
QM Homework Problems 5 – Solutions

(a) Since the potential is an even function, we can solve for x > 0 and require
that the wavefunction is either odd or even. Solving the time-independent
Schrödinger equation in each region of constant potential gives, using the
notation given in the question

ψ(x) =


A sinh(α1x) +B cosh(α1x) , 0 ≤ x < a
C sin(kx) +D cos(kx) , a ≤ x < a+ b

Fe−αx +Geαx , x > a+ b

Note that the question specifies energies less than V1 and also less than V0

since states with E > V0 are not bound states of such a potential. Re-
member also that the solutions can be expressed using either exponentials
or (hyperbolic) sine and cosine. Choose the most convenient to simplify the
expressions. For example, above we can simply set G = 0 by requiring the
wavefunction to be normalisable, whereas the conditions for an even (odd)
extension to be continuous, with continuous first derivative, at x = 0, impose
the simple condition A = 0 (B = 0.)

Now use the matching conditions that the wavefunction and its first
derivative should be continuous at x = a + b, to determine C and D in
terms of F

kC = Fe−α(a+b) (k sin(ka+ kb)− α cos(ka+ kb))

kD = Fe−α(a+b) (k cos(ka+ kb) + α sin(ka+ kb))

Next use the matching conditions that the wavefunction and its first
derivative should be continuous at x = a, to determine A and B in terms of C
and D, and hence in terms of F . Then for even wavefunctions, the condition
A = 0 gives, after some algebra, the relation (F = 0 simply gives ψ(x) = 0
and so is not a valid solution) in the question which can be rewritten as

tanh(α1a) =
k

α1

k tan(kb)− α
k + α tan(kb)

whereas for odd wavefunctions the condition B = 0 gives the same relation
with tanh(α1a) replaced by coth(α1a).

(b) For large αa, both tanh(αa) and coth(αa) are approximately equal to
one and so there will be an approximate degeneracy in the spectrum, with
even and odd parity states having approximately the same energies. To first
approximation we have

tan(kb) ≈ −2
k

α
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and so
k

α

k tan(kb)− α
k + α tan(kb)

≈ k

α

−α
k − 2k

= 1

as required.
Now we want to consider the corrections to this result by keeping the

leading order terms in the expansions in small k/α and δk/k, and large αa
where k = k + δk is an exact solution. So we have

tanh(αa) =
eαa − e−αa

eαa + e−αa
=
(
1− e−2αa

) (
1 + e−2αa

)−1

≈
(
1− e−2αa

) (
1− e−2αa

)
≈ 1− 2e−2αa

while similarly
coth(αa) ≈ 1 + 2e−2αa

We also need to expand

tan(kb) =
tan(kb) + tan(δkb)

1− tan(kb) tan(δkb)

using

tan(kb) ≈ −2
k

α

and
tan(δkb) ≈ δkb

This last approximation is required for the approach to be self-consistent
since if δkb is not much smaller than one, the differences to the spectrum will
be at least comparable to the separation in energies of the different discrete
energies for the single well potential (recall in that case that the solutions are
approximately kb being a multiple of π.) It is clear in the final answer that
this approximation is consistent. So expanding to first order in the small

parameters δkb and k
α

we have

tan(kb) ≈ −2
k

α
+ δkb

We can now easily see that the leading order terms in the expression for
tanh(αa) and coth(αa) are given by the numerator

k

α
tan(kb)− 1 ≈ k

α

(
−2

k

α
+ δkb

)
− 1 ≈ −1
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since we are neglecting all terms of quadratic or higher order in the small
quantities. Similarly for the denominator we have

1 +
α

k
tan(kb) ≈ 1 +

(
α

k
− αδk

k
2

)(
−2

k

α
+ δkb

)
≈ −1 +

δk

k
(αb+ 2)

Hence, taking the ratio we have

1∓ 2e−2αa ≈ 1 +
δk

k
(αb+ 2)

which immediately gives the required result

δk ≈ ∓2ke−2αa

αb+ 2

where the minus sign is appropriate for the even parity wavefunctions, while
the plus sign is for the odd parity wavefunctions. We can easily convert this
into an expression for the shift in energies, δE, from the energies, E, for a
single well

δE

E
≈ ∓4e−2αa

αb+ 2

which clearly shows that the spectrum for the double well potential is almost
two identical copies of the spectrum for the single well potential, with the
energies of one copy (even parity) a small fraction lower and those of the
other copy (odd parity) higher by the same small fraction.

Comments: In the above manipulations we ignored the variation of α. This
was justified because for fixed V0 we have

δα

α
≈
(
k

α

)2
δk

k

and so such terms will be very small. I.e. simply replacing α with its value α
for the single well case will only lead to negligible corrections to the coefficient
of δk

k
.

We were also not very precise about which terms could be ignored. The
precise prescription is to ignore terms which are definitely smaller than other
terms appearing in the same expression, except that we have to be careful
that some terms may cancel at some point and so we should keep the lowest
order terms which appear in the final expression. Since the coefficient of δk

k
is

αb+2 which is at least 2, it is very easy to see that any other terms involving
δk
k

would be much smaller. However, the terms which did not involve δk
k

are
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more subtle. We kept only 2e−2αa. Clearly all other terms in the expansion of
tanh(αa) or coth(αa) are much smaller than this. However, you may wonder

about the leading order term which involves some power of k
α

since at no time
did we specify how this compares in magnitude to e−2αa. The point here is
that in fact there are no such terms since (modulo insignificant corrections

to the coefficient of δk
k

as explained above) k
α

is given in terms of the single
well potential which does not involve the double well separation a. Hence if
we consider a result such as

(αb+ 2)
δk

k
≈ ∓2e−2αa + f

(
k

α

)

then since we know that in the limit a → ∞ (with other quantities fixed)

that δk → 0, we can see that f
(

k
α

)
= 0. Therefore there are no such terms

which we should have included in our result.
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