
Chapter 6

Bäcklund transformations

The main reference for this chapter is §5.4 of Drazin and Johnson (1989).

So far, we have constructed solutions for moving solitons only as travelling waves, which de-
scribe the propagation of a single soliton. Our next goal will be to construct analytic solutions
for multiple colliding solitons. In these cases it won’t be possible to reduce the partial di!er-
ential equation to an ordinary di!erential equation, so the existence of such exact solutions is
much more surprising. The method that we will use in this chapter is a solution-generating
technique called the Bäcklund transformation.

The method was introduced in the late 19th century by the Swedish mathematician Albert
Victor Bäcklund and by the Italian mathematician Luigi Bianchi1 to map between pairs of
surfaces in three-dimensional space. The sine-Gordon equation appears in this context when
one considers hyperboloids, which are surfaces of negative curvature.

There are two main uses of the Bäcklund transformation:

1. To generate solutions of a di!cult PDE from solutions of a possibly simpler PDE;

2. To generate new solutions of a given PDE from already known solutions of the
same PDE.

We will mostly be interested in use 2, but you will see examples of use 1 in [Ex 31-33] in the
1who, notably, was born Parma, the hometown of next term’s lecturer. This is the same Bianchi after whom

the Bianchi identities in di!erential geometry and general relativity are named.
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problem sheet. Our "nal goal in this chapter will be to obtain multi-soliton solutions of the
sine-Gordon equation.

6.1 De"nition
Consider two functions u and v, and two di!erential equations

P rus “ 0 (6.1)

Qrvs “ 0 (6.2)

where P and Q are two di!erential operators.

If there is a pair of relations (which could be di!erential equations)

R1ru, vs “ 0 , R2ru, vs “ 0 (6.3)

between u and v such that

- If P rus “ 0, i.e. (6.1), then (6.3) can be solved for v, to give a solution of (6.2), Qrvs “ 0;

- If Qrvs “ 0, i.e. (6.2), then (6.3) can be solved for u, to give a solution of (6.1), P rus “ 0;

then (6.3) is called a Bäcklund transformation (BT). If furthermore P “ Q, so that the two
di!erential equations are identical, then (6.3) is called an auto-Bäcklund transformation
(a-BT).

This is useful if (6.3) is easier to solve than (6.1) or (6.2). Then we can use (6.3) to generate
solutions of the harder equation from solutions of the easier equation. If P “ Q, we can start
from a simple seed solution (e.g. u “ 0) to generate new non-trivial solutions.

Vocabulary:
‚ (6.1) and (6.2) are “integrability conditions” for the Bäcklund transformation (6.3).
‚ (6.3) can be integrated for v if the integrability condition P rus “ 0 is satis"ed.
‚ (6.3) can be integrated for u if the integrability condition Qrvs “ 0 is satis"ed.

6.2 A simple example
Take the two-dimensional Laplace operator P “ Q “ B2

x ` B2
y in (6.1) and (6.2):

P rus “ uxx ` uyy “ 0 (6.4)
Qrvs “ vxx ` vyy “ 0 (6.5)
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and for the Bäcklund transformation (6.3)

R1ru, vs “ ux ´ vy “ 0

R2ru, vs “ uy ` vx “ 0 .
(6.6)

Let us check that (6.4)-(6.5) are integrability conditions for (6.6). Di!erentiating (6.6) with
respect to x and y and adding or subtracting we "nd

0 “ `BxR1 ` ByR2 “ `uxx ´ vyx ` uyy ` vxy “ uxx ` uyy

0 “ ´ByR1 ` BxR2 “ ´uxy ` vyy ` uyx ` vxx “ vxx ` vyy ,

therefore the relations (6.6) imply (6.4) and (6.5).2 This shows that (6.6) is an auto-Bäcklund
transformation for the two-dimensional Laplace equation.

EXAMPLE:

vpx, yq “ 2xy solves the Laplace equation (6.5). Let us use the a-BT to "nd another solution
u of the same equation:

#
ux “ vy “ 2x

uy “ ´vx “ ´2y
ùñ

#
u “ x2 ` fpyq
f 1pyq “ ´2y ñ fpyq “ ´y2 ` c ,

so we "nd the function upx, yq “ x2 ´ y2 ` c, where c is a constant. It is immediate to check
that this u solves the Laplace equation (6.4).

The equations R1ru, vs “ R2ru, vs “ 0 in (6.6) are nothing but the Cauchy-Riemann equa-
tions for theholomorphic (“ complex analytic) functionw “ u`iv of the complex variable
z “ x ` iy. In the example above, wpzq “ z2 ` c. The equations P rus “ 0 and Qrvs “ 0
in (6.4)-(6.5) simply state that the real and imaginary parts of a holomorphic function are har-
monic, that is, they solve the Laplace equation. Two such functions u and v are often called
harmonic conjugate of each other.

REMARKS:

1. Given v, the Bäcklund transformation (6.6) is a system of two equations for u. Generi-
cally there won’t be any solutions for the system (6.6). For example, if we pick v “ x2,
then the system #

ux “ vy “ 0

uy “ ´vx “ ´2x

has no solutions for u. But v “ x2 doesn’t solve (6.5)! The integrability condition (6.5)
is what guarantees that the system (6.6) can be consistently solved for u.

2Note: in this example we don’t even need to use the other di!erential equation. This is not always the case.
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2. This auto-Bäcklund transformation generates a new solution to the Laplace equation
from a seed solution, but if we apply it a second time we get back the original seed solu-
tion (up to an irrelevant integration constant that we can ignore). So this auto-Bäcklund
transformation is an involution. To get further solutions we will need to introduce a
parameter.

6.3 The Bäcklund transformation for sine-Gordon
Recall that the sine-Gordon equation written in light-cone coordinates x˘ “ 1

2pt ˘ xq is

u`´ “ ´ sin u . (6.7)

Let us try the Bäcklund transformation

pu ´ vq` “ 2

a
sin

´u ` v

2

¯

pu ` vq´ “ ´2a sin
´u ´ v

2

¯ (6.8)

where a is a (non-zero) parameter. Cross-di!erentiating, and recalling that sinpA ˘ Bq “
sinA cosB ˘ cosA sinB, which implies sinpA ` Bq ` sinpA ´ Bq “ 2 sinA cosB,

pu ´ vq`´ “ 1

a
cos

´u ` v

2

¯
¨ pu ` vq´ “ ´2 cos

´u ` v

2

¯
sin

´u ´ v

2

¯

“ ´ sin u ` sin v

pu ` vq´` “ ´a cos
´u ´ v

2

¯
¨ pu ´ vq` “ ´2 cos

´u ´ v

2

¯
sin

´u ` v

2

¯

“ ´ sin u ´ sin v .

Adding and subtracting, we "nd that both u and v obey the sine-Gordon equation:

u`´ “ ´ sin u (6.9)

v`´ “ ´ sin v (6.10)

Therefore (6.8) is an auto-Bäcklund transformation for the sine-Gordon equation, for any non-
zero value of a. The extra parameter will allow us to generate multi-soliton solutions. We will
start in the next section by rederiving the one-kink solution.

6.4 First example: the sine-Gordonkink from the vacuum
Let us take the vacuum solution

v “ 0 (6.11)
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as our initial (seed) solution. Then the auto-Bäcklund transformation (6.8) is

u` “ 2

a
sin

u

2

u´ “ ´2a sin
u

2
.

(6.12)

We can integrate both equations by separation of variables, using the inde"nite integral
!

du

sin u
2

“ 2 log tan
u

4

up to an integration constant. We get
#

2
ax

` “ 2 log tan u
4 ` fpx´q

´2ax´ “ 2 log tan u
4 ` gpx`q (6.13)

where the functions f and g are “constants” of integration. They are only constant with respect
to the variable that is integrated, but they can (and do!) depend on the other variable.

Subtracting and rearranging, we get

2

a
x` ` gpx`q “ ´2ax´ ` fpx´q . (6.14)

The left-hand-side is only a function of x`, while the right-hand-side is only a function of x´.
Since the two sides are equal, they must therefore be equal to a constant, which we set to be
´2c for future convenience. Hence

fpx´q “ 2ax´ ´ 2c

gpx`q “ ´2

a
x` ´ 2c

and so
2 log tan

u

4
“ 2

a
x` ´ 2ax´ ` 2c ,

that is
u “ 4 arctan

´
e

1
ax

`´ax´`c
¯

. (6.15)

Finally, we convert to px, tq coordinates:

1

a
x`´ax´ “ 1

2a
pt`xq´a

2
pt´xq “ 1

2

„ˆ
a ` 1

a

˙
x ´

ˆ
a ´ 1

a

˙
t

"
“ 1 ` a2

2a

ˆ
x ´ a2 ` 1

a2 ´ 1
t

˙
.
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De"ning

v :“ a2 ´ 1

a2 ` 1
ω :“ signpaq

ε :“ 1?
1 ´ v2

“̊
Ex

1 ` a2

2|a|

, (6.16)

the solution (6.15) generated by an auto-Bäcklund transformation of the vacuum is

upx, tq “ 4 arctan
`
eωεpx´x0´vtq˘ , (6.17)

where we traded the integration constant c for x0. This solution describes a kink or an anti-
kink moving at velocity v.

Properties: a ! 0: kink |a| ! 1: right-moving
a " 0: anti-kink |a| " 1: left-moving

a " ´1: ´1 " a " 0 0 " a " 1 a ! 1

Right-moving Left-moving Left-moving Right-moving
anti-kink anti-kink kink kink

So the auto-Bäcklund transformation creates a kink/anti-kink from the vacuum! By varying
the parameter a P Rzt0u and the integration constant x0 or c, we reproduce all the kink and
anti-kink solutions derived in section 3.2 as travelling waves.

The amazing fact is that this holds more generally: the auto-Bäcklund transformation (almost)
always adds a kink or an anti-kink to the seed solution.3 (The only exception is if one tries to
add a soliton with the same velocity as one already present.) Therefore we can think of the
auto-Bäcklund transformation as a solution-generating technique which “adds” kinks or
anti-kinks.

We will use the following graph to denote the action of a Bäcklund transformation on with
parameter a and integration constant c on a seed solution u1, which adds a kink or anti-kink
and generates the new solution u2:

3Which of the two is added depends on the seed. More about this later.
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u1 u2
a

c

We can add a kink/anti-kink wherever we like (by choosing c) and with whatever velocity we
like (by choosing a). For example

u0 u1 u2 u3
a1
c1

a2
c2

a3
c3

adds three kinks/anti-kinks to the seed solution u0.

The problemwith this is that the integrations get harder and harder aswe keep adding solitons.
Luckily, a nice theorem tells us that, having found one-soliton solutions, we can obtain multi-
soliton solutions without doing any further integrals.

6.5 The theorem of permutability
Let’s apply the Bäcklund transformation twice, with parameters a1 and a2, in the two possible
orders:

u0

u1

u2

u3

u4

a1

a2

a1

a2

The "nal results u3 and u4 both look like the seed solution u0 with two added solitons, with
parameters a1 and a2. Could they actually be the same solution? The answer is yes, according
to the following theorem:

THEOREM (Bianchi 1902):
For any u1 and u2, the integration constants in the second Bäcklund transformations,
which generate u3 and u4, can be arranged such that u3 and u4 are equal.

In other words, the a1 and a2 BT’s can be made to commute. Diagrammatically:
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u0

u1

u2

u3

a1 a2

a2 a1

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement
makes intuitive sense, given the soliton content of u3 and u4.

This result has a nice application. We have two ways of getting to u3 from u0: either through
u1 or through u2. By comparing these two ways we will be able to get rid of all derivatives
in the Bäcklund transformations and thereby obtain an algebraic relation between the four
solutions u0, u1, u2, u3.

Let’s start by considering the B` parts of the transformations, and let’s look at the upper route
"rst:

u0

u1

u3

a1 a2

We have

pu1 ´ u0q` “ 2

a1
sin

u1 ` u0

2

pu3 ´ u1q` “ 2

a2
sin

u3 ` u1

2
.

(6.18)

Adding the two equations to cancel u1 out in the left-hand side, we get

pu3 ´ u0q` “ 2

a1
sin

u1 ` u0

2
` 2

a2
sin

u3 ` u1

2
. (6.19)

For the lower route
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u0

u2

u3
a2 a1

we swap a1 Ø a2, u1 Ø u2 and get

pu3 ´ u0q` “ 2

a2
sin

u2 ` u0

2
` 2

a1
sin

u3 ` u2

2
. (6.20)

We have found two di!erent expressions for pu3 ´ u0q`. Equating them, we obtain an alge-
braic relation between u0, u1, u2, u3:

1

a1
sin

u1 ` u0

2
` 1

a2
sin

u3 ` u1

2
“ 1

a2
sin

u2 ` u0

2
` 1

a1
sin

u3 ` u2

2
. (6.21)

This is very useful: for example, starting from u0 equal to the vacuum and two one-soliton
solutions u1, u2, we can generate a 2-soliton solution u3 algebraically. We can then iterate the
procedure and get a 3-soliton solution, then a 4-soliton solution, and so on and so forth. What
we have found is akin to a “non-linear superposition principle”: the Bäcklund transfor-
mation and the permutability theorem provide us with a machinery to “add” solutions of a
non-linear equation!

To check that this procedure is consistent, let’s see what happens for the B´ part of the Bäck-
lund transformations. For the upper route

u0

u1

u3

a1 a2

we have

pu1 ` u0q´ “ ´2a1 sin
u1 ´ u0

2

pu3 ` u1q´ “ ´2a2 sin
u3 ´ u1

2
.

(6.22)

Subtracting the two equations we get

pu0 ´ u3q´ “ 2a2 sin
u3 ´ u1

2
´ 2a1 sin

u1 ´ u0

2
. (6.23)
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For the lower route

u0

u2

u3
a2 a1

we swap again a1 Ø a2, u1 Ø u2 and get

pu0 ´ u3q´ “ 2a1 sin
u3 ´ u2

2
´ 2a2 sin

u2 ´ u0

2
. (6.24)

Equating (6.23) and (6.24), we "nd the algebraic relation

a2 sin
u3 ´ u1

2
´ a1 sin

u1 ´ u0

2
“ a1 sin

u3 ´ u2

2
´ a2 sin

u2 ´ u0

2
. (6.25)

Consistency requires that the two algebraic relations (6.21) and (6.25) agree. To see that, let’s
"rst rewrite (6.21) in the following form:

1

a1

´
sin

u1 ` u0

2
´ sin

u3 ` u2

2

¯
“ 1

a2

´
sin

u2 ` u0

2
´ sin

u3 ` u1

2

¯
.

Multiplying by a1a2{2 and using the identity sinA˘ sinB “ 2 sin A˘B
2 cos A¯B

2 , this becomes

a2 sin
u1 ` u0 ´ u3 ´ u2

4 !!!!!!!!!!!!
cos

u1 ` u0 ` u3 ` u2

4

“ a1 sin
u2 ` u0 ´ u3 ´ u1

4 !!!!!!!!!!!!
cos

u2 ` u0 ` u3 ` u1

4

(6.26)

where we are allowed to simplify the common cosine factor in the two sides because the
argument is a function of x and t which is generically di!erent from ϑ{2 modulo ϑ.

Similarly, (6.25) can be rearranged as

a1
´
sin

u3 ´ u2

2
` sin

u1 ´ u0

2

¯
“ a2

´
sin

u3 ´ u1

2
` sin

u2 ´ u0

2

¯
,

which upon using the same trigonometric identity as above becomes

a1 sin
u3 ´ u2 ` u1 ´ u0

4 !!!!!!!!!!!!
cos

u3 ´ u2 ´ u1 ` u0

4

“ a2 sin
u3 ´ u1 ` u2 ´ u0

4 !!!!!!!!!!!!
cos

u3 ´ u1 ´ u2 ` u0

4

(6.27)
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which agrees with equation (6.26) upon simpli"cation. So everything is consistent.

To conclude this discussion, let’s manipulate (the simpli"ed version of) equation (6.26) a bit
further, with the aim of determining u3 given u0, u1 and u2. Letting A “ pu0 ´ u3q{4 and
B “ pu1 ´ u2q{4, (6.26) becomes

a1 sinpA ´ Bq “ a2 sinpA ` Bq
ùñ a1psinA cosB ´ sinB cosAq “ a2psinA cosB ` sinB cosAq .

Dividing through by cosA cosB, we "nd

a1ptanA ´ tanBq “ a2ptanA ` tanBq .
ùñ pa1 ´ a2q tanA “ pa1 ` a2q tanB .

In terms of u0, u1, u2, u3, this reads

tan
u0 ´ u3

4
“ a1 ` a2

a1 ´ a2
tan

u1 ´ u2

4
, (6.28)

which is an improvement on (6.26) since u3 appears only once. Equivalently, we can write

tan
u3 ´ u0

4
“ a2 ` a1

a2 ´ a1
tan

u1 ´ u2

4
. (6.29)

Either of (6.28) or (6.29) allow us to express u3 in terms of u0, u1, u2.

6.6 The two-soliton solution
Finally a payo!. Take the vacuum as the seed solution, i.e. u0 “ 0. Then u1 and u2 are known
from before: they are single kinks or antikinks. Equation (6.29) gives the double Bäcklund
transformed u3 as

tan
u3

4
“ a2 ` a1

a2 ´ a1
tan

u1 ´ u2

4
“ a2 ` a1

a2 ´ a1

tan u1
4 ´ tan u2

4

1 ` tan u1
4 tan u2

4

, (6.30)

where we used the trigonometric identity

tanpA ´ Bq “ tanA ´ tanB

1 ` tanA ¨ tanB
for the second equality. The 1-soliton (i.e. kink or antikink) solutions are

tan
ui

4
“ eϑi pi “ 1, 2q (6.31)
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where

ϖi “ x`

ai
´ aix

´ ` ci “ ωiεipx ´ x̄i ´ vitq , (6.32)

as seen in section 6.4. Here x̄1,2 are the centres of the two solitons at t “ 0. Substituting
equation (6.31) in equation (6.30) we "nd the 2-soliton solution

tan
u3

4
“ µ

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2
(6.33)

where
µ “ a2 ` a1

a2 ´ a1
(6.34)

REMARK:
If the two solitons have the same velocity v1 “ v2, which means

a21 ´ 1

a21 ` 1
“ a22 ´ 1

a22 ` 1
ùñ a1 “ ˘a2 ,

then µ “ 0 or 8 and the 2-soliton solution (6.33) breaks down. In particular, there is no static
2-soliton solution! As we will see later, this is because the two solitons exert a force on one
another.

But this is too fast. We haven’t con"rmed yet that equation (6.33) contains two solitons. Let’s
understand that next.

6.7 Asymptotics of multisoliton solutions
We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method
applies more generally to any multi-soliton solutions of integrable equations (e.g. the KdV
equation).

Our goal will be to study the new solution (6.33) and identify two solitons hidden in its asymp-
totics for t Ñ ¯8, namely BEFORE and AFTER the collision. Here is an example of what the
solution may look like at early times (before the collision) and at late times (after the collision)
in the case of a collision of a kink and an anti-kink:
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It is not completely obvious how to "nd the early time and late time asymptotics analytically.
If we just take t ˘ 8 with x "xed, the two solitons will be at spatial in"nity and we will miss
them (unless one of the two has zero velocity, in which case we will see that soliton). We
should instead follow one or the other soliton by letting

t Ñ ˘8 with XV “ x ´ V t "xed , (6.35)

for some appropriate constant velocity V . If there is a soliton moving at velocity V in the
original px, tq coordinates, it will appear stationary in the pXV , tq coordinates. For this reason
pXV , tq is called a “comoving frame”: they are coordinates for a reference framewhichmoves
together with an object (e.g. a soliton) of velocity V .

Let us try this for the solution (6.33) whichwe obtained from a double Bäcklund transformation
of the vacuum. We will now use u to denote the "eld in the resulting solution, which reads

tan
u

4
“ µ

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2

with
µ “ a2 ` a1

a2 ´ a1
, ϖi “ ωiεipx ´ vit ´ x̄iq .

If we switch to a comoving frame with velocity V , the exponents read

ϖi “ ωiεipx ´ V t ` V t ´ vit ´ x̄iq
“ ωiεipXV ´ pvi ´ V qt ´ x̄iq ,

(6.36)

where we see the appearance of the “relative velocity” vi ´ V , that is the velocity in the
comoving frame.

For each soliton we now have three cases for the limit (6.35), corresponding to a positive, zero
or negative relative velocity for the soliton:

Case t Ñ ´8 t Ñ `8
V " vi ϖi Ñ `ωi8 ϖi Ñ ´ωi8
V “ vi ϖi "nite ϖi "nite
V ! vi ϖi Ñ ´ωi8 ϖi Ñ `ωi8
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Recall that ωi “ ˘1 is a sign, and εi ! 0 so it does not a!ect the sign of ϖi in the limit.

This tells us that if V ‰ v1, v2, then ϖ1, ϖ2 Ñ ˘8 as |t| Ñ 8. This implies that4

tan
u

4
“ µ

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2
Ñ ˘8 or 0 .

So u{4 tends to an integer multiple of ϑ{2, which means that u tends to an integer multiple
of 2ϑ: the "eld is in the vacuum. The conclusion is that if we go o! to in"nity in the original
px, tq plane in any direction apart from dx

dt “ v1, v2, then u Ñ 2ϑn for some n P Z.

If instead V “ v1 or v2, we need to study the limit more carefully. We will consider a single
case a1, a2 ! 0, leaving the other cases for the exercises. Since a1 ‰ a2 for the solution to
exist, let us take without loss of generality

a2 ! a1 ! 0 ùñ v2 ! v1 , ω1 “ ω2 “ 1 , µ ! 0 .

Consider V “ v1 "rst, or "let’s ride the slower soliton". In the comoving frame the exponents
ϖi read

ϖ1 “ ε1px ´ v1t ´ x̄1q “ ε1pXv1 ´ x̄1q
ϖ2 “ ε2px ´ v2t ´ x̄2q “ ε2pXv1 ´ pv2 ´ v1qt ´ x̄2q

(6.37)

so ϖ1 stays "nite, whereas ϖ2 Ñ ¯8 as t Ñ ˘8 with Xv1 "xed (I used that v2 ! v1).

One of the two limits is easier to analyse, so let’s start with that:

1. t Ñ `8:

In this limit ϖ2 Ñ ´8, so eϑ2 Ñ 0 and

tan
u

4
“ µ

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2

Ñ µeϑ1

“ µeε1pXv1´x̄1q

“ e
ε1

´
x´v1t´x̄1` 1

ω1
log µ

¯

,

4According to the signs of the limits of ω1 and ω2, the limit of tanpu{4q is as follows:

`` : tanpu{4q Ñ 0

`´ : tanpu{4q Ñ `8
´` : tanpu{4q Ñ ´8
´´ : tanpu{4q Ñ 0 .
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where in the last line we have expressed the "nite limit in the comoving coordinates in
terms of the original px, tq coordinates.

This is a kink, the centre of which moves with velocity v1 along the trajectory

x “ v1t ` x̄1 ´ 1

ε1
log

a2 ` a1
a2 ´ a1

. (6.38)

The last term is negative and represents a backward shift in space of the slower soliton
compared to where it would have been at the same time in the absence of the faster
soliton. (Equivalently, we can view this as a time delay for reaching a "xed value of x.)

2. t Ñ ´8:
In this limit ϖ2 Ñ `8, so eϑ2 Ñ `8 and

tan
u

4
“ µ

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2

Ñ ´µe´ϑ1 .

Recalling that tan
`
A ˘ ϖ

2

˘
“ ´ 1

tanA , this means that

tan
´u

4
˘ ϑ

2

¯
Ñ µ´1eϑ1

“ e
ε1

´
x´v1t´x̄1´ 1

ω1
log µ

¯

.

Therefore
u

ˇ̌
tÑ´8, Xv1 "nite « ˘2ϑ ` 4 arctan e

ε1
´
x´v1t´x̄1´ 1

ω1
log µ

¯

.

(The ˘ sign ambiguity can be "xed by continuity. It turns out that ´2ϑ is correct.)

This is a kink, the centre of which moves with velocity v1 along the trajectory

x “ v1t ` x̄1 ` 1

ε1
log

a2 ` a1
a2 ´ a1

. (6.39)

The last term is positive and represents a forward shift of the slower soliton compared
to where it would have been at the same time in the absence of the faster soliton. (Equiv-
alently, we can view this as a time advancement.)

Comparing the trajectories at early times (t Ñ ´8) and at late times (t Ñ `8), we see that
the collision with the faster soliton shifts the slower soliton backwards by

2

ε1
log

a2 ` a1
a2 ´ a1

,

as exempli"ed by this "gure:
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We say that the slower soliton has a negative phase shift:

PHASE SHIFTslower “ ´ 2

ε1
log

a2 ` a1
a2 ´ a1

(6.40)

We conclude that the slower kink emerges from the collision with the same shape and velocity,
but delayed by a "nite phase shift.

Now consider V “ v2, or "let’s ride the faster soliton". The calculation is similar to what we
did above, so I’ll let you work out the details in [Ex 30]. If you do this exercise you will
"nd a surprise: even though a2 ! 0, so that acting on the vacuum with the a2-Bäcklund
transformation produces a kink, the component of the two-soliton solution (6.33) that moves
at velocity v2 is actually an anti-kink! So, even though the Bäcklund transformation always
adds a soliton, the nature of the added soliton depends on what is already there.

The shifts have opposite signs to before, as exempli"ed by this "gure:
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This results in a positive phase shift:

PHASE SHIFTfaster “ ` 2

ε2
log

a2 ` a1
a2 ´ a1

. (6.41)

Summarising, we have the following picture for the collision of the anti-kink and the kink:

Figure 6.1: Schematic summary of the kink-antikink solution.

See also here for the plot of the kink-antikink solution with parameters a1 “ 1.1 and a2 “ 2,
here for a contour plot of its energy density, which clearly shows the trajectories of the kink
and the anti-kink, and here for an animation of the time evolution.

REMARK:
From the plot of the exact solution or the contour plot of its energy density we see that the
kink and the anti-kink attract each other. Indeed we observe that they get closer during the
interaction.

The remaining cases for the signs of a1 and a2 can be analysed similarly, see [Ex 31] and [Ex
32]. In particular, the 2-soliton solution that contains two kinks is depicted in "gure 6.7.5 (See
also here for a plot of the kink-kink solution with parameters a1 “ 0.6 and a2 “ ´1.5, here
for a contour plot of its energy density, which clearly shows the trajectories of the two kinks,
and here for an animation of the time evolution.)

5The solution that contains two anti-kinks can be obtained by sending u !Ñ ´u.
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Figure 6.2: Schematic summary of the kink-kink solution.

From the plot of the exact solution or the contour plot of its energy density we see that the
two kinks repel each other. Indeed they get further apart during the interaction. Curiously,
they also seem to swap their identities!

INTERPRETATION:

ATTRACTIVE FORCE between kink and anti-kink

REPULSIVE FORCE between kink and kink

REPULSIVE FORCE between anti-kink and anti-kink

So kinks and anti-kinks behave similarly to elementary particles with electric charge, such as
the electron and the positron. The role of electric charge is played here by the topological
charge:

Solitons with like topological charges repel

Solitons with opposite topological charges attract.

It is quite amazing that lump of "elds can behave so similarly to pointlike elementary particles.
In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four spacetime
dimensions tomodel the behaviour of protons and neutrons in atomic nuclei. This is a very far-
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reaching idea, which unfortunately we don’t have time to investigate further in this module.

We have seen that kinks and anti-kinks attract each other. This raises a natural question:
can they stick together, or in physics parlance “form a bound state”? The answer is yes. The
resulting bound state of a kink and an anti-kink is the “breather”, which we now turn to.

6.8 The breather
Recall the general 2-soliton solution (6.33) of the sine-Gordon equation, that we rewrite here
for convenience:

u “ 4 arctan

ˆ
a2 ` a1
a2 ´ a1

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2

˙
.

This is a solution of the sine-Gordon equation for any values of the Bäcklund parameters a1
and a2 (and integration constants c1 and c2), even complex values. However, the sine-Gordon
"eld u is an angle and so it must be real. There are essentially two options to achieve this:6

1. a1, a2 (and c1, c2) P R: this is what we have considered so far;

2. a2 “ a˚
1 (and c2 “ c˚

1 ): this is what we will consider next. But let’s "rst check that the
corresponding u is real:

u˚ “
„
4 arctan

ˆ
a2 ` a1
a2 ´ a1

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2

˙"˚

“ 4 arctan

˜
a˚
2 ` a˚

1

a˚
2 ´ a˚

1

eϑ
˚
1 ´ eϑ

˚
2

1 ` eϑ
˚
1 `ϑ˚

2

¸

“ 4 arctan

ˆ
a1 ` a2
a1 ´ a2

eϑ2 ´ eϑ1

1 ` eϑ2`ϑ1

˙

“ 4 arctan

ˆ
a2 ` a1
a2 ´ a1

eϑ1 ´ eϑ2

1 ` eϑ1`ϑ2

˙
“ u .

To get to the second line we used the fact that arctanpzq and ez are complex analytic
functions, therefore rarctanpzqs˚ “ arctanpz˚q and rezs˚ “ ez

˚ . To get to the third line
we used ϖ2 “ ϖ˚

1 , which follows from a2 “ a˚
1 and c2 “ c˚

1 .

Let us then consider option 2 and try a solution with arbitrary a1 “ a˚
2 ” a and with c1 “

6To be precise, one can also add to the integration constants c1 and c2 an integer multiple of εi. This has the
e!ect of permuting the two solitons if the multiple is odd, and has no e!ect if the multiple is even.
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c2 “ 0 for simplicity. De"ne

a1 “ a “ A ` iB “ |a|eiϱ
a2 “ ā “ A ´ iB “ |a|e´iϱ

(6.42)

where A “ Re paq, B “ Im paq, ϱ “ argpaq, and let

ϖ1 “ ς ` iφ

ϖ2 “ ς ´ iφ
, (6.43)

with ς and φ real functions of x, t to be determined below. Then

tan
u

4
“ |a|pe´iϱ ` eiϱq

|a|pe´iϱ ´ eiϱq ¨ e
ς`iφ ´ eς´iφ

1 ` e2ς

“ 2 cosϱ

´2i sinϱ
¨ 2i sin φ

2 coshς

which simpli"es to

tan
u

4
“ ´cosϱ

sinϱ

sin φ

coshς
. (6.44)

To "nish the calculation, let’s determine the functions ς, φ in terms of the coordinates x, t and
the parameters |a| and ϱ:

ς ` iφ “ ϖ1 “ 1

a
x` ´ ax´

“ ā

|a|2x
` ´ ax´ “ A ´ iB

|a|2 x` ´ pA ` iBqx´ .
(6.45)

Therefore

ς “ Re pϖ1q “ A

|a|2x
` ´ Ax´

“ A

|a|

ˆ
1

|a|x
` ´ |a|x´

˙
.

We can now do similar manipulations to those after equation (6.15) to "nd

ς “ A

|a|εpx ´ vtq “
(6.42)

cosϱ ¨ εpx ´ vtq , (6.46)

where

v “ |a|2 ´ 1

|a|2 ` 1

ε “ 1?
1 ´ v2

“ 1 ` |a|2
2|a|

. (6.47)
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˚ EXERCISE: Show that similarly [Ex 33]

φ “ B

|a|εpvx ´ tq “
(6.42)

sinϱ ¨ εpvx ´ tq . (6.48)

Substituting these expressions in (6.44) we "nd the breather solution

tan
u

4
“ ´ cotϱ ¨ sinpsinϱ ¨ εpvx ´ tqq

coshpcosϱ ¨ εpx ´ vtqq . (6.49)

REMARK:

• The ratio of the prefactor and the denominator in the RHS,

´ cotϱ

coshpcosϱ ¨ εpx ´ vtqq ,

de"nes an envelope which moves at the group velocity v. Recall that |v| " 1, where 1
is the speed of light, so this is consistent with the laws of special relativity.

• The numerator
sinpsinϱ ¨ εpx ´ vtqq

de"nes a carrier wave which moves at the phase velocity 1{v.

To see why the solution (6.49) is called a breather, let us set |a| “ 1, or equivalently v “ 0.
(This can be achieved by switching to a comoving frame if v ‰ 0.) Then the breather simpli"es
to

tan
u

4
“ cotϱ ¨ sinpsinϱ ¨ tq

coshpcosϱ ¨ xq (6.50)

and the "eld looks like a bouncing (or “breathing”) bound state of a kink and an anti-kink,
with time period

↼ “ 2ϑ

| sinϱ| . (6.51)

See "gure (6.3) for a summary of the v “ 0 breather solution, this for a plot of the breather
solution with v “ 0 and ϱ “ ϑ{10, this for a contour plot of its energy density, which clearly
shows the trajectories of the breathing pair of kink and anti-kink, and this for an animation
of the time evolution.
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Figure 6.3: Summary of the v “ 0 breather solution.

One can show7 that the v “ 0 breather has energy Ebreather “ 16 cosϱ. Since a static kink and
a static anti-kink have energy Ekink “ Eantikink “ 8 , the binding energy of the kink and the
anti-kink in the breather is

Ebinding “ Ebreather ´ Ekink ´ Eantikink “ ´16p1 ´ cosϱq .

This is negative as expected: the binding lowers the energy of the solution.

As ϱ Ñ 0, the binding energy tends to zero. It is immediate to see from equation (6.51) that
the time period of the bounce diverges: ↼ „ 1{|ϱ| Ñ 8 . The spatial size of the breather also
diverges like [Ex 39]

xmax „ ´ log |ϱ| Ñ 8 .

In this limit the kink and the antikink become more and more loosely bound. The resulting
solution

u “ 4 arctan pt ¨ sechpxqq
describes a kink and an anti-kink starting in"nitely far away from one another and doing half
an oscillation. Since sechpxq « 2e´|x| as |x| Ñ 8, the kink and the anti-kink do not follow
linear trajectories as t Ñ ˘8. Rather, the asymptotic trajectories of the kink and the anti-kink
are given by |x| „ log |t|.

7This is a good but technical exercise, which is not in the problem sheet.


