Many Variable Calculus -Solutions 2002

1.

By the chain rule
dF
dt

= sinwv.(—

Given that f = z? + sin(zy) + 27,

fz =

(fe)y = cos(zy) — zysin(zy)
fy = z cos(zy)
(fy)2 = cos(zy) — zysin(zy)

OF du 4 OF dy

Ou dt

ov

dt

cost) + ucosv.(2t)
—sint? cost + 2t cost cost?

2z + y cos(zy) + ya¥~!

—+
+
+

n(z)z?

Ty~ 1+yln( yzv—!

¥ 1 +yln(x)zy!

Explicitly f =y+z, fy=a+2,f: =z +yso fo+ fy+ f. = 2(x +y+ 2z). Therefore at (z,y,2) = (1,2,3)

7fw+fy+fz:2-6:12-

One calculates

f = zyz+ (ay2)?
fo = yz+2ay?s?
fay = z44zy?
fevz = 1+ 8xyz
fwmyyzz = 8
Note that
ro= Ja?+y?+2?
2 2
# = arctan wzﬂl
- ¥
10) arctan £
We find 5
€T —_ 3 —_ —_ €
Br = sm0 COS ¢ =r = m
dx  _ _ —
5 = rcosbcosgp =i, —\/;TZT?/Z
g—z = —rsinfsing = —y
Using the formulae given above
or  _ e
bz \/W ’
29 _ 1 2T
oz 1+< 2+y ) Z\/z2+y ($2+y2+22)\/z2+y2’
ol R— 1 (_i) - __ Y
Bz 1+(%)2 $2 $2+y2-

One way is to write f(z,y,2) = (z? + > + 2%)(1 + £) = r*(1 + tan ¢)

SRR

By the Chain Rule,

ov._ oV or

2r(1 + tan ¢)

0

r?(sec ¢)2.

ov 06

9z oroz 900w

But % = % = 0 so we have (see question 5.)

ov

%:

Wz _
orr

axr

ov o¢
0¢ Oz’

r3’

and differentiate this directly. Thus



10.

11.

Differentiating again we have

2
() E ()R

so that
oV.__a .
oz2 73 75
Adding together similar terms with z — y, £ — z we find
o’V 0V 0%V a (2 +y? + 2?%)
=-3=+3———==0.
Ox? + 0y? + 022 r3 * rs
This is a simple application of the chain rule.
df Ofdr Ofdy Ofdz 9
— =+ = =21422s4+23s°=2+8+24=234.
ds 6wds+6yds+6zd taLes 2 Tot
since s = 2 at the point (2,4,8) .
We have
fo = 2xy°
fy = 3222

Again by the Chain Rule,

7df(xc(ly) y) _ fw + fy = 2zy° 4y + 32°%y* = 8zxy* + 3z2%y?
Y
Aty=1,7=2s0 £ =16+12=28

The Chain Rule gives that
oV _ovop  ovop
dxr Opdx 0¢ Oz’

But p = /22 + y? and ¢ = arctan £ so

% = % =cos¢
% = —p%:—%sinqﬁ.,
SO
8_V = cos¢8—v — lsinqﬁa—v
oxr Op p 8¢
Similarly we find
av sin ¢6‘_V n 1 ¢8V
dy 09’

so that ) ) ) )
VN (VNI _(0V\' 1 (ov
ox oy ) \9p p? \ 0¢
Note that if we define y = x — ¢t then

Of(y(e,t)) _ df oy _ df 9f(y(x,t)) _ df Oy _ df
Ox T dydz  dy’ ot ~ dy ot dy

Differentiating again we find f,, = 'fT];, fu = c2 i f . So f satisfies the equation and similarly so does g and

by linearity u(z,t) .



12.

13.

14.

15.

Another application of the Chain Rule. Note that for any function we have

of ofox' Of oy of of
o = 0w 0s "oy or ~ lar Ty
so we have
0%V o} O ar, 5 ,0°V .. OV . 5 0%V
o (cos@ax smea—yl) V = cos 963;’2 —2c050s1n08$,—6y,+sm Gaym.
Again we find
0%V d o} o?v o?v o’V
o7 (s1n06 ,—I—cosﬁy) V =sin 2(96—+2cost9s1n0(9 5 ,+00520W.

Adding these together gives the desired result. This is an important result. The map (z,y) — (z',y') is a
rotation in two dimensions (it preserves length since z2 + y? = z'? + y'2. Our result shows that an equation
of say the type
o VA 2 4
ox? + oy?
is of the same form before and after a rotation, and we expect fundamental laws to be of this type; i.e. not
to depend on whether we initially choose (z,y) or (z',y’) as our coordinates.

=0

We have d? d (d d of ofd of of
y _a fay _9r oray o _ 9J
dz?  dx (dx) dx (@, y(2) Oz * Oydz Ox * Oy /

For f(z,y) = sin(zy) we have f, = ycos(zy) and f, = z cos(zy) so

d*y
Tz =V cos(zy) + x cos(xy). sin(zy).
By Chain Rule
9 5 3 Ox 0 , 3 0y 0, , 3 e’ 2 2
= T = —(2
6u(my+m) 8u6m($y+x)+6u8y(wy+w) u(my+3x)+(u+v)x

At the point (z,y) = (1,0) we have u = v = 1 so the above expression at this point has value

el3+212=3e+2.

Note that
f:c = g_:% = 2£L'f( )
foz = %(%f () = 2f'(u )+2$ Ll (f'(w) = 2f'(u) + 42> f"(u)
foy = 5,22f'(w) = 2032 d‘i( "(u)) = 6z f"(u)
fy = gZ alii{; = 3f'(u)
fow = £ Bf(w) = 3G & (f' () = 9f" (u).

Adding these together we find

1 .
foe + Tfay + §A:c2fyy + gfw = 2f"(u) + 42® f" (u) + 622 f" (u) + A2 f"' (u) + 2 f' (u).
Collecting together terms in f'(u) and f"(u) we find

(2 +2p) ' (u) + (10 + Az "' (u)

which vanishes identically if we take 4 = —1 and A = —10 .



16.

17.

18.

19.

We have that

d dy
d (F(z,y(@))) = Fp + %Fy
so that g—g = —%, if F = 0. Differentiating this expressions we find
d’y d (_&
dz? T dz F,
= —fal@y@) + # LR y@)
F2
= — e+ 20 Py — 7 Fyy.
Straightforwardly
(@) = 2 (A) = _iT
v T v \ v vz
() = & (ﬂ) —k
8T ) p oT P p
(ﬂ) = 2(m)=¢:
op v op \ k k"
Multiplying these three together we get —';—f = —1. We can think of solving f(p,v,T) for p = p(v,T). Then

differentiating we get

_9f
r Op
in agreement with the question. Similarly for other two equations and then then taking the product of the
three answers we get —1 .

Op

0T ov

af

0
0= —Uf(p(v,T),U,T) s Ov

0

v,p

Following the hint, letting X = kx, Y = ky , we have
L/ - Of dX | Of dY
k= 9s0X Ok . BY .

Now putting k¥ = 1 then X = 2 , Y = y and we find zf; + yf, = nf. To obtain the second equation
differentiating again with respect to k we get

2 d o 2]
T ak (5’73_)]; + ya_xji)
= (o +v) (22 +yZ) = 2 fxx + 2oyfxy + 4P fvy = nln— DE2

=Y
-~
|

[

and again putting k¥ = 1 we obtain the desired result.

For (3z%y — 2y?)dx + (2 — 4xy + 6y?)dy to be an exact differential we must have

= 32%y—2y°

au
‘g—lz = 23 — 4y + 632,

so differentiating the first equation by y and the second by  we must have

0
6%/ (3z%y — 2y%) = 5 (2 — 4zy + 6y%)

which is indeed true as both sides equal 3z? — 4y . To find U(x,y) we integrate the top equation with
respect to = to find
Ulz,y) = 2’y — 2%z + g(y),

where g(y) is an arbitrary function of y . Substituting this into the second equation gives

d
$3—4my+—g=$3—4my+2y3
dy



20.

21.

22.

23.

24.

from which we deduce that g(y) = % + A for A a constant. Thus

4
U(z,y) = 2’y — 2°z + % + A

As for 19, we have

0 0

3 (v + 2zy +siny) = 52 (3zy® +2° + zcosy —siny) = 3y> + 2z + cosy
Yy z

so indeed it is an exact differential. Since H, = y® + 2zy + siny we must have

H(z,y) = oy’ + 2%y + wsiny + k(y).

Substituting into the equation H, = 3zy*+ x>+ z cosy —siny we find that k, = —siny so k(y) = cos(y) + A
for A constant. Therefore
H(z,y) = 2y® + 2%y + zsiny + cosy + A.

If (@)
@(a) =/ w(z, a)ds
v(a)
then (@)
9(a) _ du _ o [ 0w
1o = w(u(a),a) o w(v(a),a)da + ” 6adx.

In this case u(a) = <, v(a) = /() and w(z,a) = C"S(wi’z) Therefore

) it () o (1)

Differentiating with respect to a we have

d /a dx 1 _/“ 2adz
da \Jy a®>+2>) a®+a®> Jy (a2+22)? @ 4a®

Rearranging this we see that

/a dz 1 1 + m 1 (m+2)
—_— = — 4+ — | = — (7 .
o (a2 +22)° 2a\2a® 4a? 8a®

Note that L L
d
@ J, e = /0 log(z)z* dz.
Now let . L
o 1
U= z* tdr = [x_] =—.
0 al, «
Then JU ) )
Differentiating once we get
dJo(z) 1/1 _ tsin(at) it
d.’L' o ™ J_1 RV4 ]_ — t2



Now differentiating again we find that

d?Jo(z) _ 1 ! _ > cos(zt) "
de2 w ), Vi-&£

So the left hand side

&2 J. 1 [ta-¢ t I
d;g“‘) + Jo(z) = ;/1 %dt: E/1 V1 — 12 cos(xt)dt.

On the other hand the right hand side can be integrated by parts:

Ji@) 1 [ tsin(at) 1 _ L /1
—_ - — I 1— By 1 T 5
T T /_1 mdt T [ \/—tsm(xt)] Lt B V1 — 2 cos(at)dt

The first term vanishes and the second term is just the left hand side.

25. We need to use the Taylor series

f(.’lf +a,y+ b) = f(xay) + (afz + b.fy) + %(a2fwz + 2abfzy + b2fyy) + ..

where all the derivatives are evaluated at (z,y) . For our function we have

f:c = _33_4
fy = 258
foy = 6
f:cw = 125_5
foy = z2_3

Now, evaluating these at (x,y) = (1,—1) we find that
1
fla,y) =13 —1) =20y +1) + 5(12(z = 1)’ + 12z = Dy + 1) + 2(y + 1)*).

26. In this case for f(z,y) = sin(z + yz) ,

fo = cos(z + yz)

fy = zcos(z + yz)
f. = ycos(z + yz)
foe = —sin(z + yz)
foy = —zsin(z + yz)

Jzz = -y sin(w + yz)
foy = —2*sin(z + y2)
fyz = cos(z+yz) — zysin(z + y2)
fz = —y*sin(z + y2)

We need to evaluate the series around the point (§,0,—1) . Noting that at this point sin(z + yz) =
cos(z +yz) = 1/v/2 , we find

11 1 1/ 1 Ty 2 ™ 1, 2 )
,9,2) = —=+—Fx@—7)— —=y+: | ——=@— )+ 2@-)y— =y + =yl +1)) +..
faws) = o5+ o= D)= Tt 3 (= Ts(e= 124 (= D= Jsi+ sala+D)
27. For a stationary point we need f, = f, =0 . So
f:c = 4?/—4.77 = 0
fy = 4dz—4y® = 0.



28.

29.

30.

From the first equation we have that x = y, and substituting these into the second equation we find y—y> = 0
, 80 y = —1,0,1 . Therefore the three stationary points are at (—1,—1), (0,0), (1,1) . To find out what
type of stationary points these are the first step is to calculate the determinant

f:c:c fwy =‘ -4 4
Joy  Fuy 4 _12:‘/2

For the point (0,0) this is negative so we have a SADDLE-POINT. For the other two points the determinant
is positive so we have a maximum or a minimum. In fact f,, < 0 so we have maxima.

= 48y® — 16.

For a stationary point we need f; = f, =0 . So

f, = 3:2-3 = 0
fy = 3¥?-3 = 0.

From the first equation z = £1 and from the second y = £1 , so we have four stationary points at (£1,+1)
. Working out the determinant we fint

fwz fwy
f;cy fyy

For the points (1, —1), (—1,1) this is negative so we have SADDLE-POINTS. For the other points we have
maxima or minima and in fact for (1,1) we have f;, > 0 so it is a MINIMUM whilst the other point (—1,—1)
is a MAXIMUM.

_‘63: 0

0 6y ‘ = 36zy.

For a stationary point we need f; = f, =0 . So

fr = 2amexp(—2? —y?) — 2z(ax® + by?) exp(—2? —y?) =0
fy = 2byexp(—z? —y?) — 2y(az® + by?) exp(—z® —y?) =0
Factoring we see that we must have
2z(a —az® —by?*) = 0
2y(b—az? —by?) = 0

Note that we cannot have a — az? — by? = b — az® — by? = 0 simultaneously since a # b . So the remaining
possibilities are (z,y) = (0,0),(0,£1) ,(£1,0) . We find that

fzz = 2aexp(—z? —y?) — 8az?exp(—z? — y?) + (az? + by?) (422 — 2) exp(—2% —y?) = [a(42? — 10a2? + 2) + by?
fyy = 2bexp(—z? —y?) — 8by? exp(—z? — y?) + (az® + by?)(2y% — 2) exp(—22 —y?) = [b(4y* — 10by? + 2) + az?(
and also

fry = —4azy exp(—z?—y?)—4zby exp(—22 —y®) +4zy(az® +by?) exp(—2> —y?) = 4zy(az®+by®—a—b) exp(—z*—y?).

Now at the stationary points either z or y or both are zero, so f;, vanishes. So the determinant is just
Det = [a(4z* — 10az® + 2) + by (42 — 2)][b(4y* — 10by? + 2) + az?(4y? — 2)] exp(—222 — 2?).

Now at (0,0), this Det = 4ab > 0 and f,, = 2a > 0 so MINIMUM. At (0,+1) , Det = e~!(2a — 2b)(—4b) =
8¢~ 1b(b—a) > 0 and f,, = e 1(2a — 2b) < 0 so MAXIMUM. Finally at (+1,0) Det = (—4a)(2b — 2a) < 0
SO SADDLE-POINT.

The function that we need to maximise is
f(z,y,2) = |z’ +|z — a*+|z — b]° = 2®+y>+22+(x—a1 ) > +(y—a2) > +(2—a3) >+ (@ —b1 )2+ (y—bs) > +(2—bs3) .
Setting f, = fy = f. = 0 we find that

r = %(al + b1)
y = 3z(az+by)
z = 3las+b3)

which are the coordinates of the centroid (recalling that the centroid is two thirds of the way along the lines
to the midpoints of the sides).



31.

32.

33.

34.

Function to maximise is f(x,y) = 22 +y%. We have an additional constraint g(x,y) = 322 +4zy+6y? —140 =
0. Method of Lagrange multipiliers tells us to find stationary points of ¢ = f — Ag . So we have

o = 2z—A6zx+4y)=0
oy = 2y—A12y+42) =0
3z +4xy + 6y? — 140 = 0.

Solving the first two equations for A we see that

\ = 2z 2y
6z +4y 12y +4x’

Rearranging we find that
24zy + 8z = 12zy + 8y>
8(¥)2 —12(4) -8 = 0
y

= _1
p = 2,—3.

Putting y = 2z into constraint we find 322 +8x2+24x2 = 140 so (z,y) = (&2, +4). At these points f(z,y) =
20. Putting y = — % into the constraint we find that 12y2 — 8y? + 6y* = 140 so (z,y) = (F2v10, £v/10) at
which points f(z,y) = 50. So 20 is minimum and 50 is maximum.

Again writing the constraint as g(z,y,z) =z +y + 2z — 6 = 0 we have that if ¢ = f — \g then

¢z = 9223_)‘:0
¢y = 2xy2®-1=0
¢, = 3zy?22-XA=0
0 = z4+y+2-6.

The first two equations imply that y = 2z whilst the second two tell us that z = %y = 3z. Plugging this
into the constraint we find that z+ 2z + 3z = 6 so that the only stationary point is at (x,y, 2) = (1,2, 3). At
this point the function takes the value f(1,2,3) = 108. On the boundary of the region f(z,y,2) vanishes,
so indeed 108 is its maximum value.

We need to maximize f(z,y,2) = z'yz subject to the constraint g(z,y,2) = 22 +y?> + 22 —1 = 0. If
¢ = f — Ag then

¢ = 42iyz—2Xzx =0
¢y = zlz—2\y=0
¢, = z'y—2X2=0
0 = 22+y>+22-1.

The second and third equation imply that z*(2? — y2) = 0 so either # = 0 and or z = +y . If 2 = 0 then
A # 0 otherwise we would have from the second and third equation that z = y = 0 which is inconsistent
with the constraint. If A = 0, then the only nontrivial equation left is the constraint which simply tells us
that y? + 22 = 1. In any case f(z,y, 2) will vanish. If z # 0 then we have z = +y so that A = +2*/2. The
first equation tells us then that 22 = y? = z2?/4. Putting this into the constraint we find that we must have
_ ; ; 2 1 1 . 16 _ 2

622 = 1. So maximum value of f(z,y,z) will occur at (%, 75 76) and will be 5% = 55 .

We need to find stationary points of f(z,y) = 2% +y? given the constraint g(z,y) = 522 + 6zy + 5y> —8 = 0.

Constructing ¢(z,y) = f(z,y) — Ag(z,y) we need

o = 2z—-A10z+6y) = 0
by = 2y—MN10y+6z) = 0
g(z,y) = bz>+6ry+5y°—8 = 0

Multiplying the first equation by y and the second by z and substracting we find that

A(10zy + 6y* — 10yz — 62%) = 6A(y — z)(y + ) = 0.



35.

36.

If A = 0, then the first two equation imply (x,y) = (0,0) which is inconsistent with the constraint, so we
must have y = +x. Taking the plus sign we find the constraint gives ¢ = +1/+/2 and at the points (%, \/Li)’

(—%, —\/Li), we have f(z,y) = 1 whilst taking the minus sign we find z = v/2, and at the point (v/2, —v/2),

(—v/2,v/2) we find f(z,y) = 4 so max distance is 2 and minimum distance is 1.
In this case we have two constraints so we must find stationary points of
¢ = (zy +yz) — M(z? + % —2) — Xa(yz — 2).

We end up with the five equations

¢:c = Yy — 2)\133 = 0
Oy = z4+2z-2My— Xz = 0
= = Yy — Aoy =0
> +y? -2 = yz —2 = 0.

Since y # 0 by the second constraint, it follows that A = 1. Similarly if = 0, then by the top equation
y = 0, and both of these cannot happen by the first constraint. Thus we can write A\; = 3%. Substituting
these values of A; A2 into the second equation we find

2

Y
——2z=0.
T+ 2z 2 z

It follows that y? = 2x?, Putting this into the first constraint gives z = ﬂ:\/g and so y = i\%. Fi-
nally we must have that z = % = ++/3. To summarize we have four stationary point (& %, %, v3) and

(£4/3, —%, —1/3). The value of our function at these points is £2v/2 + 3 and F2v/2 + 3 respectively. So

the maximum value is 2v/2 + 3 and the minimum value is —2v/2 + 3 respectively.

S\

Consider the polygon constructed as follows: So
then note that the area of i— th triangle is simply cos(6;/2)sin(6;/2) = 1sin6;. So our problem is to

maximize "
Z sin(0z~)
i=1



subject to the constraint > 8; = 2m. So as usual constructing

n

¢ = (sin6; — \6;) + A2

i=1
we find the equations
g—(ﬁ cosf; — A 0
5—92 = cosfr—A = 0
= =0
% = cosb,—XA = 0
Einzl 6'z- = 27

The first n equations imply that cos@; are equal for all i. Given that we require our polygon to be convex,
we can take 0 < 8; < 7, so we deduce that all the 6; are equal. Finally the constraint implies that all the
angles equal

2

b
So the maximum area is given by the regular polygon.

37. This can be done easily by Lagrange multipliers. A neat way to do it though is to note that if we put
together two such boxes with their ‘open’ sides together, we form a closed box, enclosing twice the capacity
of the open box and its surface area will also be double. The solution to maximising the capacity of the
closed box is the familiar cube. So the largest open box will be given by that which leads to a cubic closed
box; i.e. its ‘height’ to the open side is half of the dimensions of the base, which are both equal.

38. (a) Looking at the diagram we see that our integral becomes

1 z 1 z 1.5
/ da:/ dyz3y :/ dx :/ dr— =
0 0 0 0 0 2

(b) Again examining the diagram we see that our integral can be written

1 z 1 2 41°% 1 2., 2z 2., 4 o' 2
/Odw/ﬂdy./m —/0 dw[ﬁgy]2—/0dx[§x —gw]—[§w —2—7;3 ]0—2—7.

T

1

12°

y2

1
" -
0

z8
12

39. (a) Changing the order of integration we get

Lo 541 54011 L 5417 1
/ dy/ dzsin LT =/ dy |z sin 2 + = [ dyy?sin? R FPV s = cos = —cos 1.
. Y, 2 A 2 2 2 |, 2

(b) This can be reexpressed as

! vy 3 1o N | 11 [y2]"
dy/ dr——= =/ dy [—\/9:4 +y2] = | dy—7=y—zy=(—%—5) [—] =
/0 0 ot + y? 0 2 0 0 V27 2 2 2712,
40. Changing the order of integration we find

/0 "y /0 ’ deiny(y) - /0 "y [mSiny(y)]: - /0 * dysin(y) = - cos@)F = 1

41. Change variables to v = x — y, and u = = + y. The line £ = 0 becomes v = —u, the line y = 0 becomes
v = u and the line  +y = 1 becomes u = 1. The Jacobian for the transformation is

()

DN =

8z Oy 1 1 1

_ 3 _
B %=1 A=y
ov ov 2 2



Putting this together we find that our integral is

! vl v ! u u? | L
/0 du/_u dv§ cos (a) —/0 du [5 sin / duu sin(1 [5 sm(l)]0 = 5sm(l).

42. (a) By direct calculation
/ da:/ dy cos(z + y) / dz [sin(z + y)] / dz (sin(z + ) — sin(z)) = [2 cos(z)]; = 4.

(b) Also directly

a b a a a
/ dw/ dyze® = / dx [ezy]g = / dx(e’® — 1) = [leb’” - x] = l(e“b —-1)—a.
0 0 0 0 b o b

(¢) Surprisingly this is best done in Cartesian coordinates. In this case the integral can be written
Vi)
[ dz [y—;\/l - :1:2]
—V1—=x
2 fil dz(1 — 22)?
= %fild (1 —222 + 2*)
2 2,3, 1,571
T an
HUSE R

f de [~ mdyy V1—2z2

2

43. Let us try ‘stretched’ polar coordinates = r cos ¢, y = % sin ¢. The Jacobian for this transformation is

H cos¢  ising H _r

—rsing Fcos¢

oz By
3 _
g &=
0¢ 09

Putting this into the integral we find it has the value

Jmde [ drorieste - [27de [2 drL cos® ¢
2
27
= d
il ],
= 0 "d¢cos? ¢
= fzﬂ 1 + L cos(2¢)d¢ = 7 + % [sin(2¢) =
44. A calculation shows that /22 + y2 = % u? + v2). The Jacobian of the transformation is given by
oz y
Ju ?H: v ‘:u2+v2.
) _
H gl

The conditions in terms of u,v become a? < u? < b? and ¢? < v? < d? . However (u,v) and (—u, —v) yield
the same values of x. so we should not integrate over all four quadrants. Instead we shall take v > 0. In
theory we should integrate over both positive and negative u, but since this simply amounts to a change in
the sign of x which doesnt affect the integrand we shall simply take u > 0 too and double the answer. So

we have that the integral is equal to
d

2 1
/du/ dv (u? +v?) /du/ dv(u® + 2u*? 4+ 0?) = /du[u4v+gu2v3+gv5

which is equal to
2 3_ 3y, Llos_ sy_Llos s 203 3y, 3y L 5_ 5
du d—c¢) +3u 2(d —c)+g(d —c):g(b —a)(d—c)+§(b —a’)(d —c)+3(b—a)(d —°).

45.

11



