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Solitons with boundaries

Extra reading material for MSc students taking Solitons V in 2025-26.

The first chapter explains how the calculus of variations can be used to
derive equations of motion in field theories – you may already be familiar
with much of it. The second chapter outlines how the ideas discussed in
the course must be adapted to deal with systems with boundaries. Some
exercises to try are indicated in this typeface.



Chapter 1

A quick sketch of Lagrangian
mechanics

1.1 The variational idea

The calculus of variations, applied to the simplest case of a function u(t),
asks for the function which minimises – or at least makes stationary – a
quantity S[u] defined by

S[u] =

∫ t2

t1

dt L(u, ut) (1.1)

where L is some function of u and ut. For example, L might be

L(u, ut) =
m

2
u2t −mgu (1.2)

with m and g two constants. In general L can also depend explicitly
on t, but we won’t need to treat this here. The boundary conditions
for the variational problem are that u(t1) and u(t2) are fixed. To find
the solution, note that if u(t) solves the problem, then S[u] must be
unchanged, to leading (linear) order, if u(t) is changed by a small amount:

u(t) → u(t) + δu(t) (1.3)

where δu(t) is arbitrary, apart from the requirement that it preserve
the boundary conditions. Ignoring terms quadratic and higher in δu

and its derivatives, we must therefore impose δS = 0 where δS =

2
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S[u+δu]− S[u] :

δS=

∫ t2

t1

dt
(
L(u+ δu, ut + δut)− L(u, ut)

)
=

∫ t2

t1

dt

(
L(u, ut) +

∂L

∂u
δu+

∂L

∂ut
δut − L(u, ut)

)
=

∫ t2

t1

dt

(
∂L

∂u
δu+

∂L

∂ut
δut

)
, .

(1.4)

Here ∂L/∂u and ∂L/∂ut denote the partial derivatives of L(u, ut) with
respect to its first and second arguments respectively. Now we want δS
to be zero for arbitrary variations of u, at least to leading order. Since
we can arrange for δu(t) to be only nonzero on a small interval placed
anywhere between t1 and t2, and likewise for δut(t), it might be tempting
to conclude that ∂L/∂u and ∂L/∂ut must be identically zero. But this
would be to ignore the fact that δu(t) and δut(t) are not independent,
since one is the t-derivative of the other. The key trick, which always is
used in some way when solving variational problems, is to integrate by
parts, so as to convert δut(t) into δu(t). After this, (1.4) becomes

δS =

∫ t2

t1

dt

(
∂L

∂u
− d

dt

∂L

∂ut

)
δu(t) . (1.5)

The ‘boundary term’ [ ∂L
∂ut

δu ]t2t1 from the integration by parts is zero since
the boundary conditions say that u(t) is fixed at t = t1 and t = t2, and
this means that δu(t1) = δu(t2) = 0. Since only δu(t) appears in the
integrand of (1.5), we can now conclude that the term multiplying it
must be zero at all points between t1 and t2 :

∂L

∂u
− d

dt

∂L

∂ut
= 0 . (1.6)

This is the Euler-Lagrange equation; you might have seen it in other
courses already. The quantity S[u] defined in (1.1) is sometimes called
a functional of u – it’s a ‘function of a function’ and it depends on the
infinitely-many values of u(t) between t = t1 and t = t2. Apart from that
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complication, what we’ve done here is very close to what you’d normally
do when looking for stationary points of an ordinary function f(x), and
you can think of the Euler-Lagrange equation (1.6) as the ‘functional’
equivalent of the condition df/dx = 0.

For the example, ∂L
∂ut

= mut and
∂L
∂u = −mg , so the Euler-Lagrange

equation is simply mutt = −mg.

1.2 Relation to mechanics

In the example we just treated, mutt = −mg is the equation of motion
for a particle of mass m in a constant gravitational field g, with u(t) the
position of the particle. The two bits making up the function L also have
simple interpretations: 1

2m(ut)
2 is the kinetic energy of the particle, and

mgu is its potential energy.
More generally, if the potential energy is some function V (u), and

the kinetic energy is T = 1
2m(ut)

2 as before, then for L = T − V the
Euler-Lagrange equation will be

mutt = −V ′(u) (1.7)

which is the equation of motion for a particle moving in one dimension
in a potential V (u). The quantity

S[u] =

∫ t2

t1

dt L(u, ut) (1.8)

is then called the action, with L = T − V the Lagrangian; instead of
giving the equation of motion, we can say that the particle moves so as
to minimise (or at least make stationary) the value of S[u]. This is called
the principle of least action (or Hamilton’s principle). It has a nice
interpretation in quantum mechanics – see volume two of Feynman’s
lectures [1], chapter 19.
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1.3 The generalisation to field theory

The equations we saw in the previous chapters involved, for example,
θ(x, t) or u(x, t) , so that we were dealing with quantity (a field) which
was a function of two variables, x and t. Usually it will be assumed that
x ranges from −∞ to +∞, with the field tending to fixed constants
at x = ±∞. (If not, a boundary term would need to be added to the
Lagrangian – we’ll discuss that later.)

Now the action S[u] should be a two-dimensional integral of some
function of u(x, t), ux(x, t) and ut(x, t). We’ll call this function the
Lagrangian density, L, so that

S[u] =

∫ t2

t1

dt

∫ ∞

−∞
dx L(u, ut, ux) (1.9)

Notice that the Lagrangian density can depend on ux, as well as u and
ut. Now we can ask the same question as before: which functions u(x, t)
ensure that the first-order variation of the action, δS[u], is zero?

To answer, let u → u+ δu, so that S → S + δS. Then

δS =

∫∫(
L(u+δu, ut+δut, ux+δux)− L(u, ut, ux)

)
dxdt

=

∫∫
dt dx

(
∂L
∂u

δu+
∂L
∂ut

δut +
∂L
∂ux

δux

)
=

∫∫
dt dx

(
∂L
∂u

− d

dt

∂L
∂ut

− d

dx

∂L
∂ux

)
δu .

(1.10)

The terms with minus signs in the last line are found by integrating by
parts with respect to t and x respectively. As before, the fact that δS
should be zero for any δu allows us to deduce

∂L
∂u

− d

dt

∂L
∂ut

− d

dx

∂L
∂ux

= 0 , (1.11)

the Euler-Lagrange equation, which is now a partial differential equation,
as appropriate for a field theory. In general the Lagrangian density for a
field theory is obtained as the difference between the kinetic and potential
energy densities, just as happened for the motion of a particle earlier.
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1.4 Example - the sine-Gordon equation

To get the sine-Gordon equation from a variational principle, define the
kinetic and potential energy densities

T =
ml2

2
θ2t

V = mgl(1− cos θ) +
k

2
θ2x

(1.12)

Recall that θxx in the previous equation of motion came from the twist-
ing force of the stretched springs between the pendulums. Correspond-
ingly, the term proportional to θ2x is the contribution to the potential en-
ergy from the stretching of these springs. (Go back to the pendulum

picture and convince yourself that this is the case.)
Therefore the Lagrangian density is

L = T − V

=
ml2

2
θ2t −

k

2
θ2x −mgl(1− cos θ)

(1.13)

and the Euler-Lagrange equation δS = 0 follows from

∂L
∂θt

= ml2 θt

∂L
∂θx

= −k θx

∂L
∂θ

= −mgl sin θ

(1.14)

giving
ml2 θtt − k θxx +mgl sin θ = 0 (1.15)

as expected.
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1.5 Summary

Particle mechanics deals with a particle position u(t).

Kinetic Energy = T

Potential Energy = V

Total energy = E = T + V

Lagrangian = L = T − V

Action = S =
∫
Ldt

The equation of motion follows from δS = 0 ⇒ the Euler-Lagrange
equation

∂L

∂u
− d

dt

∂L

∂ut
= 0 . (1.16)

Field theory deals with a field u(x, t).

Kinetic Energy density = T
Potential Energy density = V

Energy density = E = T + V
Lagrangian density = L = T − V

Total Kinetic Energy = T =
∫
T dx

Total Potential Energy = V =
∫
V dx

Total energy = E = T + V

Lagrangian = L = T − V

Action = S =
∫
Ldt =

∫∫
L dt dx

The equation of motion follows from δS = 0 ⇒ the Euler-Lagrange
equation

∂L
∂u

− d

dt

∂L
∂ut

− d

dx

∂L
∂ux

= 0 , (1.17)

In general, the field might be defined in more dimensions, and so
depend on y, z. . . as well as x and t ; it might also have more than one
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component, so that we would have to deal with (u1(x, t), . . . un(x, t)).
It’s easy to generalise the above to cover such cases. It might also happen
that L could depend on higher derivatives of u than just ux and ut –
this is relevant for the KdV equation, and is discussed in Ex 3.



Chapter 2

Adding boundaries

So far, all the field theories we have considered have been defined on a
full line, −∞ < x < ∞. They describe waves, solitons and so on moving
in a one-dimensional space which is infinite in both directions. But it is
very natural to imagine that these theories might be defined on a half line
instead, perhaps −∞ < x ≤ 0. For example, you might imagine trying
to describe one-dimensional waves arriving at a beach – ‘space’ would
be the sea, extending to x = −∞ and ending at the beach at x = 0. In
the standard language of the subject, the region away from the boundary
(x < 0 in our example) is called the bulk, to be distinguished from the
boundary at x = 0.

For x < 0, that is in the bulk, the equation of motion will be the
same as before, but we must be careful to specify what happens actually
at x = 0 – the boundary condition. This will determine what happens
when solitons arrive at the boundary, and whether they are reflected,
keeping their shape, or whether they just break like waves on the seashore
and lose their form completely. From the point of view of soliton theory,
the most interest will be in the cases where reflecting solitons keep their
form, and one of the key questions will be which boundary conditions
lead to such relatively-simple behaviours. In this chapter we’ll focus on
the sine-Gordon model, which has been the subject of a lot of research
work in recent years. Before describing these modern developments, we
should make concept of a boundary condition a little more precise.

9
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2.1 Boundary conditions from Lagrangians

Recall the basic recipe of the first chapter for setting up a field theory
on an infinite line – first figure out the total kinetic energy T and the
total potential energy V of the field at any moment in time, and form
the Lagrangian L = T − V . Then the action is S =

∫
Ldt, and the

equation of motion for the field results from the variational principle
δS = 0, via the Euler-Lagrange equations. For the sine-Gordon case
on the full line, converting the formulae from the last chapter into the
notations and normalisations used in lectures, T =

∫∞
−∞ dx 1

2(ut)
2 and

V =
∫∞
−∞ dx

[
1
2(ux)

2 + 1− cosu
]
.

Moving now to the system on a half-line, a reasonable idea is to decide
that the kinetic and potential energies from the bulk (that is x < 0)
should be given by the same expressions as before, though this time with
the integrals running from −∞ to 0 instead of from −∞ to +∞, and
to add extra pieces to them encoding what is happening at the ‘end’ of
the world, that is at x = 0. Thus we should set

T =

∫ 0

−∞
dx T + A(ut(0, t))

V =

∫ 0

−∞
dx V +B(u(0, t))

(2.1)

where T is the (bulk) kinetic energy density as in the full-line theory,
1
2(ut)

2 for sine-Gordon, and V is the corresponding potential energy den-
sity, 1

2(ux)
2+1−cos(u) for sine-Gordon. The extra terms A(ut(0, t)) and

B(u(0, t)) depend only on the values taken by ut and u at the end-point
x = 0, and you can think of them as describing the kinetic and potential
energies stored there. We’ll leave the functions arbitrary for the moment,
but later on we’ll see that there are strong restrictions on them if soliton
scattering is to be simple. In principle A, the kinetic energy of the field
at x = 0, might depend on u(0, t) as well ut(0, t), but we’ll just discuss
the simplest cases here.

Following the earlier recipe the next step is to define L = T − V and
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then consider the action

S =

∫ ∞

−∞
(T − V ) dt

=

∫ ∞

−∞
dt

∫ 0

−∞
dx [T −V ] +

∫ ∞

−∞
dt [A(ut(0, t))−B(u(0, x))]

=

∫ ∞

−∞
dt

∫ 0

−∞
dxL(u, ux, ut)−

∫ ∞

−∞
dtM(u(0, t), ut(0, t))

(2.2)

where L = T − V is the Lagrangian density just as for the full-line
theory, and M = B−A is the part of the Lagrangian which encodes the
boundary condition at x = 0.

At last we’re ready to find the equation of motion, which should follow
from sending u → u+ δu and demanding that δS = 0. The calculation,
at least to start with, is very close to the one in the last chapter. We
have

S[u+ δu] =

∫ ∞

−∞
dt

∫ 0

−∞
dxL(u+δu, ut+δut, ux+δux)

−
∫ ∞

−∞
dtM(u+δu, ut+δut)

(2.3)

where arguments of M in the last integral are the values taken by u, ut,
δu and δut at x = 0. Continuing by expanding L and M ,

S[u+ δu]

=

∫ ∞

−∞
dt

∫ 0

−∞
dx

(
L+

∂L
∂u

δu+
∂L
∂ut

δut +
∂L
∂ux

δux

)
−

∫ ∞

−∞
dt

(
M +

∂M

∂u
δu+

∂M

∂ut
δut

)
= S[u] +

∫ ∞

−∞
dt

∫ 0

−∞
dx

(
∂L
∂u

δu+
∂L
∂ut

δut +
∂L
∂ux

δux

)
−

∫ ∞

−∞
dt

(
∂M

∂u
δu+

∂M

∂ut
δut

)
.

(2.4)
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The next step, as for the full-line case, is to integrate by parts so as to
convert the terms involving δut and δut into terms involving δu alone.
This needs extra care, since the x integral runs from −∞ to 0 instead of
−∞ to +∞. So let’s go back to basics, and start by using the product
rule for derivatives to write

∂L
∂ux

δux =
d

dx

(
∂L
∂ux

δu

)
− d

dx

(
∂L
∂ux

)
δu (2.5)

(don’t forget that δux =
d
dx(u) .)

Hence∫ 0

−∞
dx

∂L
∂ux

δux

=

∫ 0

−∞
dx

(
d

dx

(
∂L
∂ux

δu

)
− d

dx

(
∂L
∂ux

)
δu

)
=

[
∂L
∂ux

δu

]0
−∞

−
∫ 0

−∞
dx

d

dx

(
∂L
∂ux

)
δu

(2.6)

Previously, the first (‘boundary’) term on the final line was omitted, since
the boundary conditions at x = ±∞ force it to be zero. However, here
we can imagine having boundary conditions at x = 0 such that the field
can still wiggle there. So even though δu(−∞) = 0, it might be that
δu(0) ̸= 0, and this gives an extra piece, ∂L

∂ux
δu(0, t), compared to the

full-line calculation.
The other terms work just as before, and gathering all the bits to-

gether,

δS = S[u+ δu]− S[u]

=

∫ ∞

−∞
dt

∫ 0

−∞
dx

(
∂L
∂u

− d

dt

∂L
∂ut

− d

dx

∂L
∂ux

)
δu(x, t)

+

∫ ∞

−∞
dt

(
∂L
∂ux

− ∂M

∂u
+

d

dt

∂M
∂ut

)
δu(0, t)

(2.7)

(Check that you agree with this formula!) The variational prin-
ciple says that this should be zero for all possible δu(x, t) (including
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all δu(0, t)). So the terms multiplying both δu(x, t) (in the bulk) and
δu(0, t) (at the boundary) must be zero, and this gives us the full equa-
tion of motion for the system on a half line:

‘bulk’, x < 0 :

(
∂L
∂u

− d

dt

∂L
∂ut

− d

dx

∂L
∂ux

)
= 0 ; (2.8)

‘boundary’, x = 0 :
∂L
∂ux

− ∂M

∂u
+

d

dt

∂M

∂ut
= 0 . (2.9)

The second equation, a new feature compared to the full-line situation,
gives the boundary condition for u(x, t) at x = 0, and will ultimately
determine what happens when solitons, coming from −∞, arrive at the
origin.

To see this technology in action, we’ll return to the sine-Gordon theory.
The bulk Lagrangian density L, equal to T − V where T and V are the
kinetic and potential energy densities, is

L =
1

2
(ut)

2 − 1

2
(ux)

2 − 1 + cosu (2.10)

and for now I’ll leave the boundary piece fairly general:

M(u, ut) = B(u)− A(ut) (2.11)

with B and A the boundary potential and kinetic energies. The bulk and
boundary equations are then

x < 0 : utt − uxx + sinu = 0 (2.12)

x = 0 : −ux −
∂B

∂u
− d

dt

∂A

∂ut
= 0 . (2.13)

For the next section I’ll want to simplify the story further, by setting A

to zero. A nonzero choice of A, for example A = 1
2m(ut)

2, would be
required if there were some kinetic energy right at x = 0. For example,
if the equations were modelling waves travelling along a string which
came to an end at x = 0, this would correspond to there being a point
mass attached to the end of the string which would have its own kinetic
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energy, in addition to the kinetic energy of the string itself. However this
complicates the story and we will follow most early papers on this subject
by suppressing it, so that the boundary condition at x = 0 is simply

ux(0, t) = −B′(u(0, t)) (2.14)

where the prime simply means that B should be differentiated with re-
spect to its argument.

Two special cases might be familiar if you’ve ever studied waves trav-
elling along a string which comes to an end at some point. If the end of
the string is left completely unfixed, then one should impose ux(0, t) = 0.
This is called the ‘free’, or ‘Neumann’, boundary condition, and corre-
sponds to taking B = 0. At the opposite extreme, the end of the string
could be nailed down to some specific value, say u0, so that u(0, t) = u0
for all time. This is a ‘fixed’, or ‘Dirichlet’, boundary condition, and
to produce it from the current machinery is a little more subtle than for
the free case. One option is to choose B(u) = K(u − u0)

2, and then
send K → +∞. An easy way to see that this does the trick is to note
that B(u(0, t)) is equal to the boundary contribution to the total energy
E = T + V of the field. Any value of u(0, t) other than u0 would, in
the limit K → ∞, be incompatible with the requirement that E should
be finite. For K large but still finite, energy considerations mean that
the field still likes to be near to u0 at the boundary, but small deviations
from that value are possible. In general, B(u) = K(u − u0)

2 leads to
what is called a Robin boundary condition

1
2Kux(0, t) + u(0, t) = u0 , (2.15)

interpolating between the Neumann and Dirichlet cases.
Dirichlet boundary conditions have been rather popular in string the-

ory of late. Here we’ll be a bit more general, and investigate other
possibilities for B as well.
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2.2 Integrable boundaries

A key property of solitons on an infinite line is the fact that, when they
encounter other solitons, they pass through them with their shapes and
velocities unchanged (though, as we saw when looking at exact two-
soliton solutions, their positions might suffer phase shifts). For a nonlin-
ear partial differential equation to have such solutions is rather surprising,
and equations which do have other remarkable properties, such as the
existence of infinitely-many conserved quantities. We saw these for the
KdV equation when we discussed the Gardner transform, and they go
some way towards explaining why the solutions of this equation are so
special. In general, such partial differential equations are said to be
integrable.

Once a boundary is involved, the story becomes more complicated.
Even if the bulk partial differential equation, which determines how waves
evolve away from the boundary, is integrable, all of its special properties
will be destroyed if the wrong boundary condition is chosen at x = 0.
Conserved quantities will no longer be conserved, and solitons will lose
their simple forms once they hit the boundary. However, if the boundary
condition is picked carefully, it might be that at least some conserved
quantities will survive, and that these would force the solitons to continue
to behave in a simple way, even when they hit the boundary. This
leads to a very natural question: given a partial differential equation
which is integrable on the full line, which boundary conditions preserve
integrability when the theory is restricted to a half line?

For the sine-Gordon example from the last section, the issue would be
to find the functions B(u) which are compatible with integrability when
the bulk Lagrangian density is equal to L = 1

2(ut)
2− 1

2(ux)
2− 1+ cosu.

Even though the special properties of the sine-Gordon equation on the
full line had been known for many years, the full answer to this boundary
question was only found in 1994, by two physicists at Rutgers University,
S. Ghoshal and A.B. Zamolodchikov [2]. Before describing their results it
is worthwhile illustrating the situation with a couple of specific examples,
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found found by solving the sine-Gordon equation numerically.
Figure 2.1, on the next page, shows what happens when a sine-Gordon

soliton with velocity 0.75 hits a boundary at which u is held fixed (a
Dirichlet boundary condition), in fact to the value u(0, t) = u0 = 0.
The form of the soliton is preserved, and its velocity is exactly reversed.
The black line shows what the trajectory would have been had the soliton
been a point particle, bouncing with no loss of energy off the boundary.
As you can perhaps see, there is a small phase shift in the position of
the soliton compared to this line after the collision has occurred, but
otherwise the scattering is just as simple as the passage of one soliton
past another on the full line. This is not a coincidence, as we’ll see later
when discussing the method of images.

–20 –15 –10 –5 0

x

0

10

20

30

40

t

Figure 2.1: A sine-Gordon soliton with velocity 0.75 bouncing into a wall with Dirichlet
boundary conditions. The wall is located at x = 0, and the plot shows equally-spaced
contours of the function u(x, t).

Given these results, and the fact that the same pictures are found when
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other initial velocities are tried, it’s reasonable to suppose that Dirichlet
boundary conditions, at least with u0 = 0, preserve integrability. The
same turns out to be true for Neumann boundary conditions, ux(0, t) =
0. However this is far from being the generic situation, as can be seen
by having a look at the next-simplest set of cases, namely the Robin
boundary conditions discussed in the last section.
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Figure 2.2: A sine-Gordon soliton with velocity 0.75 bouncing into a wall with Robin boundary
conditions u(0, t) + 3ux(0, t) = 0. Other details are as for figure 2.1.

Figure 2.2 shows what happens when the same initial soliton is fired
at a boundary for which B(u) = 1

6u
2, so that u(0, t) + 3ux(0, t) = 0.

The black line again shows what the trajectory would have been had the
scattering been perfectly elastic (that is, had the soliton simply bounced
of the wall keeping all of its energy). This time, a slower-moving soliton is
reflected, together with some more chaotic dispersing waves which carry
away the remaining energy. It is interesting that some of these extra
waves are actually travelling faster than was the reflected soliton in the
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Dirichlet case – you would hear the first ‘echo’ of a soliton sooner with
Robin boundary conditions than with Dirichlet. The additional dotted
line in figure 2.2 has slope equal to −1, and shows that although these
extra waves are travelling faster than might have been expected, their
speeds are still less than one, the speed of light for this model.

The plot makes it clear that the Robin boundary condition u(0, t) +
3ux(0, t) = 0 is not integrable, at least in the sense that solitons do not
reflect nicely from it. How to make this more precise? It turns out that
the key is to consider (boundary) conserved quantities, and this is what
Ghoshal and Zamolodchikov did. On a full line, conserved quantities
looked like

∫∞
−∞ ρ dx where ρ was some quantity constructed from u and

its derivatives, such that ∂ρ/∂t + ∂j/∂x = 0 and j(−∞) = j(+∞) ,
from which it followed that dQ/dt = 0. (Check that you remember

why!) On a half line, the natural first guess is to take Qhalf =
∫ 0

−∞ dx ρ

with the same ρ as before. Then

d

dt
Qhalf =

∫ 0

−∞
dx

∂ρ

∂t
= −

∫ 0

−∞
dx

∂j

∂x

= − [j] 0−∞ = −j
∣∣
x=0

.

(2.16)

where for simplicity it was assumed (as is usually the case) that j(−∞) =
0. The term on the right-hand side of the last equation risks messing
up the conservation law. However, suppose it could be shown from the
equation of motion and boundary conditions that j|x=0 =

d
dtθ for some

other function θ of u and its derivatives. Then Qhalf could be ‘corrected’
to

Qboundary = Qhalf + θ =

∫ 0

−∞
dx ρ+ θ (2.17)

and we’d find

d

dt
Qboundary =

d

dt
Qhalf +

d

dt
θ

= −j
∣∣
x=0

+ j
∣∣
x=0

= 0

(2.18)
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so Qboundary would indeed be conserved.
We can see this in action for the simplest case, the conservation

of energy. For the sine-Gordon model the bulk energy density is E =
1
2(ut)

2 + 1
2(ux)

2 + 1 − cosu, and it follows from the bulk equation of
motion utt − uxx + sinu = 0, which holds for x < 0, that

∂E
∂t

+
∂j

∂x
= 0 (2.19)

where j = −uxut. (Check this!) At x = 0 the boundary condition is
ux(0, t) = −B′(u(0, t)), and this implies that

j
∣∣
x=0

= −ut(0, t)ux(0, t) = B′(u(0, t))ut(0, t) =
d

dt
θ (2.20)

where θ = B(u(0, t)). Thus by the above reasoning, if

Eboundary =

∫ 0

−∞
dx E +B(u(0, t)) (2.21)

then Eboundary is conserved. Reassuringly, this matches the formula for
the energy in the presence of a boundary given in section 2.1 above.

Unfortunately this case is just a bit too simple – the proof that energy
is conserved works equally well for the Robin boundary condition as for
the Dirichlet and Neumann ones. (Indeed, it doesn’t even need the bulk
theory to be integrable – see Ex 5.) To test for integrability, Ghoshal and
Zamolodchikov had to look to the first of the extra conserved charges
that were discussed as bonus material in section 5.5 of the main lecture
notes. The details are in appendix A of [2], or in chapter 2 of [3]; when
the dust settles, the result is that for the sine-Gordon model the most
general option for B(u) consistent with integrability is

B(u) = K cos
1

2
(u−u0) (2.22)

where K and u0 are two free parameters. This includes the two previous
cases mentioned as being integrable: for the free boundary condition, set
K = 0, and for fixed, take the limit K → +∞. It is interesting that as
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late as 1993 papers were being published claiming that the only options
for u0 were integer multiples of π. Ghoshal and Zamolodchikov’s work
has sparked something of an industry looking at integrable boundary
conditions for more general models, and the subject is still an active
research area today.

2.3 Exact solutions for integrable boundaries

Given the simple form of soliton scattering of integrable boundaries, as
seen in the numerical solution shown in figure 2.1, it’s natural to ask
whether exact solutions can be found corresponding to these situations.
This turns out to be possible, and is most straightforward in the Dirichlet
case with u0 = 0, or in the Neumann case. We’ll discuss the Dirichlet
case first. Then we want to find a solution on the half-line x ≤ 0
which satisfies u(0, t) = 0 for all time, and which as t → −∞ has the
appearance of a single soliton approaching the boundary from the left.
The key idea is to use the method of images. Consider a solution
on the full line consisting of a pair of kinks with equal and opposite
velocities, symmetrically placed about the origin and with u(−∞, t) =
−2π, u(+∞, t) = +2π. (We constructed such solutions using Bäcklund
transformations in lectures.) By symmetry it is easy to see that u(0, t) =
0 for all time. But then we can just discard the x > 0 part of this full-line
solution, to find a function defined for x ≤ 0 and all t which satisfies all
the requirements for the half-line Dirichlet problem.

For the Neumann problem, the boundary condition is ux(0, t) = 0
and the same idea works, but now with a kink-antikink instead of a kink-
kink solution on the full line. Notice that all of this means that a kink
sent towards a Dirichlet boundary will reflect back as a kink, but from
a Neumann boundary it comes back as an antikink. (Check that you

understand this!)
One further feature of these two cases provides good revision of the

behaviour of two-soliton solutions on the full line. Recall that kinks repel
each other, while a kink and an antikink attract. When looked at on a
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half line using the method of images, this means that a kink will appear
to be repelled by the wall if its image is another kink, and attracted if its
image is an antikink. In other words, Dirichlet boundaries are repulsive,
while Neumann ones are attractive. In the latter case, one might then
expect there to be solutions where a soliton is stuck to the wall – and
indeed there are, and you already know what these solutions are. Just
take a full-line breather solution to the sine-Gordon equation, and discard
the part of it with x > 0. This is called a boundary breather.

For more general integrable boundaries, the story is more complicated
and even without any incident solitons, the form of u(x, t) must be
nontrivial. It turns out that u can be found by putting a stationary full-
line kink or antikink near to x = 0, and adjusting its position so as to
match the boundary condition. (Have a go at Ex 6, especially part 2,
to see this in action.) To describe a soliton hitting such a boundary –
something which is definitely more complicated than anything I’d expect
you to do in the exam – a three-soliton solution on the full line must be
used. This was first done by Saleur, Skorik and Warner in [4], and some
further and even more elaborate cases were treated in [3].

2.4 Further reading

Some suggestions for further reading are in the reference list below.
Unless you are very keen, you should not try to read the parts of the
papers which are devoted to the quantum theory of boundary solitons,
as they go way beyond the material covered in the course. Chapter 2 of
[3], which fills in some details omitted from the last section above, is a
good place to start.
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