
QM Homework Question 3 – Solutions

(a) To normalise the state we want:

1 = 〈ψ|ψ〉 =
∫ ∞
−∞

dx|ψ(x)|2 = |N |2
∫ ∞
−∞

dxe−
(x−y)2

a2

Using the standard result for a Gaussian integral we can evaluate this via
the substitution u = x− y (or directly u = (x− y)/a)∫ ∞

−∞
dxe−

(x−y)2

a2 =
∫ ∞
−∞

due−
u2

a2 = a
∫ ∞
−∞

d
(
u

a

)
e−

u2

a2 = a
√
π

So we can choose:
N = (a2π)−

1
4

to normalise the wavefunction. Note that we can only determine |N | so we
could equally well choose N = (a2π)−1/4eiθ for any real constant θ. The point
is that whenever we calculate any expectation values 〈ψ|Â|ψ〉 the result will
be independent of θ so it does not matter what we choose for θ.

We can now calculate expectation values of operators Â(x̂, p̂) using:

〈A〉 =
∫ ∞
−∞

dxψ∗(x)A(x,−ih̄ d

dx
)ψ(x) = |N |2

∫ ∞
−∞

dxe−
(x−y)2

2a2 A(x,−ih̄ d

dx
)e−

(x−y)2

2a2

So we have:

1

|N |2
〈x〉 =

∫ ∞
−∞

dxe−
(x−y)2

2a2 xe−
(x−y)2

2a2 =
∫ ∞
−∞

du(u+y)e−
u2

a2 =
∫ ∞
−∞

duue−
u2

a2 +y
∫ ∞
−∞

due−
u2

a2

So we finally get:
〈x〉 = |N |2(0 + ya

√
π) = y

We can also calculate:

1

|N |2
〈p〉 =

∫ ∞
−∞

dxe−
(x−y)2

2a2 (−ih̄) d

dx
e−

(x−y)2

2a2 =
ih̄

a2

∫ ∞
−∞

dx(x− y)e−
(x−y)2

a2 = 0

Recalling the definitions:

(∆x)2 = 〈x2〉 − 〈x〉2, (∆p)2 = 〈p2〉 − 〈p〉2

we also calculate:

1

|N |2
〈x2〉 =

∫ ∞
−∞

dxe−
(x−y)2

2a2 x2e−
(x−y)2

2a2 =
∫ ∞
−∞

du(u+ y)2e−
u2

a2

1



with the final result:

〈x2〉 =
1

2
a2 + y2

Similarly:

1

|N |2
〈p2〉 =

∫ ∞
−∞

dxe−
(x−y)2

2a2 (−ih̄)2 d2

dx2
e−

(x−y)2

2a2 = −h̄2
∫ ∞
−∞

dx

(
− 1

a2
+

(x− y)2

a4

)
e−

(x−y)2

a2

with the final result:

〈p2〉 =
h̄2

2a2

So we can easily see that:

∆x =
a√
2
, ∆p =

h̄√
2a

2



(b) To find the momentum representation wavefunction we have to perform
the Fourier transform of the position representation wavefunction:

ψ̃(p) =
1√
2πh̄

∫ ∞
−∞

dxe−
i
h̄

pxψ(x)

We can perform this integral by completing the square in the exponent to
write the integrand in a standard Gaussian form:

ψ̃(p) = (4π3a2h̄2)−
1
4

∫ ∞
−∞

dx exp

(
− 1

2a2
(x− y +

i

h̄
pa2)2 − i

h̄
py − p2a2

2h̄2

)

=

(
a2

πh̄2

) 1
4

exp

(
− i

h̄
py − p2a2

2h̄2

)

Now we can calculate the expectation value of Â(x̂, p̂) using:

〈A〉 =
∫ ∞
−∞

dpψ̃∗(p)A(ih̄
d

dp
, p)ψ̃(p)

The calculations are similar to those in the position representation because
the momentum representation wavefunction is also a Gaussian distribution.
Taking care of the various factors will produce the same results as calculated
in the position representation. In particular

〈x〉 =
∫ ∞
−∞

dpψ̃∗(p)ih̄
d

dp
ψ̃(p)

=
a√
πh̄

∫ ∞
−∞

dp

(
y − i

a2

h̄
p

)
e−

p2a2

h̄2 = y

noting that the integral with the factor ia
2

h̄
p vanishes since the integrand is

an odd function of p. Note how the average position 〈x〉 = y is encoded
by the momentum-dependent phase factor in the momentum representation
wavefunction.
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(c) The position-momentum uncertainty principle is:

∆x∆p ≥ 1

2
h̄

and it is clear from the results of part (a) that this bound is satisfied by the
state |ψ〉. In fact we see that the lowest possible value is attained.

We have seen that the uncertainty in position is proportional to a while
the uncertainty in momentum is inversely proportional to a. So if we take
a→ 0 the state will have a well-defined position but a completely undefined
momentum. Similarly taking a → ∞ will produce a state with definite
momentum but undefined position.

We can consider the form of the wavefunctions in these limits. For ex-
ample if we take a → 0 then for any x 6= y we see that ψ(x) → 0 since the
exponential factor is much more important than the fixed power of a in the
normalisation constant. However, for x = y the exponential factor is equal
to 1 so ψ(y) →∞. So as a→ 0 the state becomes more like a particle with
a definite position at x = y. However, at the same time the momentum is
becoming more uncertain. The momentum representation wavefunction be-
comes a pure phase factor times a normalisation constant. So the momentum
is equally likely to be any value.

Note that the normalisation constant for the momentum wavefunction
actually vanishes in this limit. Similarly it can be seen that the position
wavefunction does not have the correct normalisation to be a delta-function.
However, this is expected since we have chosen the state to have norm 1
whereas a position eigenstate should really have delta-function norm.
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