Chapter 5

Conservation laws

The main references for this chapter are §5.1.1 and §5.1.2 of|Drazin and Johnson| (1989).

Conservation laws provide the most fundamental characterisation of a physical system: they
tell us which quantities don’t change with time. For the purpose of this course, they play a key
role because they explain why the motion of “true” solitons is so restricted that they scatter
without changing their shapes.

The idea of a conservation law is to construct spatial integrals of functions of the field v and
its derivatives

+o0
Q: J dx p(uyuafauzafa"'7ut7utt7"') (51)
—00

which are constant in time (in physics parlance, they are constants of motion)

d
Q=0 (5.2)

when u satisfies its equation of motion (EoM), such as the sine-Gordon equation or the KdV
equation. The constant of motion is called a conserved charge or conserved quantity
and the equation (5.2) stating its time-independence is called a conservation law.

For the KdV and the sine-Gordon equation, it turns out that there exist infinitely many con-
served quantities. This makes them integrable systems (more about this next term) and
explains many of their special properties.

41
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5.1 The basic idea

The standard method for constructing a conserved charge like involves finding two func-
tions p and j of u and its derivatives, such that the EoM for u implies the local conservation
law or continuity equation

op 0j
—+==0 5.3
ot i ox 5-3)
and the boundary conditions imply
j—C as x— t+w (5.4)
with the same constant C' at —oo and +00. Then
d +00 +00 % +00 g
— dxpzf da:(,\—pz— d:IJQ:f[j]J_ﬁ:O.
dt )_., Ot e Ox G4
Hence
+a0
Q= f dx p (5.5)
—0o0

is a conserved charge. The integrand p is called the conserved charge density, and j is called
the conserved current density (or just current, by a common abuse of terminology.)

5.2 Example: conservation of energy for sine-Gordon

Is the total energy

+00
E = f dx €
—o0
conserved for the sine-Gordon field, where the energy density is
Ly, 1,
E = JUet U+ (1 —cosu)|? (5.6)

The energy density £ plays the role of p here. Can we show then that p = £ obeys a continuity
equation for some function j that obeys the limit condition , when the sine-Gordon
equation (EoM)

Uy — Uy + SiDu =0
holds? Let’s compute:

0& .
— = Ul + UgUgy + SINU -+ Uy
ot

= uy(uy + sinu) + Uy

0 0 .
=, Urllag + Unllar = a(utux) = ax(ﬂ) ,
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and since the BCs for the sine-Gordon equation imply that u,u, — 0 as x — +00, we deduce
that energy is conserved:

dE
— 0.
dt

5.3 Conserved quantities for the KdV equation

Let us return to the KdV equation
U + 6UUL + Ugzy = 0.

We can rewrite the KdV equation as a continuity equation

A

0 0
. (3 2 zz) =0
Ut 6m( U+ Uyy)
and since the BCs appropriate for KdV on the line R are that u, u,, ., -~ — 0 as x — o0,
we deduce that
+o0
Q= J dx u (5.7)
—0o0

is conserved. For the canal, this is the conservation of Wate

Next, we can ask whether p = u? is a conserved charge density. Let’s compute:
(u?); = 2uuy o —120%Uy — 2ty = —4(U?)y — 2Utlygy
= (—4u® — 2Ulyy)y + 2Uplyy = (—4u® — 2un, +u?),

where to go from the first to the second line we used the trick familiar from integration by
parts, fg. = (fg)z — fzg. (We say that fg, and — f,g are equal up to a total z-derivative.)
Hence we deduce that

Q> = J+wdx u? (5.8)

-0

is also conserved. This is interpreted as the momentum of the wave.

Next, what about p = u3? Using the notation “=" to mean “equal up to a total z-derivative”
and striking out terms which are total derivatives (t.d.), we find

) o td
(us)t = 3u’uy = —18% — 30Uy =" GUUL UL,
Kdv
td w__» ]‘ 2
= —UlUyy — U =" Uty = — (U
Kdv tWxx TT te Wz 2( I)ta

li is the (net) area under the profile of the wave, taking u = 0 (flat water surface) as zero. Assuming that
water has constant density (mass per unit area) and choosing units so that the density is 1, is also the mass
of the wave.
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so rearranging we find a third conserved charge

+00 1
Qs = f dx <u3 — ui)
o 2

which is interpreted as the energy of the wave.

(5.9)

It turns out that the conservation laws - of mass, momentum and energy follow,
by a theorem of Emmy Noether’s, from the “obvious” symmetries

U—uU-+c e mass conservation
x—x+c e momentum conservation
t—t+c" — energy conservation

of the KdV equation, so they are expected. But then surprisingly Miura, Gardner and Kruskal
Miura et al.|(1968) found (by hand!) eight more conserved charges, all (but one, see [Ex 23])
of the form

Qn=f+oodx(u”+...) ,

—00
e.g.
+00 1
Q4 = J dz <u4 — 2uu? + uir>
—w 5
+oo
Qs = J dx <u5 Suul + uul, — uim>
—oo 14 (5.10)
+00 1
Q1o = J_OO dx (ulo — 60u"u? + (29 terms) + 4862uigmmm) .
* EXERCISE: Calculate Qg, .. ., Q9 as well and the 29 missing terms in (1.

This surprising result raises two natural questions:
1. Are there infinitely many more conserved charges?

2. If so, is there a systematic way to find them?

Just kidding.
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5.4 The Gardner transform

The answer to both questions is affirmative, and is based on a very clever (though at first sight
unintuitive) method devised by Gardner, reported in the paper|Miura et al.|(1968).

First, let us suppose that the KdV field u(x,t) can be expressed in terms of another function
v(x,t) as

’u:)\—vz—vx , (5.11)
where ) is a real parameter. Substituting into the KdV equation we find
0=A—v?—v,); + 6\ =% —v,) A =0 =)0 + (N — 0% = V) e
=... [Ex 27]
0
=—|(204+ =— + 6(\ — v*) Uy + Vgaa| = 0 |. 5.12
( v 83:) [ve + 6(X — v*) vy + Vg (5.12)
So
’ KdV foru <= (5.12)forv |,
and in particular, if v solves
v+ 6(N — 00y + Vgge = 0, (5.13)

then u given by solves KdV.

For A = 0, (5.13) is the “wrong sign” mKdV equation that you encountered in [Ex 14], and

u=—v?—u, (5.14)

is known as the Miura transform, found by Miura earlier in 1968 Miura (1968).

Gardner’s idea was to change Miura’s transformation by setting

1
v =€ew + 2%
) € (5.15)
e

for some non-vanishing real constant €. Then

2 1 1) 22
)‘_U:ﬁ_ ew+2— = —w—ew",
€ €

which implies that u and w are related by the Gardner transform (GT)

’ U= —w — ew, — €w? ‘ . (5.16)
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We will use the free parameter ¢ to great advantage below.
In terms of w, the KAV equation for u, or equivalently equation (5.12) for v, becomes
1 0 9 9
26w+7+&— [ewt—6(w+e w )ewm—l—ewmm] =0,
€ x

or equivalently

0
<1 + G(T + 262w> [wt — 6(w + EwHw, + wwm] =0]. (5.17)
oun

In particular, any w that solves the simpler equation

w; — 6(w + EwHw, + Wape = 0 (5.18)

produces a u that solves the KdV equation by the Gardner transform (5.16).

Now we are going to think about this backwards: let’s view u as a fixed solution of KdV, while
w varies with € so that (5.16) holds. Then

« For € = 0, equation (5.17) is nothing but the KdV equation with a reversed middle term.
Indeed the Gardner transform reduces to © = —w in this case.

« For € # 0, we encounter two problems:
1. To obtain w in terms of u, we need to solve a differential equation ‘|

2. The differential operator 1 + 6% + 262w in || is non-trivial. It might have a

O

non-vanishing kernel, so we can’t immediately conclude that (5.18) holds.

Gardner’s key insight was that we can solve both problems at once by viewing w as a formal
power series in e

w(x,t) = i wy, (7, 1)€” = wo(w,t) + wi(z,t)e + wo(w, t)e® + ... (5.19)
n=0

3By a formal power series we mean that we don’t worry about the convergence of the series. w‘ is actually
an asymptotic expansion, for those who know what that is.
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1. To solve the first problem, we substitute (5.19) in the Gardner transform (5.16)

u = —(wp + wie + wae® + ... ) — e(wp + wre + woe® + ... )y
— (wo + wie + wye? +...)?
= —wy —€w; —62w2 —63w3 +...
—EWo —EQwLx —6310273c +...
—wg  —2wowy  + ...

and invert it to determine w in terms of u. Since u is fixed, it is of order €. Comparing
order by order we obtain:

e wy = —u (5.20)
el W) = —Wo g = Ug (5.21)
e Wy = —Wy 4 — w% = Uy — U (5.22)
e W3 = —Way — 2WoW1 = Uggy + 4UU, (5.23)

which in principle determines recursively all the coefficients w,, of the formal power

series (5.19) in terms of .

2. Since w is a formal power series in €, so is the expression inside the square brackets in
(5.17):

o0
[wt — 6(w + Ew)w, + wzm] = z(x,t) = Z 2o (T, 1)€" = 2o + 216 + 296 + ...

n=0
The same applies to the differential operator
0
A=1+e—
0

[e¢]
+ 28w =1+ A",
- 2w 2 €

n=1
where 1 is the identity operator, and A,, are linear (differential) operators:

0
Ay = A Ay = 2wy , As = 2w;-, Ay = 2wy,
ox
where I wrote the dots to make clear which operators act by multiplication by a function.
Then (5.17) becomes the formal power series equation

0- (]1 ) A) (Z )

=2y +€x1 +62z2 +€323
+eA1zg +€A121 +eEA 2

+e2 A5z +eE3Arz

+e3As2

+ 4+ + + +
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which we can solve order by order as follows:

€ : 2o =10

61 : Z1 = —A120

62 : Z9 = —A1z1 — AQZ() =0 (524)
63 . Z3 = —A122 - AQZl - AgZ(] =0

Thus we have shown that, order by order in the formal power series in ¢, equation (5.18)
holds! But — punchline ahead - (5.18) is a continuity equation

A
;tw + % (—3w2 —2¢%w° + wm) =0]. (5.25)
Since w, Wy, Wy, - - - — 0 as x — +00 order by order in powers of ¢, this means that the
charge
~ +0
Q= J dr w (5.26)
—00

is conserved.

Now comes the important point: since w = >, ", wy€" is a formal power series in ¢, so is the
conserved charge ()

R +00 0 © +00 0 R
Q= d Yuwe =y | dru=Y e
—© n=0 n=0 —© n=0

And since Q is a conserved charge for all values of the free parameter ¢, it must be that the
charges

Q= J+Oodx Wy, (n=0,1,2,...) (5.27)

—0

are all separately conserved!

“Strictly speaking the middle equality assumes convergence, but we are working with a formal expansion, so
we don’t need to worry about this subtlety.
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Going back to (5.22), we find that the first few conserved charges are

I —

Ql = f dr u, = [u]*2 =0

~ +o

Q2 = J (Uge + u?) = —J dr u? = —Q, (5.28)
—ao0

Q:a = J (Ugze + dutty) = [Uyy + 2u ]+oo -0

As you might have guessed, the general pattern is as follows:

) +o0
Qan—1 = J dx (total derivative) = 0
- +o0

angzconsthnzconstxf de (U™ +...) #0.

—o0

See|Drazin and Johnson|(1989) for a general proof.

The existence of infinitely many conserved charges makes the KdV equation integrable. As
you’ll see in the exercises for this chapter, these unexpected conservation laws give us a lot of
information about multi-soliton solutions of the KdV equation, see [Ex 29] and [Ex 30].

5.5 [Extraconservation laws for relativistic field equations
(bonus material)

Let’s return to our other main example, the sine-Gordon model. We’ve already seen that en-
ergy is conserved, but this is not particularly surprising. In fact for any relativistic field theory
of a single (‘scalar’) field u in 1 space (x) + 1 time (¢) dimensions (e.g. Klein-Gordon, sine-
Gordon, “¢*”, ...), the quantity

E=J+wdx8 f dac[ ut—l—lu + V(u) (5.29)

—» 2"

is conserved, provided the equation of motion

Uy — Uge = — V(1) (5.30)

is satisfied.
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* EXERCISE: Check this statement.

The so-called scalar potential V' (u) determines the theory. For instance

%mzu2 (Klein-Gordon)

1—cosu (sine-Gordon)

I F Y

A deep theorem due to Emmy Noether, already mentioned in passing above, shows that the
conservation of energy follows from the invariance of the theory under arbitrary time trans-
lations ¢t — ¢ + c¢. Similarly, invariance under space translations © — z + ¢’ implies the
conservation of momentum P.

We will not delve into Noether’s theorem, but you might encounter it in other courses. In
any case, it is of limited help for our purposes: our main interest will be in more surprising,
‘bonus’, charges, similar to those already seen for the KdV equation in the last section. The
question that we would like to answer is:

Can there be more conserved quantities, in addition to energy and momentum?

We will answer this question constructively.

The first step is to switch to light-cone coordinates

1 t =axt+a
v =(ttz) |= , (5.31)
2 €T = (E+ —_ z'f
which are so called because the trajectories of light rays are ™ = const or z~ = const for

left-moving or right-moving rays respectively. By the chain rule we calculate

0 o ¢ or 0 0o 0

Oy = = — + —=—+—=0,%0
T 0xt  Oxtot  dxtoxr ot ox T ”
= 0,0_ =0t2—8§,
so the EoM can be written as
up_ = —V'(u) |, (5.32)

where we used the shorthand notation f; = ai:fi =04 f.

Now suppose that a couple of densities 7" and X can be found such that given the equation of

motion ,
0T =0,X]|. (5.33)
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Converted back to the original space and time coordinates x and t, this is nothing but the

continuity equation
(T —X)—0,(T+X)=0.
p —j
with p =T — X and j = —T — X. Provided that the limiting values of -7 — X asz — +
agree so that holds, this means that Sio (I — X)dx will be a conserved quantity.

The goal is to construct examples of such (7, X) pairs, and to simplify life I'll suppose that T’
is a polynomial in x*-derivatives of u: this means we are looking for polynomial conserved
densities. We will also (mostly) disregard total x *-derivatives in 7', or in other words consider

two polynomial conserved densities which differ by a total 2™ -derivative to be equivalent: if
(T, X) solves and 7" = T + 0, U, then

0T =0_T+0.0,U =0, X’

where X’ = X + 0_U. Hence (1", X') is another solution to (5.33), but so long as the limits
of U as © — £0o0 are equal, it leads to exactly the same conserved quantity as before:

fo (T'—X')dx—fo (T—X)dx:foo (a+U—aU>dx:fO 20,U d = [2U]7,, = 0.

—00 —00 —00 —0

One more concept is useful: the rank, or Lorentz spin of a single term in a general polynomial
in v and its light-cone derivatives is the number of 0, derivatives minus the number of J_
derivatives. For instance (u,)3u_u,,_ has Lorentz spin 3 — 1 + (2 — 1) = 3. According
to the theory of special relativity, objects of different spins transform differently under the
“Lorentz group” of symmetries of relativistic field equations. If you would like to know more
about Lorentz transformations and Lorentz spin, you can read this optional note! Terms with
different Lorentz spins will never cancel against each other in (5.33), since using the equation
of motion to convert an occurance of u,_ into —V’(u) does not affect the rank. As a
result, each spin can be considered separately and so, for s = 0, 1, 2 ..., we will look for
solutions (711, Xs_1) to (5.33), where T, is a polynomial in the z*-derivatives of u with
Lorentz spin s + 1. Via , Xs—1 must then have spin s—1. The corresponding conserved
charge will be written as Q):

oo
Qs = J dx (TS—H - Xs—l) (5'34)

—00

As  — +oo we'll assume that all derivatives of u tend to zero, but (to allow for topolog-
ical lumps) u itself might tend to other, possibly unequal, values. Notice also that for each
pair (Ts;1, Xs_1) the roles of 2 and £~ can be swapped throughout to find a partner pair
(T_s—1,X_s41) where T_,_; is a polynomial in 2~ derivatives, with Lorentz spin —s—1.
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Proceeding spin by spin:

s=20

T1:u+

is the unique polynomial density of spin 1, up to an irrelevant multiplicative factor which
can be absorbed in the normalisation of the charge. It solves with X_; = u_,
since 0_u; = u_; = uy_ = dyu_. The corresponding spin zero conserved charge is
the topological charge

+00 +00
Q| druu) 2| dru -2z
—0 )

Note: 7} differs from zero by a total x*-derivative, T} = 0 + 0, U with U = u, so by
the rules above we might want to discard it. That would be too hasty, since this U could
have different limits as * — +00, in fact, this happens precisely in those cases where
the topological charge is non-trivial.

2
T2 2 Ugy, uz,

which is a shorthand for: T5 is a linear combination of u, ; and u2. However u,, =
(uy)y is a total derivative, and since u, — 0 as x — +o0 we can disregard this term
without loss of generality, and consider 75 = u%. Then

0Ty =0_u =2uju,_ = —2V'(uw)uy = —20,V (u) = 0, X,

with Xy = —2V'(u). Therefore

Q1 = eroodx (Ty — Xo) = erOde [u? + 2V (u)] (5.35)

—o0 —0

is conserved, for any V. Swapping z* and 2, T_» = u? is another conserved density,
with the same X, leading to

Q- fmdx (Ty — Xo) — foodx (W2 + 2V (u)] (5.36)

—00 —00

Taking the sum and difference and choosing a convenient normalization, we find two
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conserved charges

toa = [ [hut ety 4 v

—w 4
+00 1 1
= |E —f dx [u,% + —ul + V(u)] (5.37)
o 2 2
1 +00 1 ) )
{@1-Q) - | deqee—t)
+o0
=|P= —f dr upiy |, (5.38)
—a0

which are interpreted as the energy F and the momentum P.

— 3
§=2] T3 DUtis, Uiy, uy,

but uysy = (usy)s and uppuy = 3(u?), are total derivatives of functions which
vanish at spatial infinity, hence they can be disregarded. So without loss of generality
we can take T3 = u? and then

0Ty = 0_u’ = 3uluy_ = =3V’ (u)u? .

The RHS of the previous equation cannot be a total z*-derivative, because the highest
xt derivative of u (in this case u, ) does not appear linearly.

* EXERCISE: Convince yourself that this statement is correct. Suppose that ¢} u is the
highest 2" -derivative of u appearing in a function Y of u and its x*-
derivatives. How does the highest 2" -derivative of u appear in 0, Y then?

We learn therefore that there is no conserved charge () of spin 2 built out of polynomial
conserved densities.

_ 2 2 4
§=3] ThDUiiii, Upqqliy, UGy, UpiU, UL,

but we can drop the first and fourth term as they are total derivatives of functions which
vanish at spatial infinity. Moreover u,u; = —u%, + (u;4uy )4, so we can also dis-
regard one of u . u, and u? , without loss of generality. The most general expression
for Ty up to an irrelevant total 2" -derivative is therefore

1
Ty=u’, + Z/\Qui (5.39)

where )\ is a constant to be determined below and the factor of 1/4 was inserted for later
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convenience Then

(7,T4 = 2u++u++7 + )\QUiU+,
2.3
= “oup (Vi(w), — NV (w)
= —2uyu V' (u) = Nud V' (u).
This may not seem very promising, but the highest derivative in the first term occurs lin-

early, allowing a total derivative to be extracted using the trick familiar from integration
by parts:

— (W2 V" (u)y + V" (u) — Nud V' (u)
—(WiV"(w)s + S [V"(w) = NV (u)] . (5.40)

We are hoping to obtain a total z*-derivative. The first term in (5.40) is a total 2" -
derivative, but in the second term the highest derivative, which is u., does not appear
linearly but rather to the third power. By the previous argument which was the topic of
the exercise, the second term is a total z*-derivative if and only if

V" (u) — NV'(u) =0 |. (5.41)

If holds, we have X5 = —u? V" (u) and

+00 +00 1
Qs = J do(Ty — X3) = J dx {uir + Z)\Qui + w2 V" (u) (5.42)

—00 —00

is a conserved charge of spin 3. If instead (5.35) does not hold, there is no extra (poly-
nomial) conserved charge of spin 3.

To summarize, the relativistic field theories of a single scalar field © which have an extra
conserved charge of spin 3 are those with a scalar potential V' (u) which satisfies equation
(5.41) for some value of the constant \. Let us examine the various possibilities:

1.

N =0]: V(u) = A+ B(u — ug)?,

where A and B are constants. Up to a linear redefinition of u, this scalar potential leads
to the Klein-Gordon equation. This is a linear equation which describes a free field (i.e.
a field free from interactions) and is therefore not interesting from the point of view of
solitons.

>To be precise, Ty should be written as a linear combination of u2 , and u%. It turns out that the coefficient
of u 4 ; must be non-vanishing, hence we can normalise it to 1.
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2. : V(u) = A+ BeM + Ce™,

where A, B and C' are constants.

a) If only one of B, C'is non-vanishing, the EoM is either

C=0: u,_ =—Be™ or B=0: u,_=Cle ™.

By a linear redefinition of u, we can always rewrite the EoM as the Liouville
equation
Uy_ = e"]. (5.43)

b) If neither B or C' vanish, then by a linear redefinition of © we can write the EoM
as the sine-Gordon equation

’u+_ = —sinu‘ (5.44)

if A2 < 0, or as the sinh-Gordon equation

’u+_ = —sinhu‘ (5.45)

if A2 > 0.

Equations (5.43)-(5.45) are special: they have “hidden” conservation laws that generic inter-
acting relativistic field equations of the form u,_ = —V”’(u) lack. More can be done in this
direction — in particular, it is possible to show that the extra charge just found for Sine-Gordon
is the first of an infinite sequence, just like for KdV — but instead the next chapter will return
to the sine-Gordon kink and antikink solutions, and look into how they scatter against each
other.



