
QM Problem Sheet – Solutions (30, 32, 38)

Finding simultaneous eigenstates of Ĵx, Ĵy and Ĵz

Recall that to find simultaneous eigenstates of several operators, those
operators must commute with each other. The main point of this question
is that the operators are only required to commute when acting on those
eigenstates (and so any linear combinations of them), not when acting on a
general state in the Hilbert space. Now we know that [Ĵx, Ĵy] = ih̄Ĵz so a state
can only be an eigenstate of both Ĵx and Ĵy if it is an eigenstate of Ĵz with
eigenvalue 0. Similarly we see that the only states which are simultaneous
eigenstates of Ĵx, Ĵy and Ĵz have eigenvalue 0 for each operator. We have
seen in the lectures that such states exist, they are the eigenstates of Ĵ2 with
eigenvalue 0 (they may also be labelled by eigenvalues of other compatible
operators.)

30 The states {|j,m〉} are orthonormal eigenstates of Ĵ2 and Ĵz so 〈j,m|j′,m′〉 =
δjj′δmm′ . So we can see immediately that

〈j,m|Ĵ2|j′,m′〉 = j′(j′ + 1)h̄2δjj′δmm′

For j = j′ = 1
2
, m and m′ can have values −1

2
or 1

2
so we can express the four

possible combinations as a 2× 2 matrix

3

4
h̄2

(
1 0
0 1

)

Similarly for j = j′ = 1, m and m′ can have values −1, 0 or 1 so we can
express the nine possible combinations as a 3× 3 matrix

2h̄2

 1 0 0
0 1 0
0 0 1


We can also immediately see that

〈j,m|Ĵz|j′,m′〉 = m′h̄δjj′δmm′

with corresponding matrices

h̄

2

(
1 0
0 −1

)
and h̄

 1 0 0
0 0 0
0 0 −1


1



Recall that Ĵ± raise and lower m with the following normalisation

Ĵ±|j′,m′〉 =
√

(j′ ∓m′)(j′ ±m′ + 1)h̄|j′,m′ ± 1〉

So we have

〈j,m|Ĵ±|j′,m′〉 =
√

(j′ ∓m′)(j′ ±m′ + 1)h̄δjj′δm,m′±1

with matrices

h̄

(
0 1
0 0

)
and

√
2h̄

 0 1 0
0 0 1
0 0 0


for Ĵ+ and

h̄

(
0 0
1 0

)
and

√
2h̄

 0 0 0
1 0 0
0 1 0


for Ĵ−.

Since Ĵ± = Ĵx ± iĴy we can easily find the matrix elements for Ĵx and Ĵy

by taking linear combinations of the above matrix elements of Ĵ±. So for Ĵx

we have

〈j,m|Ĵx|j′,m′〉 =
h̄

2
δjj′

(√
(j′ −m′)(j′ +m′ + 1)δm,m′+1 +

√
(j′ +m′)(j′ −m′ + 1)δm,m′−1

)
with matrices

h̄

2

(
0 1
1 0

)
and

h̄√
2

 0 1 0
1 0 1
0 1 0


while for Ĵy

〈j,m|Ĵy|j′,m′〉 =
h̄

2i
δjj′

(√
(j′ −m′)(j′ +m′ + 1)δm,m′+1 −

√
(j′ +m′)(j′ −m′ + 1)δm,m′−1

)
with matrices

h̄

2i

(
0 1
−1 0

)
and

h̄√
2i

 0 1 0
−1 0 1
0 −1 0


You can easily check that these matrices satisfy the angular momentum com-
mutation relations.
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32 An arbitrary state with j = 1
2

is a linear combination of |1
2
, 1

2
〉 and |1

2
,−1

2
〉.

The two coefficients should have the same magnitude if the probabilities of
measuring the z-component of spin as 1

2
h̄ and −1

2
h̄ are to be the same. So

the most general such normalised state is

|ψ〉 =
1√
2

(
eiθ|1

2
,
1

2
〉+ eiφ|1

2
,−1

2
〉
)

where θ and φ are arbitrary (real) phases. Since the overall phase will not
affect the expectation values we could set θ or φ to zero, or keeping both
phases the expectation values can only depend on the difference θ− φ. Note
that we cannot remove both phases by absorbing them into the definitions of
|1
2
, 1

2
〉 and |1

2
,−1

2
〉 since these states are already related by the action of Ĵ±,

fixing their relative phases. So using the results of question 30 we can easily
calculate

〈Jx〉 = 〈ψ|Ĵx|ψ〉 =
1

2

(
e−iθ〈1

2
,
1

2
|+ e−iφ〈1

2
,−1

2
|
)
Ĵx

(
eiθ|1

2
,
1

2
〉+ eiφ|1

2
,−1

2
〉
)

=
1

2
〈1
2
,
1

2
|Ĵx|

1

2
,
1

2
〉+

1

2
e−i(θ−φ)〈1

2
,
1

2
|Ĵx|

1

2
,−1

2
〉+

1

2
ei(θ−φ)〈1

2
,−1

2
|Ĵx|

1

2
,
1

2
〉+

1

2
〈1
2
,−1

2
|Ĵx|

1

2
,−1

2
〉

= 0 +
1

2
e−i(θ−φ) +

1

2
ei(θ−φ) + 0 =

h̄

2
cos(θ − φ)

Alternatively we can calculate using the matrices from question 30 so that

〈Jy〉 =
1

2

h̄

2i

(
e−iθ e−iφ

)( 0 1
−1 0

)(
eiθ

eiφ

)
=
h̄

4i

(
e−i(θ−φ) − ei(θ−φ)

)
= − h̄

2
sin(θ−φ)

Of course, we could have chosen to label states as eigenstates of Ĵ2 to-
gether with Ĵx or Ĵy rather than Ĵz. This would simply correspond to a
different choice of basis and these basis states would be linear combinations
of the eigenstates of Ĵz. From the above calculations we can see explicitly
that the states with θ − φ = 0, π are eigenstates of Ĵx while those with
θ − φ = π

2
, 3π

2
are eigenstates of Ĵy.

38 Recall that the orthonormal energy eigenstates of a one-dimensional har-
monic oscillator are {|n〉, n = 0, 1, 2, . . .} with

Ĥ|n〉 = (n+
1

2
)h̄ω|n〉

The eigenstates are related by the creation and annihilation operators â =
1√
2m

(p̂+ imωx̂) and â†:

â|n〉 =
√

(n+ 1)h̄ω|n+ 1〉 â†|n〉 =
√
nh̄ω|n− 1〉

3



So we can calculate

p̂|n〉 =

√
m

2

(
â+ â†

)
|n〉 =

√
m

2

(√
(n+ 1)h̄ω|n+ 1〉+

√
nh̄ω|n− 1〉

)
x̂|n〉 =

−i√
2mω

(
â− â†

)
|n〉 =

−i√
2mω

(√
(n+ 1)h̄ω|n+ 1〉 −

√
nh̄ω|n− 1〉

)

Now we want to calculate ∆p =
√
〈p2〉 − 〈p〉2 and ∆x =

√
〈x2〉 − 〈x〉2 for the

state |n〉. It is easy to see that

〈p〉 = 〈n|p̂|n〉 = 0 and 〈x〉 = 0

Since p̂ and x̂ are self-adjoint we have

〈p2〉 = 〈n|p̂2|n〉 = ‖p̂|n〉‖2 =
m

2
((n+ 1)h̄ω + nh̄ω) = (n+

1

2
)h̄ωm

〈x2〉 = 〈n|x̂2|n〉 = ‖x̂|n〉‖2 =
1

2mω2
((n+ 1)h̄ω + nh̄ω) = (n+

1

2
)h̄ω

1

mω2

So we see that the uncertainties in p and x are

∆p =

√
(n+

1

2
)h̄ωm ∆x =

√
(n+ 1

2
)h̄

ωm

and so the uncertainty principle is satisfied since

∆p∆x = (n+
1

2
)h̄ ≥ 1

2
h̄

For a classical oscillator we have

x = A cos(ωt+ δ), p = m
dx

dt
= −Amω sin(ωt+ δ)

We define the potential energy to be zero at x = 0 so the total energy is
simply the kinetic energy at x = 0, giving E = 1

2
mA2ω2. We define the

average 〈· · ·〉 by time-averaging over one period of oscillation T = 2π
ω

. So

〈p〉 =
1

T

∫ t0+T

t0
dt(−Amω) sin(ωt+ δ) = 0

〈x〉 =
1

T

∫ t0+T

t0
dtA cos(ωt+ δ) = 0

〈p2〉 =
1

T

∫ t0+T

t0
dt(−Amω)2 sin2(ωt+ δ) =

1

2
A2m2ω2 = Em

〈x2〉 =
1

T

∫ t0+T

t0
dtA2 cos2(ωt+ δ) =

1

2
A2 =

E

mω2

So we see that for quantum and classical simple harmonic oscillators of the
same energy, we get the same average results for these measurements.
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