Chapter 6

Backlund transformations

The main reference for this chapter is §5.4 of Drazin and Johnson|(1989).

So far, we have constructed solutions for moving solitons only as travelling waves, which de-
scribe the propagation of a single soliton. Our next goal will be to construct analytic solutions
for multiple colliding solitons. In these cases it won’t be possible to reduce the partial differ-
ential equation to an ordinary differential equation, so the existence of such exact solutions is
much more surprising. The method that we will use in this chapter is a solution-generating
technique called the Backlund transformation.

The method was introduced in the late 19th century by the Swedish mathematician Albert
Victor Backlund and by the Italian mathematician Luigi Bianch to map between pairs of
surfaces in three-dimensional space. The sine-Gordon equation appears in this context when
one considers hyperboloids, which are surfaces of negative curvature.

There are two main uses of the Backlund transformation:
1. To generate solutions of a difficult PDE from solutions of a possibly simpler PDE;

2. To generate new solutions of a given PDE from already known solutions of the
same PDE.

We will mostly be interested in use 2, but you will see examples of use 1 in [Ex 31-33] in the

Iwho, notably, was born Parma, the hometown of next term’s lecturer. This is the same Bianchi after whom
the Bianchi identities in differential geometry and general relativity are named.
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problem sheet. Our final goal in this chapter will be to obtain multi-soliton solutions of the
sine-Gordon equation.

6.1 Definition

Consider two functions v and v, and two differential equations
Plu]l =0 (6.1)
QL] = 0 (6.2)

where P and () are two differential operators.

If there is a pair of relations (which could be differential equations)

|Bi[u,v] =0, Rafu,v] = 0] (6.3)

between v and v such that

- If Plu] =0, ie. , then can be solved for v, to give a solution of , Q[v] = 0;
- I Q[v] = 0, ie. (6.2), then can be solved for u, to give a solution of (6.1), P[u] = 0;

then is called a Backlund transformation (BT). If furthermore P = (), so that the two
differential equations are identical, then is called an auto-Biacklund transformation
(a-BT).

This is useful if is easier to solve than (6.1) or (6.2). Then we can use to generate
solutions of the harder equation from solutions of the easier equation. If P = (), we can start

from a simple seed solution (e.g. © = 0) to generate new non-trivial solutions.

Vocabulary:

e (6.1) and are “integrability conditions” for the Bicklund transformation .
e (6.3) can be integrated for v if the integrability condition P[u] = 0 is satisfied.
¢ (6.3) can be integrated for v if the integrability condition Q[v] = 0 is satisfied.

6.2 A simple example

Take the two-dimensional Laplace operator P = Q = 02 + 7} in 1i and 1)

Plu] =ty + ty, =0 (6.4)
Q[U] = Ugy + Vyy = 0 (65)
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and for the Bicklund transformation (6.3)

Ry[u,v] = uy —v, =0
Rolu,v] = uy +v, =0.

Let us check that — are integrability conditions for . Differentiating with

respect to  and y and adding or subtracting we find

(6.6)

0= 40, R1 + OyRy = +Ugy — Uyy + Uyy + Vgy = Ugg + Uy
0= —0yRy + 0x Ry = —Uyy + Vyy + Uyy + Vgy = Vgz + Vyy

therefore the relations imply and This shows that is an auto-Béacklund

transformation for the two-dimensional Laplace equation.

EXAMPLE:

v(x,y) = 2zy solves the Laplace equation . Let us use the a-BT to find another solution
u of the same equation:

{umzvyzzw . {U=$2+f(y>

ffly)=-2y = fly)=-y*+c,

so we find the function u(z,y) = 22 — y? + ¢, where c is a constant. It is immediate to check
that this u solves the Laplace equation .

The equations R;[u,v] = Ry[u,v] = 0 in (6.6) are nothing but the Cauchy-Riemann equa-
tions for the holomorphic (= complex analytic) function w = u+iv of the complex variable
z = x + iy. In the example above, w(z) = 2? + ¢. The equations P[u] = 0 and Q[v] = 0
in (6.4)-(6.5) simply state that the real and imaginary parts of a holomorphic function are har-
monic, that is, they solve the Laplace equation. Two such functions v and v are often called
harmonic conjugate of each other.

REMARKS:

1. Given v, the Backlund transformation is a system of two equations for u. Generi-
cally there won’t be any solutions for the system . For example, if we pick v = 22,

then the system

has no solutions for u. But v = z” doesn’t solve (6.5)! The integrability condition
is what guarantees that the system can be consistently solved for u.

ZNote: in this example we don’t even need to use the other differential equation. This is not always the case.
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2. This auto-Backlund transformation generates a new solution to the Laplace equation
from a seed solution, but if we apply it a second time we get back the original seed solu-
tion (up to an irrelevant integration constant that we can ignore). So this auto-Backlund
transformation is an involution. To get further solutions we will need to introduce a
parameter.

6.3 The Backlund transformation for sine-Gordon

Recall that the sine-Gordon equation written in light-cone coordinates ¥ = §(¢ + z) is

’u+_ = —sinu‘. (6.7)

Let us try the Backlund transformation

(u—v)y = fsin(

(6.8)
(u+wv)- = —2asin (u ; U)

where a is a (non-zero) parameter. Cross-differentiating, and recalling that sin(A + B) =
sin A cos B + cos A sin B, which implies sin(A + B) + sin(A — B) = 2sin A cos B,

(u—v)4— =%cos(u;_v> (u+ ) =—2(:os(u;_v> sin(u;v)

= —sinu + sinv

(u+v)_4 = —acos (U;U) (u—v)y = —2cos (U;U) “in (u;—v)

—sinu — sinv .

Adding and subtracting, we find that both « and v obey the sine-Gordon equation:

’qu, = —sinu‘ (6.9)

Vy_ = —sinv (6.10)

Therefore is an auto-Béacklund transformation for the sine-Gordon equation, for any non-
zero value of a. The extra parameter will allow us to generate multi-soliton solutions. We will
start in the next section by rederiving the one-kink solution.

6.4 Firstexample: the sine-Gordon kink from the vacuum

Let us take the vacuum solution
v=0 (6.11)
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as our initial (seed) solution. Then the auto-Backlund transformation is

2 . wu
Uy = —sin —
@ 2 (6.12)
u_ = —2asin — .
2

We can integrate both equations by separation of variables, using the indefinite integral

d
f uu = Zlogtan%

Sin bl

up to an integration constant. We get

{2x+ = 2logtan § + f(z7) (6.13)

—2az~ = 2logtan § + g(z™)

where the functions f and g are “constants” of integration. They are only constant with respect
to the variable that is integrated, but they can (and do!) depend on the other variable.

Subtracting and rearranging, we get
2
a:ﬁ +g(xt) = —2ax” + f(x7) . (6.14)

The left-hand-side is only a function of z*, while the right-hand-side is only a function of 2.
Since the two sides are equal, they must therefore be equal to a constant, which we set to be
—2c for future convenience. Hence

f(z™) =2az™ — 2¢

2
)=—=a" —2c
a

g(x*
and so

2
210gt8mg = —x" —2az” + 2c,
4 a

that is

u = 4 arctan (eiﬁ_‘m_“) : (6.15)

Finally, we convert to (z,t) coordinates:

I 1 a 1 1 1 1+a? a* + 1
Sat—arT = —(t4a)—=(t-7) = - Nao—(a-=)t] = - t).
—at—ax 2a(+z) 2( x) 2[(a+a>az <a a>] 5 <z a2—1>
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Defining
a’*—1
V= ———
a’?+1
€ := sign(a) , (6.16)
L 1 1+ a’
VT T2 e 204
the solution generated by an auto-Backlund transformation of the vacuum is
u(z,t) = 4arctan (e | (6.17)

where we traded the integration constant ¢ for xy. This solution describes a kink or an anti-
kink moving at velocity v.

Properties: a > 0: kink la| > 1: right-moving
a < 0: anti-kink la| < 1:  left-moving
a<—1: -1<a<0 0<ax<l1 a>1

Right-moving
anti-kink

Left-moving
anti-kink

Left-moving
kink

Right-moving
kink

«—

So the auto-Backlund transformation creates a kink/anti-kink from the vacuum! By varying
the parameter a € R\{0} and the integration constant x or ¢, we reproduce all the kink and
anti-kink solutions derived in section[3.2]as travelling waves.

The amazing fact is that this holds more generally: the auto-Béacklund transformation (almost)
always adds a kink or an anti-kink to the seed solutionE] (The only exception is if one tries to
add a soliton with the same velocity as one already present.) Therefore we can think of the
auto-Backlund transformation as a solution-generating technique which “adds” kinks or
anti-kinks.

We will use the following graph to denote the action of a Biacklund transformation on with
parameter a and integration constant c on a seed solution u;, which adds a kink or anti-kink
and generates the new solution us:

3Which of the two is added depends on the seed. More about this later.
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We can add a kink/anti-kink wherever we like (by choosing c) and with whatever velocity we
like (by choosing a). For example

adds three kinks/anti-kinks to the seed solution uy.

The problem with this is that the integrations get harder and harder as we keep adding solitons.
Luckily, a nice theorem tells us that, having found one-soliton solutions, we can obtain multi-
soliton solutions without doing any further integrals.

6.5 The theorem of permutability

Let’s apply the Biacklund transformation twice, with parameters a; and as, in the two possible
orders:

The final results us and u, both look like the seed solution ug with two added solitons, with
parameters a; and as. Could they actually be the same solution? The answer is yes, according
to the following theorem:

THEOREM (Bianchi 1902):

For any u; and us, the integration constants in the second Backlund transformations,
which generate u3 and u,4, can be arranged such that u3 and u,4 are equal.

In other words, the a; and a; BT s can be made to commute. Diagrammatically:
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aq e D)

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement
makes intuitive sense, given the soliton content of u3 and uy.

This result has a nice application. We have two ways of getting to uz from u,: either through
uy or through u,. By comparing these two ways we will be able to get rid of all derivatives
in the Backlund transformations and thereby obtain an algebraic relation between the four
solutions ug, w1, Us, Us.

Let’s start by considering the 0, parts of the transformations, and let’s look at the upper route

first:
aq @ a2
We have
2 . up+u
(u; —up)y = —sin 5
“ (6.18)
(uz —up)y = 2 ,nu3+u1
3T W)y = 5
Adding the two equations to cancel u; out in the left-hand side, we get
2 . urtu 2 . uztwu
(us — ug)y = — sin L2 04 Zgin 2 ! (6.19)
aq 2 Qo 2

For the lower route
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@ a2 a1 @

we swap a; <> ag, U1 < Uug and get

2 . ugtu 2 . ustu
(u3—u0)+=a—251n%+a—151n%. (6.20)

We have found two different expressions for (u3 — ug) .. Equating them, we obtain an alge-
braic relation between ug, u1, ug, us:

1 . w+u 1 . uz+u 1 . uy+u 1 . us+u
Zsin——2 4 —gin——1 = Zgin—>— 2 4 Zgin—— 2|, (6.21)
ay 2 a9 2 ag 2 aq 2

This is very useful: for example, starting from u, equal to the vacuum and two one-soliton
solutions uy, uz, we can generate a 2-soliton solution u3 algebraically. We can then iterate the
procedure and get a 3-soliton solution, then a 4-soliton solution, and so on and so forth. What
we have found is akin to a “non-linear superposition principle”: the Backlund transfor-
mation and the permutability theorem provide us with a machinery to “add” solutions of a
non-linear equation!

To check that this procedure is consistent, let’s see what happens for the 0_ part of the Back-
lund transformations. For the upper route

aq @ a2

we have
.U — U
(u1 + tg)— = —2ay sin ———
U (6.22)
(ug + u1)— = —2assin B
Subtracting the two equations we get
Uz — U Uy — u
(ug — us)_ = 2ay sin ——— — 2a, sin ——— (6.23)
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For the lower route
@ ag ay @
we swap again a; <> as, u; < ug and get
(ug — u3)— = 2ay sin Us — W2 2a4 sin 42 — o (6.24)
Equating and , we find the algebraic relation
as sin st _ aj sin it aj sin Us—t2 as sin 2 ; to (6.25)

Consistency requires that the two algebraic relations (6.21) and (6.25) agree. To see that, let’s
first rewrite (6.21) in the following form:

1 ( u; + Ug U3+U2) 1( Uz + U . u3+u1)
— (sin — = — (sin —sin .
ay ao 2
. . . . . . . o . A+B ATB .
Multiplying by a1a,/2 and using the identity sin A +sin B = 2sin £5= cos ££=, this becomes

as Sin

U + Ug — U3 — Usg
CO

uﬁ—uM
s

4

4

(6.26)
U + Ug — U3 — U1

4

U + Ug + U
o5 2 0+ Uz

4

= qq Sin

where we are allowed to simplify the common cosine factor in the two sides because the
argument is a function of x and ¢ which is generically different from 7/2 modulo 7.

Similarly, (6.25) can be rearranged as

Uz — U2 Uy — Up Ug — Ug

+ sin
2

.Uz — Uy .
) = Qo (sm + sin
2
which upon using the same trigonometric identity as above becomes

Uz — Uy — Up—~+ Ty
0s

4

LUz — Uy F Uy — U Uz — U —Us+TUg
= aysin cos

4 4

)

aq (sin

Uz — U2 + U — Up
4

ay sin
(6.27)
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which agrees with equation (6.26) upon simplification. So everything is consistent.

To conclude this discussion, let’s manipulate (the simplified version of) equation (6.26) a bit
further, with the aim of determining u3 given wg,u; and uy. Letting A = (uy — u3)/4 and

B = (u; — ug)/4, becomes

arsin(A — B) = agsin(A + B)
= ay(sin Acos B — sin Bcos A) = ay(sin Acos B + sin Bcos A) .

Dividing through by cos A cos B, we find

ai(tan A — tan B) = as(tan A + tan B) .
= (a3 —ag)tan A = (a1 + az)tan B .

In terms of wug, U1, us, U3, this reads

Uy — U a; +a Uy — U
fan ——— = T a1 2| (6.28)
4 a; — as 4

which is an improvement on (6.26) since u3 appears only once. Equivalently, we can write

Uz — U as +a Uy —Uu
pan ——2 = 2T pap L2 (6.29)
4 Ao — A1 4

Either of (6.28) or (6.29) allow us to express u3 in terms of ug, U1, Us.

6.6 The two-soliton solution

Finally a payoff. Take the vacuum as the seed solution, i.e. uy = 0. Then u; and u, are known
from before: they are single kinks or antikinks. Equation gives the double Backlund
transformed us as

U as +a Uy — U as + a; tan ¥ — tan %2
tan — = — ! tan — 2 -2 ! i i (6.30)
4 as — aq 4 az — ay 1 + tan 7 tan 2

where we used the trigonometric identity

tan A — tan B
tan(A — B) =
an( ) 14+ tanA-tan B

for the second equality. The 1-soliton (i.e. kink or antikink) solutions are

tan% = (i=1,2) (6.31)
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where

+

X
91’ = — — CLZ'.T_ +c¢ = 6{%(37 - i’i - Uit) y (632)
Q;

as seen in section Here 7, » are the centres of the two solitons at ¢ = (. Substituting
equation (6.31) in equation (6.30) we find the 2-soliton solution

uz el — b2
where
_|_
p=2ra (6.34)
o — ay
REMARK:

If the two solitons have the same velocity v; = v,, which means

ai—1 a3—1
5 = — - ay = *ag,
ai+1 az+1

then ;o = 0 or o0 and the 2-soliton solution (6.33) breaks down. In particular, there is no static
2-soliton solution! As we will see later, this is because the two solitons exert a force on one
another.

But this is too fast. We haven’t confirmed yet that equation contains two solitons. Let’s
understand that next.

6.7 Asymptotics of multisoliton solutions

We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method
applies more generally to any multi-soliton solutions of integrable equations (e.g. the KdV
equation).

Our goal will be to study the new solution and identify two solitons hidden in its asymp-
totics for £ — F o0, namely BEFORE and AFTER the collision. Here is an example of what the
solution may look like at early times (before the collision) and at late times (after the collision)
in the case of a collision of a kink and an anti-kink:
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anbikink kexwle 18
GEFORE NG fq
i B

“ae.

k,iy\k‘ { —‘E‘E\ﬁ k,\-l/tk

AFTER ¢ ‘\‘

It is not completely obvious how to find the early time and late time asymptotics analytically.
If we just take ¢ + oo with x fixed, the two solitons will be at spatial infinity and we will miss
them (unless one of the two has zero velocity, in which case we will see that soliton). We
should instead follow one or the other soliton by letting

’t — +0o0 with Xy =x—Vt fixed

, (6.35)

for some appropriate constant velocity V. If there is a soliton moving at velocity V' in the
original (x,t) coordinates, it will appear stationary in the (X, t) coordinates. For this reason
(Xy,t)is called a “comoving frame”: they are coordinates for a reference frame which moves
together with an object (e.g. a soliton) of velocity V.

Let us try this for the solution (6.33) which we obtained from a double Backlund transformation
of the vacuum. We will now use u to denote the field in the resulting solution, which reads

¢ u efr — b2
R
with N
G T a1 _
= , 0; = evi(x — vt — 7;) .
G2 —

If we switch to a comoving frame with velocity V, the exponents read

(97; = Gi’)/i(fl' -Vt + Vit — ’U,L't — .i'z)

=YXy — (v = V)t —&;) , (6.36)

where we see the appearance of the “relative velocity” v; — V/, that is the velocity in the
comoving frame.

For each soliton we now have three cases for the limit (6.35), corresponding to a positive, zero
or negative relative velocity for the soliton:

Case | t—>—-o | t—+o
V<wv|0; > +eo | 8; > —¢;0
V =w;| 0, finite 0; finite
V>wv|0; > —€0 |0, > +e0
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Recall that ¢; = +1 is a sign, and y; > 0 so it does not affect the sign of 6; in the limit.

This tells us that if V' # vy, vy, then 0y, 05 — +00 as |t| — oo. This implies tha

tan = a0
an Z = ﬂm — 100 Or .
So u/4 tends to an integer multiple of 7/2, which means that u tends to an integer multiple
of 27: the field is in the vacuum. The conclusion is that if we go off to infinity in the original

(x,t) plane in any direction apart from fl—f = V1, U9, then u — 27n for some n € Z.

If instead V' = v; or vy, we need to study the limit more carefully. We will consider a single
case ap,az > 0, leaving the other cases for the exercises. Since a; # ay for the solution to
exist, let us take without loss of generality

—  weu, a=ae=1, a>0.

Consider V' = v first, or "let’s ride the slower soliton". In the comoving frame the exponents
0; read

01 = y1(r — vt — 1) = 1 (Xy, — T1)

6.37
O = y2(x — vol — T3) = 72( Xy, — (V2 — V1)t — T) (637)

so 0, stays finite, whereas 6 — Fo0 as t — +oo with X, fixed (I used that vy > vy).
One of the two limits is easier to analyse, so let’s start with that:

1. t —» +o0:

In this limit 85 — —0, so €2 — 0 and

oty L
e'n(m vt 9:1+W1 logu) 7

*According to the signs of the limits of 61 and 65, the limit of tan(u/4) is as follows:

++ tan(u/4) — 0
+— tan(u/4) — 400
—+ tan(u/4) — —o0
—— tan(u/4) — 0
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where in the last line we have expressed the finite limit in the comoving coordinates in
terms of the original (z,t) coordinates.

This is a kink, the centre of which moves with velocity v; along the trajectory

as + aq

B 1
r=uvt+2,——log

(6.38)
§a! A — a

The last term is negative and represents a backward shift in space of the slower soliton
compared to where it would have been at the same time in the absence of the faster
soliton. (Equivalently, we can view this as a time delay for reaching a fixed value of x.)

2.t — —oo:
In this limit 8, — +00, so €2 — 400 and
¢ u el — b2
Wy T e
— —uefal .
Recalling that tan (A + g) = — tarll > this means that

IS

s
t —i*)—> “leh
an(4 2 uoe

-1
671 (I—mt—ﬂcl—ﬂ log H) .

Therefore

~ 1
71 (ﬂcfvlt*an —57 log M)
x 1
u‘t_)_ooy X, finite +27 4+ 4arctane .

(The + sign ambiguity can be fixed by continuity. It turns out that —27 is correct.)

This is a kink, the centre of which moves with velocity v; along the trajectory

as + aq

B 1
r=uvt+2Z,+—log

(6.39)
§a! Az — a

The last term is positive and represents a forward shift of the slower soliton compared
to where it would have been at the same time in the absence of the faster soliton. (Equiv-
alently, we can view this as a time advancement.)

Comparing the trajectories at early times (t — —o0) and at late times (¢ — +0c0), we see that
the collision with the faster soliton shifts the slower soliton backwards by
2 a2 + ap
- lOg )
T az — ay

as exemplified by this figure:
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We say that the slower soliton has a negative phase shift:

as + aq

2
PHASE SHIFTjower = —— log

(6.40)
4! az — ap

We conclude that the slower kink emerges from the collision with the same shape and velocity,
but delayed by a finite phase shift.

Now consider V' = v, or "let’s ride the faster soliton". The calculation is similar to what we
did above, so I'll let you work out the details in [Ex 30]. If you do this exercise you will
find a surprise: even though as > 0, so that acting on the vacuum with the ay-Backlund
transformation produces a kink, the component of the two-soliton solution that moves
at velocity v is actually an anti-kink! So, even though the Backlund transformation always
adds a soliton, the nature of the added soliton depends on what is already there.

The shifts have opposite signs to before, as exemplified by this figure:
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This results in a positive phase shift:

a9 + aq

2
PHASE SHIF T = +— log
72 as — a1

(6.41)

Summarising, we have the following picture for the collision of the anti-kink and the kink:

anfiunic

0

A

/

antlicinie

~=21
’— -* t ~a
t:\z‘tn(z x=yl+x,

/
Kank

Figure 6.1: Schematic summary of the kink-antikink solution.

See also here for the plot of the kink-antikink solution with parameters a; = 1.1 and ay = 2,
here for a contour plot of its energy density, which clearly shows the trajectories of the kink
and the anti-kink, and here for an animation of the time evolution.

REMARK:
From the jplot of the exact solution or the|contour plot of its energy density| we see that the
kink and the anti-kink attract each other. Indeed we observe that they get closer during the
interaction.

The remaining cases for the signs of a; and ay can be analysed similarly, see [Ex 31] and [Ex
32]. In particular, the 2-soliton solution that contains two kinks is depicted in ﬁgure (See
also here for a plot of the kink-kink solution with parameters a; = 0.6 and a; = —1.5, here
for a contour plot of its energy density, which clearly shows the trajectories of the two kinks,
and here for an animation of the time evolution.)

SThe solution that contains two anti-kinks can be obtained by sending u > —u.
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Figure 6.2: Schematic summary of the kink-kink solution.

From the plot of the exact solution|or the contour plot of its energy density we see that the
two kinks repel each other. Indeed they get further apart during the interaction. Curiously,
they also seem to swap their identities!

INTERPRETATION:

ATTRACTIVE FORCE between kink and anti-kink
REPULSIVE FORCE  between kink and kink
REPULSIVE FORCE  between anti-kink and anti-kink

So kinks and anti-kinks behave similarly to elementary particles with electric charge, such as
the electron and the positron. The role of electric charge is played here by the topological
charge:

Solitons with like topological charges repel

Solitons with opposite topological charges attract.

It is quite amazing that lump of fields can behave so similarly to pointlike elementary particles.
In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four spacetime
dimensions to model the behaviour of protons and neutrons in atomic nuclei. This is a very far-
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reaching idea, which unfortunately we don’t have time to investigate further in this module.

We have seen that kinks and anti-kinks attract each other. This raises a natural question:
can they stick together, or in physics parlance “form a bound state”? The answer is yes. The
resulting bound state of a kink and an anti-kink is the “breather”, which we now turn to.

6.8 The breather

Recall the general 2-soliton solution (6.33) of the sine-Gordon equation, that we rewrite here
for convenience:

as + ap et

— ef2
as —ay 1+ ehr+62

This is a solution of the sine-Gordon equation for any values of the Backlund parameters a;
and ay (and integration constants ¢; and ¢;), even complex values. However, the sine-Gordon
field u is an angle and so it must be real. There are essentially two options to achieve thisﬂ

u = 4 arctan <

1. a1,ao (and ¢1, ) € R:  this is what we have considered so far;

2. az = aj (and co = ¢}):  this is what we will consider next. But let’s first check that the
corresponding u is real:

*
" as + aq et — b2
u* = |4 arctan "
as —ay 1 4 ef1+02
£ %
ai +af e — e
= 4arctan | — " "
a2 - al 1 + 601 +92
a; + as efr — eh
= 4 arctan 0
ap — as 1 + ef2t4%
as + aq et — ef2
= 4 arctan o | = u-
ay — ap 1 + ef1t02

To get to the second line we used the fact that arctan(z) and e® are complex analytic
functions, therefore [arctan(z)]* = arctan(z*) and [e*]* = ¢**. To get to the third line
we used 6, = 07, which follows from ay = a} and ¢ = ¢f.

Let us then consider option 2 and try a solution with arbitrary a; = a3 = a and with ¢; =

%To be precise, one can also add to the integration constants c; and ¢, an integer multiple of 7i. This has the
effect of permuting the two solitons if the multiple is odd, and has no effect if the multiple is even.
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co = 0 for simplicity. Define

ay=a=A+iB = |ale”

. 6.42
as=a=A—iB =|ale™" (642)

where A = Re(a), B = Im (a), ¢ = arg(a), and let

01:O[+Z'B

6 — a—if| (6.43)

with o and [ real functions of x, t to be determined below. Then

U |a|(e—iap + ei«p) ea-‘riB _ ea—zﬂ
tan — = - — -
4 al(e7¥ — e¥) 1+ 2o

2cos  2isinf

- —2isinp " 2cosha

which simplifies to

u cos p sin 3
tan — = —— .
4 sin ¢ cosh a

(6.44)

To finish the calculation, let’s determine the functions «, 5 in terms of the coordinates x, t and
the parameters |a| and -

a+if =6 =1$+—ax_
a
a . A—iB o (6.45)
= Wer ar” = PE " — (A+iB)z™ .
Therefore
A
a= Re(0)) =—zt — Az~

A (1
= — <x+ - a|x> .
lal \lal

We can now do similar manipulations to those after equation (6.15) to find

A
a=—v(x—vt) = cosp-y(xr—ut)|, (6.46)
lal
where
a1
/l} =
la|2 +1
. 6.47
B 1 1+ |al? (6.47)
T Vi— 2l
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* EXERCISE: Show that similarly [Ex 33]

sing - y(ve —t)|. (6.48)

B = ‘aB’v(w —1)

Substituting these expressions in (6.44) we find the breather solution

sin(sin ¢ - y(vr —t))

(6.49)

u
tan— = — cot ¢ - .
M oLy cosh(cos ¢ - y(x — vt))

REMARK:

+ The ratio of the prefactor and the denominator in the RHS,

—cot g

cosh(cos o - y(x — vt)) ’

defines an envelope which moves at the group velocity v. Recall that |[v| < 1, where 1
is the speed of light, so this is consistent with the laws of special relativity.

« The numerator
sin(sin ¢ - y(x — vt))

defines a carrier wave which moves at the phase velocity 1/v.

To see why the solution (6.49) is called a breather, let us set |a| = 1, or equivalently v = 0.
(This can be achieved by switching to a comoving frame if v # (.) Then the breather simplifies
to

sin(sin ¢ - t)

u
tan — = cot (6.50)

" cosh(cos ¢ - )

and the field looks like a bouncing (or “breathing”) bound state of a kink and an anti-kink,
with time period

B 2
N |sing| |

(6.51)

See figure for a summary of the v = 0 breather solution, |this for a plot of the breather
solution with v = 0 and ¢ = 7/10, this for a contour plot of its energy density, which clearly
shows the trajectories of the breathing pair of kink and anti-kink, and this|for an animation
of the time evolution.
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Figure 6.3: Summary of the v = 0 breather solution.

One can shothat the v = 0 breather has energy Fieather = 16 cos . Since a static kink and
a static anti-kink have energy Fyinc = Fantikink = 8 , the binding energy of the kink and the
anti-kink in the breather is

Ebinding = Ebreather - Ekink - Eantikink = _16(1 — COS (,0) .
This is negative as expected: the binding lowers the energy of the solution.
As ¢ — 0, the binding energy tends to zero. It is immediate to see from equation (6.51) that

the time period of the bounce diverges: 7 ~ 1/|p| — o0 . The spatial size of the breather also
diverges like [Ex 39]

Timax ~ —10g|@|\—>00~

In this limit the kink and the antikink become more and more loosely bound. The resulting
solution
u = 4arctan (¢ - sech(x))

describes a kink and an anti-kink starting infinitely far away from one another and doing half
an oscillation. Since sech(r) ~ 2¢717l as |x| — oo, the kink and the anti-kink do not follow
linear trajectories as t — +00. Rather, the asymptotic trajectories of the kink and the anti-kink
are given by |z| ~ log [t|.

"This is a good but technical exercise, which is not in the problem sheet.



