2.7 APPROXIMATING FUNCTIONS USING LEGENDRE EXPANSIONS *1*

§2.7 Approximating functions using Legendre expansions

The main application of eigenfunction expansions is for solving partial differential equations which we shall encounter in the next section. Another perhaps surprising application of polynomial expansions is as a tool for approximating functions by polynomials. Suppose that we wish to find a cubic polynomial which approximates $sin(x)$ well. For instance we may wish to calculate the value of $sin(x)$ quickly. It turns out that if the Legendre expansion of $sin(x)$ is given by

$$
\sin(x) = \sum_{i=0}^{\infty} b_i P_i(x)
$$

then for instance the first four terms (a so-called *partial sum*) of the series

$$
S_3(x) = \sum_{i=0}^{3} b_i P_i(x)
$$

provides a cubic approximation which is a 'best' approximation to $sin(x)$ amongst all cubic polynomials in a sense we shall see below. Similarly $S_n(x) = \sum_{i=0}^n b_i P_i(x)$ will be the best approximation amongst all *n*-th order polynomials.

Let us begin by considering the following 'toy model' for the situation. Suppose we have some vector in three dimensions $\mathbf{v} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$. We want to approximate the vector **v** by another vector **w** living in the subspace spanned by **i** and **j**, that is **w** must be of the restricted form $\mathbf{w} = a_1 \mathbf{i} + a_2 \mathbf{j}$, i.e. have no component in the **k** direction. We shall say that the 'best' approximation of **v** by **w** is when the distance (squared) between the two vectors is a minimum, i.e. *|***v** *−* **w***|* 2 is minimised. But Pythagoras' Theorem tells us that

$$
|\mathbf{v} - \mathbf{w}|^2 = (b_1 - a_1)^2 + (b_2 - a_2)^2 + b_3^2.
$$

Clearly this is minimised by choosing $a_1 = b_1$ and $a_2 = b_2$, i.e. if we pick $\mathbf{w} = b_1 \mathbf{i} + b_2 \mathbf{j}$ to have the same components as **v** in the directions **i** and **j**. Geometrically this is the somewhat obvious statement that the closest point on the *x*-*y* plane to the point (b_1, b_2, b_3) is the projection to the point on the (x, y) plane $(b_1, b_2, 0)$ directly below. We can think of **w** as a *partial sum* of **v**, where we take into account only the first two of the three terms.

Returning to our attempt to approximate $sin(x)$ by a cubic polynomial, note that as P_i for $i = 0.3$ form a basis of cubic polynomials, we can write any cubic polynomial in the form

$$
g(x) = \sum_{i=0}^{3} a_i P_i(x)
$$

The 'distance squared' between $sin(x)$ and are generic cubic polynomial $q(x)$ is given by

©PB-2020

$$
D^{2} = |\sin(x) - g(x)|^{2} = (\sin(x) - g(x), \sin(x) - g(x)) = \int_{-1}^{1} (\sin(x) - g(x))^{2} dx
$$

using the inner product associated with Legendre polynomials. More precisely, by 'best' cubic approximation we mean finding the cubic polynomial $g(x)$ which minimises D^2 . Now in terms of Legendre expansions we have

$$
\sin(x) - g(x) = \sum_{i=0}^{\infty} b_i P_i(x) - \sum_{i=0}^{3} a_i P_i(x) = \sum_{i=0}^{3} (b_i - a_i) P_i(x) + \sum_{i=4}^{\infty} b_i P_i(x).
$$

Substituting this into the distance between the two functions we have

$$
(\sin(x) - g(x), \sin(x) - g(x)) = \left(\sum_{i=0}^{3} (b_i - a_i) P_i(x) + \sum_{i=4}^{\infty} b_i P_i(x), \sum_{j=0}^{3} (b_j - a_j) P_j(x) + \sum_{j=4}^{\infty} b_j P_j(x)\right)
$$

=
$$
\sum_{i=0}^{3} (b_i - a_i)^2 (P_i(x), P_i(x)) + \sum_{i=4}^{\infty} b_i^2 (P_i(x), P_i(x))
$$

=
$$
\sum_{i=0}^{3} \frac{2}{2i+1} (b_i - a_i)^2 + \sum_{i=4}^{\infty} \frac{2}{2i+1} b_i^2.
$$

Here in going from the first line to the second we have discarded all the 'cross-terms' for which $i \neq j$ because of the orthogonality of the Legendre functions $(P_i, P_j) = 0$ for $i \neq j$. This is basically Pythagoras' Theorem again (the length of a vector is the sum of the square of its components). As all the terms in the last sums are positive squares, the distance is minimised when we choose $a_i = b_i$ to make the terms in the first sum vanish. Thus the 'best' cubic approximation to $sin(x)$ is given by the partial sum

$$
g(x) = S_3(x) = \sum_{i=0}^{3} b_i P_i(x).
$$

Calculating this partial sum we find that

©PB-2020

 $S_3(x) = 3/2$ (2 sin (1) *−* 2 cos(1)) $x + 7/2$ (28 cos(1) *−* 18 sin (1)) (5/2 $x^3 - 3/2x$)

Below we plot the three functions $sin(x)$, $S_3(x)$ and the cubic Taylor approximation $x - x^3/6$.

We can see that *S*³ is a slightly better approximation than the Taylor series in the range [*−*2*,* 2]. Actually the distance we minimised involved an integral over the range [*−*1*,* 1] so we only expect that the function $S_3(x)$ is a good approximation in this region. In fact in this range it is a lot closer on average than the Taylor series. One can calculate that

$$
\int_{-1}^{1} (\sin(x) - S_3(x))^2 dx \approx 1.8 \times 10^{-7}, \int_{-1}^{1} (\sin(x) - x + x^3/6)^2 dx \approx 1.2 \times 10^{-5}
$$

so that $S_3(x)$ is around seventy times better than the Taylor series by this measure!

©PB-2020