there exists a vector space isomorphism from V
to V ′ that maps Φ onto Φ′.

If we recall our example of A1 × A1 then this root system can be broken
down into two copies of A1 whilst it seems that there are no clear ways to
decompose A1, A2, B2 or G2 into other root systems. So it seems there are
certain root systems that cannot be broken down further and can be used
to build other root systems. So we can just classify the root systems that
cannot be broken down further which will then allow us to construct all root
systems by combining them. This then motivates our next definition.

Definition 2.35. [2, p.52] A root system Φ is irreducible if Φ cannot be
partitioned into the union of two proper subsets Φ = Φ1 ∪ Φ2 such that
(α, β) = 0 for all α ∈ Φ1 and β ∈ Φ2.

Now a problem that we are going to run into if we want to classify all irre-
ducible root systems is that we can’t visualise root systems with dimension
greater than three so in order to represent these higher dimensional root sys-
tem we will simplify them.

For a root system Φ, if we know the number of simple roots in Φ along with
their lengths and the angle between them, then we know what the Weyl
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group is since it is generated by σα for α ∈ ∆ and so we can find the other
roots by applying the Weyl group to the simple roots. It turns out that if we
encode this information into a graph then we will be able to determine the
entire root system up to isomorphism.

Definition 2.36. [2, p.56] Let ∆ be a simple system of a root system Φ with
|∆| = n. Let us order the elements of ∆ such that ∆ = {α1, . . . , αn}. Then
the Coxeter graph of Φ with respect to ∆ is the graph containing n vertices
each labelled from 1 to n with the ith vertex joined to the jth vertex by
〈αi, αj〉〈αj, αi〉 edges for i 6= j.

From our earlier table we know that if α and β are distinct positive roots
then 〈α, β〉〈β, α〉 = 0, 1, 2 or 3. So using the formula 〈α, β〉〈β, α〉 = 4 cos2 θ
we can find the corresponding angles between α and β.

Theorem 2.37. Let Φ ⊂ V and Φ′ ⊂ V ′ be two root systems with the same
Coxeter graph. Then Φ and Φ′ are isomorphic.

Proof. We will give a sketch of a proof, a full proof can be found here [2,
p.55]. Note that the proof is actually a proof showing that if two root systems
have the same Cartan matrix then they are isomorphic. The Cartan matrix
of a root system is defined on the same page and it should be clear that this
is equivalent to proving the above statement.

For a sketch of the proof, since Φ and Φ′ have the same Coxeter graphs, they
must have the same number of simple roots so let ∆ = {α1, . . . , αn} and
∆′ = {α′1, . . . , α′n} be the ordered simple systems of Φ and Φ′ respectively.
Then we can define the vector space isomorphism φ : V → V ′ sending αi to
α′i. From this, we can define an isomorphism from the Weyl group of Φ to
the Weyl group of Φ′ which can then be used to show that φ maps Φ onto
Φ′.

Hence instead of saying ”the Coxeter graph of Φ with respect to ∆” we may
simply say ”the Coxeter graph of Φ” as the Coxeter graph is independent of
the choice of ∆.

Let us draw the Coxeter graphs of the root systems we have seen so far.

Example 2.38. [2, p.56]
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(i) A1 has only one simple root so the Coxeter graph is just a single vertex.

1

(ii) A1 × A1 has two simple roots which are π
2

radians apart hence
〈α, β〉〈β, α〉 = 4 cos2(π

2
) = 0.

So the Coxeter graph is two disconnected vertices.

1 2

Which is two copies of A1 as we would expect.

(iii) A2 has two simple roots which are 2π
3

radians apart hence
〈α, β〉〈β, α〉 = 4 cos2(2π

3
) = 1.

So the Coxeter graph is two vertices connected by 1 edge.

1 2

(iv) B2 has two simple roots which are 3π
4

radians apart hence
〈α, β〉〈β, α〉 = 4 cos2(3π

4
) = 2.

So the Coxeter graph is two vertices connected by 2 edges.

1 2

(v) G2 has two simple roots which are 5π
6

radians apart hence
〈α, β〉〈β, α〉 = 4 cos2(5π

6
) = 3.

So the Coxeter graph is two vertices connected by 3 edges.

1 2

Proposition 2.39. Φ is irreducible if and only if its Coxeter graph is con-
nected.
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Proof. This follows straight from the definition since the Coxeter graph of Φ
is connected if and only if Φ cannot be split into proper subsets Φ = Φ1 ∪Φ2

such that for all α ∈ Φ1 and for all β ∈ Φ2 we have 〈α, β〉〈β, α〉 = 0 implying

〈α, β〉 = 2
(α, β)

(β, β)
= 0, or 〈β α〉 = 2

(β, α)

(α, α)
= 0,

so (α, β) = 0 meaning Φ is not irreducible.

The only issue is that Coxeter graphs do not tell us whether a simple root is
longer or shorter than another simple root. But this can be easily fixed with
Dynkin diagrams.

Definition 2.40. [2, p.57] The Dynkin diagram of Φ is the Coxeter graph of
Φ with an arrow pointing to the shorter of the two roots whenever a double
or triple edge occurs.

Remark 2.41. If two roots are connected by a single edge in the Coxeter
graph of Φ then they have the same length. We can see this since a single
edge between α, β ∈ Φ implies 〈β, α〉 = ±1 and θ = π

3
or 2π

3
so then by using

the previous formula 〈β, α〉 = 2 |β||α| cos θ we get∣∣∣∣βα
∣∣∣∣ =

∣∣∣∣ 〈β, α〉2 cos θ

∣∣∣∣ =

∣∣∣∣± 1

2× 1
2

∣∣∣∣ = 1.

This is why we only need arrows on double or triple edges.

Example 2.42. The Dynkin diagrams for A1, A1×A1 and A2 are the same
as their Coxeter graphs.
For the Dynkin diagram of B2 since we only have two vertices it does not
matter which way the arrow points so the Dynkin diagram is the following.

1 2<

Similarly the Dynkin diagram for G2 is the following

1 2<
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2.5 Classification

In this section we will finish our goal from the previous chapter in classifying
all irreducible root systems up to isomorphism.
To allow more flexibility in proving this, instead of just working with roots
we will work something called an admissable set.

Definition 2.43. [2, p.60] Let V be a finite real inner product space. A set
of vectors u = {ε1, . . . εn} in V is called admissible if u is a set of n linearly
independent unit vector such that (εi, εj) ≤ 0 and 4(εi, εj)

2 = 0, 1, 2, or 3 for
i 6= j.
For such a set u we will attach a graph Γ with n vertices labelled from 1 to
n with vertices i and j connected by 4(ei, ej)

2 edges.

Example 2.44. [2, p.60] For any root system, if we take the set of simple
roots divided by their lengths then this forms an admissable set. This shows
how we can easily associate an admissable set to a root system.

Some important examples of graphs that come from admissable sets are the
following

Example 2.45. [2, p.60] A simple chain is a graph of the following form.

Picture source [2, p.60].

Example 2.46. A branch point or a node is a graph of the following form.

Picture source [2, p.62].

To help us classify all Coxeter graphs let us give some results on admissable
sets.

Lemma 2.47. Let u = {ε1, . . . , εn} be an admissable set with an associated
graph Γ.
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(i) If u′ is a non-empty subset of u then u′ is also an admissable set whose
graph can be obtained by omitting the corresponding vertices and inci-
dent edges.

(ii) 0 < n+ 2
∑n

i<j(εi, εj).

(iii) The number of pairs of vertices connected by at least one edge is strictly
less than n.

Proof. (i) follows straight from the definition of an admissable set. The fol-
lowing proofs for (ii) and (iii) are based on [2, p.60] but with more details
given to the calculations.

Let ε =
∑n

i=1 εi.
Since each εi are unit vectors and linearly independent with the fact that the
inner product is positive-definite and symmetric we get that

0 < (ε, ε) = (
n∑
i=1

εi,
n∑
i=1

εi),

=
n∑
i=1

(εi, εi) +
n∑
i<j

(εi, εj) +
n∑
i>j

(εi, εj)

= n+
n∑
i<j

(εi, εj) +
n∑
i<j

(εj, εi)

= n+
n∑
i<j

(εi, εj) +
n∑
i<j

(εi, εj)

= n+ 2
n∑
i<j

(εi, εj).

proving the claim.

For (iii) let the ith and jth vertices be connected by at least one edge where
i 6= j.
This means that (εi, εj) 6= 0 so since u is an admissable set and i 6= j we have
that 4(εi, εj)

2 = 1, 2, or 3.
Then since (εi, εj) ≤ 0 for i 6= j we have

4(εi, εj)
2 ≥ 1 =⇒ (εi, εj)

2 ≥ 1

4

=⇒ (εi, εj) ≥ −
1

2
=⇒ 2(εi, εj) ≤ −1.
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So if there existed at least n pairs of vertices connected by at least one edge
we would have 2

∑n
i<j(εi, εj) ≤ −n, contradicting the inequality from (ii).

This contradiction then proves the claim.

Corollary 2.48. [2, p.60] Let Γ be an associated graph of an admissable set
u. Then Γ contains no cycles.

Proof. A cycle of Γ would be a graph Γ′ associated to a non-empty subset u′

of u which by part (i) of Lemma 2.47 is also an admissable set.

Assume the Γ′ is such a cycle with the corresponding admissable set u′ having
m elements. Since Γ′ is a cycle, we can relabel the vertices such that each
pair of vertices (i, i+1) along with (m, 1) are connected by at least one edge.
This means there are at least m pairs of vertices in Γ′ that are connected by
at least one edge contradicting part (iii) of Lemma 2.47.

Lemma 2.49. Let Γ be an associated graph of an admissable set u. Then no
more than three edges can occur at any given vertex of Γ.

Proof. We will give a sketch of a proof, a full proof can be found here [2, p.60].

The proof starts by supposing there exists ε, η1, . . . , ηk ∈ u, all distinct, such
that η1, . . . , ηk are connected to ε by 1, 2 or 3 edges. Then using the linear
independence of u and the fact that these are unit vectors we can get the
inequality

∑k
i=1 4(ε, ηi)

2 < 4. Since 4(ε, ηi)
2 is the number of edges joining ε

and ηi in Γ, this proves the claim.

Proposition 2.50. [2, p.60] Let Γ be graph associated with an admissable
set u = {ε1, . . . , εn} with S = {ε1, . . . , εk} ⊂ u forming a simple chain in Γ.
Then if we define ε =

∑k
i=1 εi we have that the set u′ = (u \ S) ∪ {ε} is an

admissable set.

Remark 2.51. The graph of u′ can be obtained by shrinking the simple chain
in Γ to a single point.

Proof. From Lemma 2.47(i), we know that u \ S is an admissable set. Hence
we just need to check the properties of an admissable set still hold true when
considering the exceptional cases of u′ involving ε.

Since u is linearly independent we have that

0 = λ0ε+ λ1εk+1 + · · ·+ λnεn

= λ0ε1 + · · ·+ λ0εk + λ1εk+1 + · · ·+ λnεn,
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implies that λi = 0 for all i hence u′ is linearly independent.

For 1 ≤ i ≤ k − 1 we have that vertices i and i + 1 are connected by one
edge. So we have 4(εi, εi+1)2 = 1 which implies that 2(εi, εi+1) = −1.
We also know that if 2 ≤ h−j ≤ k−1 then vertices j and h are disconnected
(as otherwise we would have a cycle) meaning (εj, εh) = 0.
Using the formula (ε, ε) = k + 2

∑
1≤i<j≤k(εi, εj) from Lemma 2.47(iii) we

have

(ε, ε) = k + 2
∑

1≤i<j≤k

(εi, εj)

= k +
k−1∑
i=1

2(εi, εi+1) +
∑

2≤h−j≤k−1

(εj, εh)

= k − (k − 1) = 1,

so ε is a unit vector.

Let εu ∈ u \ S. Vertex u can be connected to at most one of the the vertices
1, . . . , k as otherwise we would have a cycle in Γ contradicting Corollary 2.48.
Hence either (εu, ε) = 0 or (εu, ε) = (εu, εi) for 1 ≤ i ≤ k.
This means that 4(εu, ε)

2 = 0 or 4(εu, ε)
2 = 4(εu, εi)

2 = 0, 1, 2 or 3 since
εu, εi ∈ u.

So u′ is a linearly independent set of unit vectors such that for εi, εj ∈ u′ we
have 4(εi, εj)

2 = 0, 1, 2 or 3.
Hence u′ is an admissable set.

This proposition is useful for identifying graphs which cannot come from
admissable set.

Example 2.52. Consider the following graphs containing simple chains.

Figure 1. Picture source [2, p.61].
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If we shrink the simple chains to a single point like in Proposition 2.50 we
get the graphs pictured.

Picture source [2, p.61].

We can see that each of these graphs contain a point which has a vertex with
four edges meaning that these graphs are not associated to admissable sets.
So then from the contrapositive of the previous proposition we know that
our initial graphs are also not associated to admissable sets.

Corollary 2.53. Let Γ be a graphs associated with an admissable set. Then
Γ contains none of the graphs from Figure 1.

Now using this corollary we can give the following result which greatly limits
what connected Coxeter graphs we can have.

Proposition 2.54. [2, p.61] Let Γ be a connected graph associated to an
admissable set.

(i) If Γ has a triple edge then Γ is the graph G2.

(ii) Γ can have at most one double edge.

(iii) Γ cannot contain both a double edge and a branch point.

(iv) Γ can have at most one branch point.

(v) If Γ contains only single edges and no branch points, then it is a simple
chain.

Proof. (i) If we recall the Coxeter graph of G2 then Lemma 2.49 shows that
if we add any other connected vertices or edges to the graph then we get a
graph no longer associated to an admissable set.
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1 2

Hence if we have a triple edge then any other vertex cannot be connected to
this triple edge and so must be connected. So any connected graph with a
triple edge contains only that triple edge which is G2.

(ii) Assume that Γ has two double edges. Since Γ is connected, these double
edges must be connected by some subgraph of Γ.
By part (i), Γ contains no triple edges and these double edges cannot be
directly connected to each other or connect by double edges since then we
would have four edges coming from a single vertex contradicting Lemma 2.49.
So they must be connected by a simple chain or a simple chain containing
one or more branch points.
But this contradicts the Corollary 2.53 as then Γ contains at least one of the
graphs in Figure 1 as a subgraph. This contradiction proves the claim.

(iii) Similarly from above, if Γ contains a double edge and a branch point
they must be connected by a simple chain or a simple chain with one or more
branch points which contradicts Corollary 2.53 so this cannot happen.

(iv) If Γ contains at least two branch points then by (iii) Γ does not have a
double edge so the branch points must be connected by simple chains. But
then Γ contains the third graph from Figure 1 so Γ must contain at most one
branch point.

(v) Assume that Γ contains only single edges and no branch points and is
not a simple chain.
Since Γ only has single edges, it is clear that it must contain a simple chain
and since Γ is connected there must exist some vertex that is connected to
this simple chain but is not part of it.
If this vertex is connected to a single vertex in the chain then Γ has a branch
point and if this vertex is connected to multiple vertices in the chain then
we have a cycle in Γ.
Hence this is a contradiction so we have proved the claim.

We can now prove the classification Theorem, one of the most important
theorems in the study of root systems.

Theorem 2.55. [2, p.57] If Φ is an irreducible root system with dimV =
|∆| = n, then its Dynkin diagram is one of the following:
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Picture source [6].

Proof. Let Γ be a graph associated to an admissable set.
If Γ has a triple edge then from the Proposition 2.54 we know that Γ is G2.
If Γ has a double edge then we know that it does not contain a triple edge, it
does not contain another double edge and it does not contain a branch point.
Hence the rest of its edges must be single edges and since it has no cycles it
must have the following form.

Picture source [2, p.61].

So we have 2(εi, εi+1) = −1 = 2(ηj, ηj+1) for 1 ≤ i ≤ p − 1 and 1 ≤ j ≤
q − 1 with all other distinct pairs being orthogonal except (εp, ηq). Setting
ε =

∑p
i=1 iεi we get that

(ε, ε) = (

p∑
i=1

iεi,

p∑
i=1

iεi) =

p∑
i=1

i2(εi, εi) +

p−1∑
i=1

i(i+ 1)(εi, εi+1) +
∑

2≤j−i≤p−1

ij(εi, εj)

=

p∑
i=1

i2 −
p−1∑
i=1

i(i+ 1)

= p2 −
p−1∑
i=1

i

= p2 − (p− 1)p

2

=
p

2
(p+ 1).
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Similarly if we set η =
∑q

i=1 iηi we get (η, η) = q
2
(q + 1).

Since 4(εp, ηq)
2 = 2 and (εi, ηj) = 0 for i 6= p and j 6= q we have

(ε, η)2 = p2q2(εp, ηq)
2 = p2q2

2
.

The Cauchy-Schwarz inequality states that

(ε, η)2 < (ε, ε)(η, η) =⇒ p2q2

2
<
pq

4
(p+ 1)(q + 1)

=⇒ 2pq < pq + p+ q + 1

=⇒ pq − p− q < 1

=⇒ (p− 1)(q − 1) < 2.

Since p and q are positive integers, one solution of the inequality is p = q = 2
giving the graph for F4. The only other solutions are when p = 1 or q = 1,
then we can choose any value for the other variable which gives the graphs
Bn or Cn.
Hence F4, Bn and Cn are the only graphs with a double edge.

If Γ has a branch point then the rest of its edges must be single edges and
it cannot contain any other branch points so it must be of the form below.
Similarly from before set ε =

∑p−1
i=1 iεi, η =

∑q−1
i=1 iηi and ζ =

∑r−1
i=1 iζi.

Picture source [2, p.61].

So (ε, ε) = p
2
(p− 1), (η, η) = q

2
(q − 1) and (ζ, ζ) = r

2
(r − 1).

Let θ1, θ2, θ3 be the respective angles between ψ and ε, η, ζ.
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Then we have

cos2 θ1 =
(ε, ψ)2

(ε, ε)(ψ, ψ)

=
(p− 1)2(εp−1, ψ)2

(ε, ε)× 1

=
(p− 1)2(1

4
)

1
2
p(p− 1)

=
1

2
(1− 1

p
).

Similarly we have cos2 θ2 = 1
2
(1− 1

q
) and cos2 θ3 = 1

2
(1− 1

r
).

From [2, p.60] we have the inequality cos2 θ1+cos2 θ2+cos2 θ3 < 1 (this comes
from the inequality

∑k
i=1 4(ε, ηi)

2 < 4 discussed in the proof of Lemma 2.49)
which gives

1

2
(1− 1

p
+ 1− 1

q
+ 1− 1

r
) < 1 =⇒ 1

p
+

1

q
+

1

r
> 1.

If any of p, q or r equals 1 then Γ does not have a branch point hence from
changing labels we may assume that 1

p
≤ 1

q
≤ 1

r
≤ 1

2
.

Then we have

1 <
1

p
+

1

q
+

1

r
≤ 3

r
≤ 3

2
,

hence r = 2.
We also have

1

2
= 1− 1

r
<

1

p
+

1

q
≤ 2

q
≤ 1,

so 2 ≤ q < 4.
If q = 3 then

1

6
= 1− 1

r
− 1

q
<

1

p
≤ 1

2
,

so p < 6, and if q = 2 then

0 = 1− 1

r
− 1

q
<

1

p
≤ 1

2
,

so p ≥ 2.
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Hence the possible triples (p, q, r) are (p, 2, 2) corresponding to the graph
Dn, (3, 3, 2) corresponding to E6, (4, 3, 2) corresponding to E7 and (5, 3, 2)
corresponding to E8 meaning that the possible graphs with branch points
are Dn, E6, E7 and E8.

The only other graph we have not consider is a graph Γ with no triple edges,
no double edges and no branch points which we know from the Proposition
2.54 implies that Γ is a simple chain which corresponds to the graphs An.

So we have shown that graphs A−G are the only graphs that can come from
an admissable set which implies that these are the only possible Coxeter
graphs.
Each Coxeter graph determines the Dynkin diagram except for Bn and Cn
which can be distinguished by the direction of the arrow on their double
edge.
Hence the Theorem follows.

3 Lie Algebras

Now we have gone in detail on roots systems we will now return to Lie alge-
bras and how root systems come from them. We start by defining and giving
examples of Lie algebras and then work our way to defining semisimple Lie
algebras. This takes ideas from multiple sources.

Then in sections 3.2 and 3.3, we define and give examples of Cartan subalge-
bras which leads us into finding root systems of specific Lie algebras. Both
of these subsections are based on ideas from [3] in particular the examples
in section 3.3 of finding the root systems of specific Lie algebras are based
on the source’s treatment of the general cases with more detail given to the
calculations.

3.1 Definition

Definition 3.1. [3, p.108] Let g be a vector space with a map [, ] : g×g→ g
called the Lie bracket such that this map satisfies the following properties
for x, y, z ∈ g

(L1) The map is bilinear.

(L2) The map is skew-symmetric meaning [x, y] = −[y, x].
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(L3) The map satisfies [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (this identity is
called the Jacobi identity).

Then g is called a Lie algebra.

For our purposes we will always be looking at complex Lie algebras consisting
of matrices which means that we can just take the Lie bracket to be the
commutator bracket.

Example 3.2. [7, p.61] Some examples of Lie algebras are the following.

(i) The Lie algebra gl(n) denotes the set of n-by-n complex matrices.

(ii) From our initial example in chapter 1 we have the Lie algebra sl(n)
denoting the set of n-by-n trace-free matrices.

(iii) so(n) denotes the set of n-by-n antisymmetric matrices i.e. the set of n-
by-n matrices M such that MT = −M where MT is the transpose of M.

(iv) sp(2n) denotes the set of 2n-by-2n matrices M such that

ΩM +MTΩ = 0 for the block matrix Ω =

(
0 In
−In 0

)
. [3, p.239]

(v) u(n) denotes the set of n-by-n skew-Hermitian matrices i.e. the set of
n-by-n matrices M such that M † = −M where M † is the conjugate
transpose of M.

(vi) su(n) denotes the set of n-by-n skew-Hermitian matrices whose trace
equals 0. So we can define this Lie algebra as su(n) = u(n) ∩ sl(n).

In fact any Lie algebra is a complex inner product space. Note that this is
different from a real inner product space which we defined at the start of
chapter 2.

Definition 3.3. [2, p.4][2, p.21] Let g be a Lie algebra and define the map
adx : g × g → C for x ∈ g where adx(y) = [x, y] (This is called the adjoint
form or adjoint representation of g).
Then we can define a map K(, ) : g × g → C where K(x, y) = tr(adx ◦ ady)
such that this map is conjugate symmetric, linear in the first argument and
is positive definite implying that K(, ) is a complex inner product.
This is called the Killing form on g.
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Naturally we want to classify all Lie algebras up to isomorphism1 just like
we did for root systems. In chapter 1 we briefly outlined a way to get a root
system from the Lie algebra sl(3) and mentioned how it determines the Lie
algebra up to isomorphism. In general we can always retrieve a root system
from a certain type of Lie algebra called a semisimple Lie algebra, which
we will define later (Definition 3.9), and this root system determines the
semisimple Lie algebra up to isomorphism. Hence, since we have classified
all root systems up to isomorphism we have already classified all semisimple
Lie algebras up to isomorphism. So while we do not have a classification for
Lie algebras in general, we do have a classification for semisimple Lie algebras.

In order to define what a semisimple Lie algebra is we need the following
definitions.

Definition 3.4. [2, p.1][2, p.4] s is a subalgebra of a Lie algebra g if it is a
subspace of g such that [x, y] ∈ s for all x, y ∈ s.
Such a subalgebra s is called abelian if [x, y] = 0 for all x, y ∈ s.

Remark 3.5. If we consider the vector space C, which is also a field and hence
abelian, we have for all x, y ∈ C that the commutator bracket gives

[x, y] = xy − yx = xy − xy = 0.

This is the motivation behind this definition of abelian.

Definition 3.6. [2, p.6] Let I be a subspace of a Lie algebra g.
I is called an ideal of g if [x, y] ∈ I for all x ∈ I and y ∈ g.

This is analogous to ideals in rings or normal subgroups in groups and just
like how we have trivial normal subgroups or trivial ring ideals we have trivial
Lie algebra ideals.

Example 3.7. For any Lie algebra g we clearly have that g itself is an ideal,
any ideal of g that is not equal to g itself we call a proper ideal. We also
have that the subspace {0} is an ideal as by bilinearity we have

[0, g] = 0[0, g] = 0

for all g ∈ g.
{0} is called the trivial ideal of g.

1By isomorphism between Lie algebras we mean a vector space isomorphism that pre-
serves the Lie bracket.
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Then just like how simple groups are groups with no proper non-trivial nor-
mal subgroups we have the following definition.

Definition 3.8. [3, p.122] A Lie algebra g is called simple if dim g > 1 and
g contains no proper non-trivial ideals.

Now we can define a semisimple Lie algebra.

Definition 3.9. [8, p.300] A Lie algebra g is called semisimple if it is the
direct product of simple Lie algebras.

Remark 3.10. Sources may differ on the definition of a semisimple Lie algebra
due to there being a few equivalent definitions. For more details look at
chapter 20 of [8].

Example 3.11. sl(n) is semisimple for n ≥ 2, so(n) is semisimple for n ≥ 3
and sp(2n) is semisimple for n ≥ 1. [9, p.170]

3.2 Cartan Subalgebras

We now generalise a method for getting a root system from a Lie algebra.
Recall in chapter 1 that we referred to something called a Cartan subalgebra
which in the case of sl(3) was the subspace of diagonal matrices. This is very
important for finding root systems so let us properly define it.

Definition 3.12. [2, p.80][2, p.17] Let h be a subalgebra of a matrix Lie
algebra g. h is a toral subalgebra if all of its elements are diagonalizable.
Then if h is a maximal toral subalgebra, that is h is a toral subalgebra
that is not contained in any other toral subalgebra of g, then h is a Cartan
subalgebra.

Remark 3.13. Again sources may differ for the definition of Cartan subalge-
bras and toral subalgebras. A reason why they may differ is if they want to
work with Lie algebras over a general field F. Since we are only interested in
Lie algebras over C this definition is suitable.

Proposition 3.14. Every finite dimensional complex Lie algebra contains a
Cartan subalgebra.

Proof. For any Lie algebra there always exists a toral subalgebra since the
zero subalgebra is a toral subalgebra. If a complex Lie algebra is finite
dimensional then since there exists toral subalgebras, there must exist a
toral subalgebra of maximum dimension.
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Example 3.15. (i) [3, p.211] As seen in chapter 1, for sl(n), a Cartan
subalgebra is the subspace of diagonal matrices,

h =



θ1 0 . . . 0
0 θ2 . . . 0
...

...
. . .

...
0 0 . . . θn

 : θ1 + θ2 + · · ·+ θn = 0


= {diag(θ1, θ2, . . . , θn) : θ1 + θ2 + · · ·+ θn = 0}.

(ii) [3, p.239] For sp(2n), a Cartan subalgebra is the following set of 2n-by-
2n diagonal matrices,

h =





θ1 0 0 0 . . . 0
...

. . . . . .
...

...
...

0 . . . θn 0 . . . 0
0 . . . 0 −θ1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −θn


: θi ∈ C


= {diag(θ1, . . . , θn,−θ1, . . . ,−θn) : θi ∈ C}.

(iii) For so(2n) a Cartan subalgebra is the following [10, p.87]

h =



M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mn

 : Mi =

(
0 θi
θi 0

)
, θi ∈ C


= {diag(M1,M2, . . . ,Mn)}.

But in order to make computing the roots easier we want the Cartan
subalgebra to contain diagonal matrices like the previous Cartan sub-
algebras.
In order to do this consider the map which sends X ∈ sl(2n) to MX

where M =

(
0 In
In 0

)
.

This map is bijective since it is self-inverse and we have that
(MX)T = −XM. So let us redefine so(2n) to be the following which is
isomorphic to our original definition, [3, p.268]

so(2n) =

{
X ∈ gl(2n) : MX +XTM = 0,where M =

(
0 In
In 0

)}
.
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Then the Cartan subalgebra of so(2n) is the same as the Cartan sub-
algebra above for sp(2n).[3, p.269]

(iv) [3, p.269] Similarly, we can redefine so(2n+ 1) to be

so(2n+ 1) =

X ∈ gl(2n+ 1) : MX +XTM = 0,where M =

 0 In 0
In 0 0
0 0 0

 .

Then the Cartan subalgebra is the following

h =





θ1 0 0 0 0 . . . 0
...

. . . . . .
...

...
...

...
0 . . . θn 0 0 . . . 0
0 . . . 0 −θ1 0 . . . 0
...

...
...

...
. . .

...
...

0 0 0 . . . 0 −θn 0
0 0 0 0 0 . . . 0


: θi ∈ C


= {diag(θ1, . . . , θn,−θ1, . . . ,−θn, 0) : θi ∈ C}.

The Cartan subalgebra allows us to deconstruct the Lie algebra and find the
’roots’ of a Lie algebra which corresponds to the roots of a root system.

Proposition 3.16. [2, p.35][11, p.126] Let g be a semisimple finite dimen-
sional complex Lie algebra with Cartan subalgebra h.
g can be decomposed as g = ⊕ gα for gα = {x ∈ g : [h, x] = α(h)x, h ∈ h}
where α ∈ h∗ = {φ : h→ C : φ is a linear map}.
This is called the root space decomposition of g and the nonzero α’s are called
the roots of g.

From our original definition of a root system, our roots live in a real inner
product space V. The roots of a Lie algebra live in h∗ which is also an inner
product space.

Definition 3.17. [2, p.39] Let g be a finite dimensional complex Lie algebra
with Cartan subalgebra h and root space decomposition g = ⊕gα.
h∗ = {φ : h → C : φ is a linear map} is called the dual space of h and is
an inner product space with inner product K∗(α, β) = K(tα, tβ) where for
φ ∈ h∗, tφ ∈ h is the unique element such that φ(h) = K(tφ, h) for all h ∈ H.
We will call the inner product K∗(, ) the dual killing form of h∗.

Remark 3.18. For a proof of the existence and uniqueness of the element
tφ ∈ h, look at proposition 8.2 in and its immediate corollary in [2, p.36].
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Now we give the following theorem which states the link between Lie algebras
and root systems.

Theorem 3.19. [9, p.237] Let g be a finite dimensional complex Lie algebra
with Cartan subalgebra h and root space decomposition g = ⊕ gα.

(i) The set φ = {α ∈ h∗ : gα 6= 0} is a root system with respect to the dual
Killing form.
We call φ the root system of g with respect to h.

(ii) Let φ be the root system of g with respect to h.
If g′ is a finite dimensional complex Lie algebra with root system φ′ with
respect to some Cartan subalgebra h′ such that φ ∼= φ′, then g ∼= g′.
i.e The root system of a Lie algebra determines the Lie algebra up to
isomorphism.

(iii) If φ is a root system then there exists a Lie algebra g′ and a Cartan
subalgebra h′ of g′ such that the root system of g′ with respect to h′ is
isomorphic to φ.

Proof. Proofs for each part can be found in [2].
For (i) look at chapter 8, for (ii) look at section 14.2 and for (iii) see section
18.

Hence this shows that classifying root systems up to isomorphism is the same
as classifying semisimple Lie algebras.

3.3 Root Systems From Semisimple Lie Algebras

Now let us give some examples of finding root systems from semisimple Lie
algebras.

Example 3.20. We have already found a root system from a Lie algebra
in our initial example of sl(3). From example 3.15(i), the Cartan subal-
gebra h of sl(3) is the set of 3-by-3 diagonal matrices whose trace equal
zero. Recall that when we take the commutator bracket of a general element

H =

θ1 0 0
0 θ2 0
0 0 θ3

 ∈ h where θ3 = −θ1 − θ2, with a basis element Mi,j of

sl(3) then we have the formula

[H,Mi,j] = (θi − θj)Mi,j.
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In the initial example we then plotted (θi − θj) but from Proposition 3.16
we know that the roots of Lie algebras are linear maps so let us define the
constant functions Li : h→ C; H 7→ θi. Then the roots of sl(3) are the linear
functions Li − Lj for i, j ∈ {1, 2, 3} where i 6= j. But since L3 = −L1 − L2,
we get the full list of roots to be

L1 + L2, −L1 + L2, 2L1 + L2, −2L1 − L2, L1 + 2L2, −L1 − 2L2.

Then if we plot these roots on a coordinate axis with respect to the basis
{L1, L2} and where the axes are 2π

3
radians apart then we get the familiar

image of the root system A2.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

(1,−1)

(−1, 1) (2, 1)

(−2,−1)

(1, 2)

(−1,−2)

L1

L2

Now let us briefly discuss the reasoning behind having the axes 2π
3

radians
apart. In vector spaces, an inner product can be used to see the geometry
of the space. For example, if we consider the vector space R2 with the inner
product of the dot product, the standard basis of R2 is {(1, 0), (0, 1)} and
their dot product equals zero corresponding to the angle between them being
π/2 and so we would draw an axis for R2 with the axes perpendicular.

Since roots live in the dual space of the Cartan subalgebra which has the
inner product of the dual Killing form, we can take a basis of the dual space
of the Cartan subalgebra for sl(3) then we can find the angle between them
with respect to the dual Killing form to figure how we should plot our axis
and it turns out that this angle is 2π

3
justifying our diagrams. More details

on finding a basis and calculating the angle between them can be found in
chapter 17 of the Math426 lecture notes [1, p.159].

In general we have that the root system of sl(n+ 1) is An.

Example 3.21. [3, p.270]
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Let us find the root system of

so(5) =

X ∈ gl(5) : MX +XTM = 0,where M =

 0 I2 0
I2 0 0
0 0 0

 .

First we need to find a basis of so(5).
From solving the equation MX +XTM = 0 for a general 5-by-5 matrix, we
get that a general element of so(5) is of the form

a1 a2 0 a3 0
b1 b2 −a3 0 0
0 c1 −a1 −b1 0
−c1 0 −a2 −b2 0
d1 d2 d3 d4 d5

 .

Let Mi,j be a matrix with a 1 in position i, j and zeroes in all other entries
like in our initial example from chapter 1. Then we can define a basis of
so(5) as the following set

{M1,1 −M3,3, M2,2 −M4,4, M1,2 −M4,3, M2,1 −M3,4, M1,4 −M2,3, M3,2 −M4,1,

M5,1, M5,2, M5,3, M5,4, M5,5}.

To simplify things let us define the matrix Xi,j = Mi,j −M2+j,2+i, for 1 ≤
i, j ≤ 2 so we can rewrite the basis as

{X1,1, X2,2, X1,2, X2,1, M1,4 −M2,3, M3,2 −M4,1,

M5,1, M5,2, M5,3, M5,4, M5,5}.

A general element in the Cartan subalgebra of so(5) is

H =


θ1 0 0 0 0
0 θ2 0 0 0
0 0 θ3 0 0
0 0 0 θ4 0
0 0 0 0 θ5

 where θ3 = −θ1, θ4 = −θ2 and θ5 = 0.

So if we calculate the commutator bracket of H with the basis elements we

42



get

[H,Mi,j] = HMi,j −Mi,jH

= θjMi,j − θiMi,j

= (θj − θi)Mi,j.

[H,Xi,j] = HXi,j −Xi,jH

= HMi,j −HM2+j,2+i −Mi,jH +M2+j,2+iH

= θjMi, j − θ2+iM2+j,2+i − θiMi,j + θ2+jM2+j,2+i

= (θj − θi)Mi,j + (θ2+j − θi2 + i)M2+j,2+i

= (θj − θi)Mi,j − (θj − θi)M2+j,2+i

= (θj − θi)Xi,j.

Similarly we get,

[H,M1,4 −M2,3] = (−θ1 − θ2)(M1,4 −M2,3).

[H,M3,2 −M4,1] = (θ1 + θ2)(M1,4 −M2,3).

Hence defining the function Li(H) = θi, we get the non-zero roots to be

−L1 + L2, L1 − L2, −L1 − L2, L1 + L2, L1, L2, −L1,−L2.

Then plotting the roots on an axis we get the root system B2.

(1, 0)(−1, 0)

(0, 1)

(0,−1)

(1, 1)(−1, 1)

(−1,−1) (1,−1)

L1

L2

In general, the root system of so(2n+1) is Bn for n ≥ 2 with the root system
of so(3) being A1. In fact, since so(3) and sl(2) have the same root system
and root systems determine semisimple Lie algebras up to isomorphism we
have the isomorphism so(3) ∼= sl(2).

Example 3.22. [3, p.240] Now let us find the root system of

sp(6) =

{
M ∈ gl(6) : ΩM +MTΩ = 0 for Ω =

(
0 I3

−I3 0

)}
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From the definition we get a general element of sp(6) to be
a1 a2 a3 a4 a5 a6

b1 b2 b3 a5 b4 b5

c1 c2 c3 a6 b5 c4

d1 d2 d3 −a1 −b1 −c1

d2 e1 e2 −a2 −b2 −c2

d3 e2 f1 −a3 −b3 −c3


Like in the previous example let us define the following matrices to simplify
the basis

Xi,j = Mi,j −M3+j,3+i, Yi,j = Mi,3+j +Mj,3+i, Zi,j = M3+i,j +M3+j,i.

Then we can define a basis as the following

{X1,1, X1,2, X1,3, M1,4, Y1,2, Y1,3, X2,1, X2,2, X2,3, M2,5, Y2,3,

X3,1, X3,2, X3,3, M3,6, M4,1, Z1,2, Z1,3, M5,2, Z2,3, M6,3}.

A general element of the Cartan subalgebra is

H =


θ1 0 0 0 0 0
0 θ2 0 0 0 0
0 0 θ3 0 0 0
0 0 0 −θ1 0 0
0 0 0 0 −θ2 0
0 0 0 0 0 −θ3


We have

[H,Xi,j] = HMi,j +HM3+j,3+i −Mi,jH −M3+j,3+iH

= θjMi,j − θiM3+j,3+i − θiMi,j + θjM3+j,3+i

= (θj − θi)Xi,j

[H,Yi,j] = HMi,3+j −HMj,3+i −Mi,3+jH +Mj,3+iH

= −θjMi,3+j + θiMj,3+i − θiMi,3+j + θjMj,3+i

= (−θi − θj)Yi,j
[H,Yi,j] = HM3+i,j −HM3+j,i −M3+i,jH +M3+j,iH

= θjM3+i,j − θiM3+j,i + θiM3+i,j − θjM3+j,i

= (θi + θj)Yi,j

[H,M1,4] = −2θ1M1,4, [H,M2,5] = −2θ2M2,5, [H,M3,6] = −2θ3M3,6

[H,M4,1] = 2θ1M4,1, [H,M5,2] = 2θ2M5,2, [H,M6,3] = 2θ3M6,3
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Hence the nonzero roots of sp(6) are ±Li ± Lj for i 6= j and ±2Li. Then
plotting these roots on a coordinate axis with three axes, we get that the
roots correspond to the vertices and midpoints of the edges of an octahedron
like the following picture.

Picture source [3, p.254].

This root system corresponds to C3 and in general we have that the root
system of sp(2n) is Cn for n ≥ 3 with the root system of sp(2) being
A1 and the root system of sp(4) being B2. So we have the isomorphisms
sp(2) ∼= so(3) ∼= sl(2) and sp(4) ∼= so(5).

Example 3.23. [3, p.270] Now let us find the root system of

so(4) =

{
X ∈ gl(4) : MX +XTM = 0,where M =

(
0 I2

I2 0

)}
.

A general element of so(4) is
a1 a2 0 a3

b1 b2 −a3 0
0 c1 −a1 −b1

−c1 0 −a2 −b2


So then the following matrices form a basis of so(4)

e1 = M1,1 −M3,3, e2 = M1,2 −M4,3, e3 = M1,4 −M2,3

e4 = M2,1 −M3,4, e5 = M2,2 −M4,4, e6 = M3,2 −M4,1.

A general element of the Cartan subalgebra is

H =


θ1 0 0 0
0 θ2 0 0
0 0 −θ1 0
0 0 0 −θ2

 .
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So then taking the commutator brackets of H with the basis elements we get

[H, e1] = 0, [H, e2] = (θ1 − θ2)e2, [H, e3] = (θ1 + θ2)e3,

[H, e4] = (−θ1 + θ2)e4, [H, e5] = 0, [H, e6] = (−θ1 − θ2)e6.

Hence the non-zero roots are ±L1 ± L2 which when we plot on a coordinate
axis we get the root system A1 × A1. Note that this means that while so(4)
is semisimple, it is not simple.

(1, 1)(−1, 1)

(1,−1)(−1,−1)

L1

L2

More generally we have that the root system of so(2n) is Dn for n ≥ 4 and the
root system for so(6) is A3. So we have the isomorphisms so(4) ∼= sl(2)⊕sl(2)
and so(6) ∼= sl(4).

Let us recap the results from these examples

Proposition 3.24. [3, p.326]
For n ≥ 1, the root system of sl(n+ 1) is An.
For n ≥ 2, the root system of so(2n+ 1) is Bn.
For n ≥ 3, the root system of sp(2n) is Cn.
For n ≥ 4, the root system of so(2n) is Dn.

Proposition 3.25. [3, p.326-p.327] We have the following isomorphisms
between semisimple Lie algebras

sl(2) ∼= so(3) ∼= sp(2),

so(5) ∼= sp(4),

sl(2)⊕ sl(2) ∼= so(4),

sl(4) ∼= so(6).

These are sometimes called exceptional isomorphisms.

So now let us classify all simple complex Lie algebras.

Theorem 3.26. Let g be a simple complex Lie algebra. Then g is isomorphic
to sl(n), so(n) or sp(2n) for some n ∈ N or it is isomorphic to a Lie algebra
whose root system is E6, E7, E8, F4 or G2.
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4 Applications

We finish by briefly discussing where root systems and Lie algebras are used
in other areas of maths and physics.

4.1 Lie Groups

The study of Lie algebras comes from the study of Lie groups so let us define
a Lie group.

Definition 4.1. [1, p.30] Let GL(n) denote the group of invertible n-by-
n matrices. Then a matrix Lie group is a topologically closed subgroup of
GL(n).
This means that a subgroup G of GL(n) is a Lie group if any convergent
sequence whose elements are in G has limit belonging to G.

Remark 4.2. There exists Lie groups which are not matrix groups but the
only Lie groups we will discuss are matrix Lie groups so for simplicity this
definition will suffice.

So how do Lie groups relate to Lie algebras? It turns out that they are linked
by the exponential map.

Definition 4.3. [3, p.116] The exponential of a n-by-n matrix M is

exp(M) = In +M +
1

2!
M2 +

1

3!
M3 + · · · =

∞∑
n=1

1

n!
Mn

Proposition 4.4. [3, p.116] Let G be a matrix Lie group. Then the set

g = {g ∈ gl(n) : exp(tg) ∈ G for all t ∈ R}

forms a Lie algebra and is called the Lie algebra of G.

So Lie algebras can be seen as a linearised form of Lie groups which can make
studying the Lie algebra of a Lie group simpler then studying the Lie group
itself and then studying the root system of a Lie algebra can be even simpler
than studying the Lie algebra itself.

Example 4.5. [9, p.5-p.9] Some examples of Lie groups and their Lie alge-
bras are the following.

(i) (General linear matrices). The exponential of any n-by-n matrix is
invertible meaning that the Lie algebra of GL(n) is gl(n).
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(ii) (Special linear matrices). SL(n) denotes the set of n-by-n matrices with
determinant 1. This is a Lie group whose Lie algebra is sl(n). This is
the relationship we mentioned in our initial example between sl(3) and
the special linear matrices hence why we use this notation.

(iii) (Special orthogonal matrices). SO(n) denotes the set of n-by-nmatrices
whose transpose equals its inverse and have determinant 1. This is a
Lie group whose Lie algebra is so(n).

(iv) (Symplectic matrices). Sp(2n) denotes the set of 2n-by-2n matrices M
that satisfy

MTΩM = Ω, for

(
0 In
−In 0

)
.

This is a Lie group with Lie algebra sp(2n).

(v) (Unitary matrices). U(n) denotes the set of matrices whose conjugate
transpose equals its inverse. This is a Lie group whose Lie algebra is
u(n).

(vi) (Special unitary matrices). SU(n) denotes the subgroup of U(n) where
every matrix element has determinant 1. This is a Lie group whose Lie
algebra is su(n).

4.2 Differential Equations

The study of Lie groups came from the study of differential equations. In par-
ticular Lie groups are used by ’acting’ on a solution of a differential equation.
So let us first define what we mean by a group acting on a set.

Definition 4.6. [12][p.144] Let S be a set and let G be a group. A group
action of G on the set S is a map from G× S to S which sends (g, s) to an
element in S, denoted by g.s, such that

(i) If e is the identity element of G then e.s = s for all s ∈ S, and

(ii) (g1g2).s = g1.(g2.s) for all g1, g2 ∈ G and for all s ∈ S.

If we have a group action between a group G and a set S we often say that
G acts on or is acting on S and say that g ∈ G acts on or is acting on s ∈ S
to refer to the element g.s.

So a group action for G allows us to map the elements of a set to itself in
such a way that preserves some of the structure or properties of G.
Now let us return to differential equations
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Definition 4.7. [13, p.93] Suppose that we have a system of ordinary dif-
ferential equations with p real independent variables and q real dependent
variables has solution u = f(x).
A symmetry group of the system is a Lie group G acting on an open subset
of Rp × Rq such that for g ∈ G, u = g.f(x) is also a solution of the system
whenever g.f is defined.

Example 4.8. [13, p.91] Let us consider the simple differential equation
d2u
dx2

= 0 where p = q = 1. Clearly if u = f(x) is a solution then f is just a
linear function i.e. u = f(x) = ax + b for some a, b ∈ R hence the solutions
are of the form (x, ax+ b).
Now let us consider the group SO(2) which consists of rotations meaning

that the matrices are of the form M =

(
cos θ − sin θ
sin θ cos θ

)
for some angle θ.

We can define a group action of SO(2) on the set R2 by

M.(x, u) = (x cos θ − u sin θ, x sin θ + u cos θ).

So if we have M ∈ SO(2) act on a solution then

M.(x, ax+ b) = (x cos θ − (ax+ b) sin θ, x sin θ + (ax+ b) cos θ).

So let us define (x′, u′) = M.(x, ax+ b) and try and write u′ in terms of just
x′.
So we have x′ = x cos θ− (ax+ b) sin θ, which provided that cot θ 6= a can be
rearranged to get

x =
x′ + b sin θ

cos θ − a sin θ
,

and we can substitute this into u′ = x sin θ + (ax+ b) cos θ and rearrange to
get

u′ =
sinθ + a cos θ

cos θ − a sin θ
x′ +

b

cos θ − a sin θ
,

which is of the form a′x′ + b′ and so is a solution of d2u
dx′2

= 0.

Hence SO(2) is a symmetry group for the differential equation d2u
dx2

= 0.

So if we know that symmetry group for a system of differential equations, it
allows us to construct new solutions from known solutions.
One useful result coming from the study of Lie groups acting on solutions of
differential equations allows us to reduce the order of a differential equation
by one if its symmetry group is a certain kind of Lie group called an
r-parameter Lie group.
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Definition 4.9. [13, p.15] An r-parameter Lie group is an r-dimensional Lie
group G such that both the group operation

m : G×G→ G,m(g, h) = gh

and the inversion map

i : G→ G, i(g) = g−1

are both smooth maps meaning they are both infinitely differentiable.

Proposition 4.10. [13, p.142] Any n-th order ordinary differential equation
that has a 1-parameter symmetry group is equivalent to an (n − 1)th order
equation.

Proof. This follows from results proven in [13]. Namely Proposition 2.18 on
page 86 and Corollary 2.54 on page 141

4.3 Hydrogen Atoms

Finally, we look at an application in Physics. In quantum mechanics, the
Hamiltonian Ĥ is an operator that acts on a quantum state of a system.
This is shown in the time independent Schrödinger equation Ĥ|Ψ〉 = E|Ψ〉,
where |Ψ〉 is a quantum state of a system and E is the energy of the system
in that state [14, p.28].

Let |Ψ〉 be a quantum state of a hydrogen atom with energy E meaning
that Ĥ|Ψ〉 = E|Ψ〉, and let g ∈ SO(3). Then Ĥ(g|Ψ〉) = E(g|Ψ〉) i.e. the
energy level of the hydrogen atom in a certain quantum state is the same as
the energy of a hydrogen atom in the quantum state being acted on by an
element in SO(3) [15, p.228]. This means that multiple quantum states of a
hydrogen atom share the same energy levels which in physics is described as
the hydrogen atom having degenerate energy levels [14, p.29].

There are more associations between particle physics and semisimple Lie
groups (Lie groups whose Lie algebras are semisimple) such as SO(n) and
Sp(n) as they can help describe the symmetries that various particles have.
Then root systems are useful in clarifying how two symmetry groups are
related to each. More information on connections between Lie groups and
Lie algebras in quantum physics can be found here [16], in particular chapter
8 discusses roots and Dynkin diagrams.
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