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3.2 BOUNDARY CONDITIONS FOR PDES 1

§3.2 Boundary conditions for PDEs

Linear differential equations have solution spaces that are vector spaces. For ordinary differ-
ential equations these are finite-dimensional; an n-th order ODE has a solution space which is
n-dimensional, or to put it another way, the general solution has n-arbitrary parameters in it, the
‘components’ of  the n-dimensional solution ‘vector’. In order to specify a particular solution we
need to give n pieces of  information. These are called boundary conditions.

• Example 1: Population Growth We might choose to model population growth by a
first-order differential equation, e.g. Ṗ = 5P . The general solution to this equation is
P (t) = Ae5t. This has one arbitrary parameter A in it, as we expect from the above
reasoning as our ODE is first order. To fix the value of  the parameter A, we might specify
the initial condition that at t = 0 the population is P (0) = 10000. This fixes the value of
the parameter A = 10000 and specifies a unique solution

P (t) = 10000e5t.

This is an example of  an initial value problem, where we specify the boundary conditions at
some initial time (in this case t = 0), and use our equation to determine the value of P
at later times. This sort of  problem has wide applicability and is a very common form of
boundary condition.

• Example 2: Free motion If  a particle moving in one dimension x has no force acting
on it, then Newton’s second law tells us that its acceleration vanishes, that is ẍ = 0. This
equation has a general solution x(t) = At+B, and contains two parametersA andB, as we
expect for a second-order ODE. The most common way to specify boundary conditions to
determineA andB is as an initial value problem. In this case we need to give two conditions
to determine A and B, so we could specify the position and velocity at time t = 0, say
x(0) = 1, ẋ(0) = 3 which gives a solution x = 1 + 3t. The fact that we need to know
the position and velocity of  a ball to know where it is going to go when we throw it is an
indication that Newton’s second law is a second-order differential equation. Of  course we
could specify two boundary conditions so that the problem is not an initial value problem,
e.g. x(0) = 1 and x(1) = 6, which again gives a unique solution x = 5t+ 1.

Turning to PDEs, the basic idea is the same. The solution space of  a PDE is infinite-dimensional
so we need to provide an infinite number of  pieces of  information in order to specify a particular
solution. This often comes in the form of  a function. For example, for the heat equation in one
dimension, to find a particular solution for the temperature u(x, t), we could specify the initial
temperature u(x, 0), which is a whole function’s worth of  information. A PDE problem is called
well-posed when we are given exactly enough boundary conditions so that there is a unique solu-
tion obeying the PDE and satisfying the boundary conditions; too few boundary conditions and
the solution will not be unique, too many boundary conditions and the problem is most likely
over-constrained and there are no solutions at all.
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One way to understand what boundary conditions we might need for an ODE or a PDE is to
imagine that we are trying to solve the system on a computer. Often this is done by discretising
the independent variables, so rather than allowing x or t to take any real value, we restrict it to
live on a lattice, say the integers so that x ∈ Z. Consider first the case of  a first order ODE for a
function f(t). We shall attempt to solve the model for f(n) where n ∈ Z. The first derivative tells
us about the change in the function over short distances, so we will very crudely model f ′(n) =
f(n + 1) − f(n). So an example of  a discretised first order equation would like something like
f ′(n) = f(n+ 1)− f(n) = βf(n). The exact form of  the discretised equation is not important;
what is important is that it is a recurrence relation between f(n+1) and f(n). We can represent
this graphically as follows:

t

f(n) f(n+ 1)f(n− 1)f(n− 2)

If  we give one piece of  information, say as an initial value problem we specify f(0), then
putting n = 0 in the recurrence relation we can use it to solve for f(1). Putting n = 1 into the
recurrence relation we can then solve for f(2), and continuing in this manner we can solve for
all f(n) n > 0. Thus we see that one piece of  information f(0) can be used to specify a unique
solution.

f(0) f(1) f(2) f(3) f(0) f(1) f(2) f(3)

t t

Similarly if  we wanted to solve a second ordinary differential equation by this method, we
could choose to model the second derivative as

f ′′(n) = f ′(n)−f ′(n−1) = (f(n+1)−f(n))−(f(n)−f(n−1)) = f(n+1)−2f(n)+f(n−1).

A typical linear second order equation might look like f ′′(n) = f(n+ 1)− 2f(n) + f(n− 1) =
βf(n). Again the exact form of  the equation is not what matters to us; the important thing is that
the discretisation of  the second derivative relates three neighbouring sites as indicated below.

t

f(n) f(n+ 1)f(n− 1)

If  we know the values of  two neighbouring sites we can use the recurrence relation to deduce
the third. Thus in this case if  we are given two pieces of  information, say f(0) and f(1) we can use
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the recurrence relation with n = 1 to deduce f(2), and then once we know f(1) and f(2) we can
deduce the recurrence relation at n = 2 to deduce f(3) etc. The two pieces of  information given
are equivalent to knowing f(0) and f ′(0) = f(1) − f(0), so knowing the value of  the function
and the value of  its derivative initially is sufficient to determine the later behaviour, as we expected
for a second order equation.

tt

f(0) f(1) f(2) f(3) f(4) f(0) f(1) f(2) f(3) f(4)

Having tried out this method on ODEs let us see what it suggests for PDEs. In this case let us
assume we are solving for a function of  two variables, say u(x, t). We will discretise in the same
way so that we consider the function u(m,n) where m and n take integer values and represent the
x and t variables respectively. The partial derivative of u with respect to x is roughly the difference
in the value of  the function for neighbouring values of m i.e. ux = u(m+1, n)− u(m,n), whilst
the corresponding partial derivative with respective to t when discretised in this fashion becomes
ut = u(m,n + 1) − u(m,n). Similarly the second derivative with respect to x, keeping t or n
constant can be written as uxx = u(m+ 1, n)− 2u(m,n) + u(m− 1, n) etc. In this way we see
that we can discretise the wave and heat equations as follows:

utt = c2uxx ⇒ u(m,n+ 1)− 2u(m,n) + u(m,n− 1) = c2 (u(m+ 1, n)− 2u(m,n) + u(m− 1, n)) ,

ut = k2uxx ⇒ u(m,n+ 1)− u(m,n) = k2 (u(m+ 1, n)− 2u(m,n) + u(m− 1, n))

The sites related by these recurrence relations are indicated in the diagram below:

x x

t t
Wave/Laplace Equation Heat equation

u(m,n)

u(m,n+ 1)

u(m− 1, n)

u(m,n− 1)

u(m+ 1, n)

u(m,n)

u(m,n+ 1)

u(m,n− 1) u(m+ 1, n)

Let us consider various geometries in which we might wish to solve the wave/heat/Laplaces
equation and use this discrete model to indicate what sort of  boundary conditions will be required
to specify a unique solution.
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• 1. Solving the wave/heat equation for all x and t ≥ 0

If  we wish to solve the lattice model of  the wave equation on the entire x axis, and for t ≥ 0,
from the diagram below we can see that this can be done provided we provide two entire
rows of  information; then four of  the points in the recurrence relation lie on the rows n = 0
and n = 1 and we can deduce the fifth value lying on row n = 2. Once u(m, 2) is known
for all m we can use the recurrence relation with n = 2 to deduce u(m, 3) etc. In this way
we can solve for all points with n ≥ 0 or equivalently t ≥ 0.

x

n = 0

n = 1

n = 2

t

Knowing two rows is equivalent to knowing u(m, 0) and ut(m, 0) = u(m, 1) − u(m, 0)
for all m. Therefore we can solve the wave equation for t ≥ 0 if  we are given the initial
displacement u(x, 0) and the initial velocity ut(x, 0). This is essentially because the wave
equation is second order in time.
By contrast we need to be given the values of  the row u(m, 0) to solve the heat equation as
the diagram below indicates.

t

x

n = 0

n = 1

In this case since the recurrence relation only involves the four points shown, it is possible
to deduce the values of u(m, 1) from those of u(m, 0), and then in turn the values of  all
rows with n > 0. Thus as the heat equation is first order in time, it is sufficient to give the
value of u(x, 0) to solve the problem.
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• 2. Solving the heat/wave equation for t ≥ 0 and a ≤ x ≤ b.
Rather than solving the wave equation on the whole line, which corresponds to the motion
of  an infinitely long string, one often wants to describe a finite length string lying along the
x-axis on the interval [a, b]. Similarly we are often interested in working out the temperature
distribution in a bar of  finite length. In this case we must supplement the conditions at t = 0
with one conditions at each of  the end points of  the string (or bar) i.e. at x = a and x = b.
To see this, consider the diagram below:

t

m = 1m = 0 m = 6 m = 7

A little thought reveals that we need to be given the column m = 0 and m = 7 to deduce
the columns m = 1 and m = 6. Often one sets the boundary conditions at the end x = a to
be u(a, t) = 0 (Dirichlet boundary condition) or ux(a, t) = 0 (Neumann boundary condition),
and similarly at x = b. This applies equally to the wave and the heat equation.

• 3. Solving Laplace’s Equation for a ≤ x ≤ b and c ≤ y ≤ d

Laplace’s equation describes static situations, such as a steady-state temperature distribution
or the shape of  a membrane fixed at its ends, and so the idea of  an initial value problem is
not the appropriate one. In general one might be interested in solving Laplace’s equation on
some finite region of  space, such as the rectangle below. Generally one specifies a boundary
condition around the perimeter of  the region. For example one may specify Dirichlet or
Neumann boundary conditions or a mixture.

y

x

In this figure above one obtains 24 equations by considering the recurrence relation at each
of  the 24 white circles, so one has enough equations to determine the values of  each white
dot.
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