
Chapter 5

Conservation laws

The main references for this chapter are §5.1.1 and §5.1.2 of Drazin and Johnson (1989).

Conservation laws provide the most fundamental characterisation of a physical system: they
tell us which quantities don’t change with time. For the purpose of this course, they play a key
role because they explain why the motion of “true” solitons is so restricted that they scatter
without changing their shapes.

The idea of a conservation law is to construct spatial integrals of functions of the !eld u and
its derivatives

Q “
! `8

´8
dx ωpu, ux, uxx, . . . , ut, utt, . . . q (5.1)

which are constant in time (in physics parlance, they are constants of motion)

d

dt
Q “ 0 (5.2)

when u satis!es its equation of motion (EoM), such as the sine-Gordon equation or the KdV
equation. The constant of motion (5.1) is called a conserved charge or conserved quantity
and the equation (5.2) stating its time-independence is called a conservation law.

For the KdV and the sine-Gordon equation, it turns out that there exist in!nitely many con-
served quantities. This makes them integrable systems (more about this next term) and
explains many of their special properties.
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5.1 The basic idea
The standard method for constructing a conserved charge like (5.1) involves !nding two func-
tions ω and j of u and its derivatives, such that the EoM for u implies the local conservation
law or continuity equation

Bω
Bt ` Bj

Bx “ 0 (5.3)

and the boundary conditions imply

j Ñ C as x Ñ ˘8 (5.4)

with the same constant C at ´8 and `8. Then
d

dt

! `8

´8
dx ω “

! `8

´8
dx

Bω
Bt “

p5.3q
´

! `8

´8
dx

Bj
Bx “ ´rjs`8

´8 “
p5.4q

0 .

Hence
Q “

! `8

´8
dx ω (5.5)

is a conserved charge. The integrand ω is called the conserved charge density, and j is called
the conserved current density (or just current, by a common abuse of terminology.)

5.2 Example: conservation of energy for sine-Gordon
Is the total energy

E “
! `8

´8
dx E

conserved for the sine-Gordon !eld, where the energy density is

E “ 1

2
u2
t ` 1

2
u2
x ` p1 ´ cosuq ? (5.6)

The energy density E plays the role of ω here. Can we show then that ω “ E obeys a continuity
equation (5.3) for some function j that obeys the limit condition (5.4), when the sine-Gordon
equation (EoM)

utt ´ uxx ` sin u “ 0

holds? Let’s compute:
BE
Bt “ ututt ` uxuxt ` sin u ¨ ut

“ utputt ` sin uq ` uxuxt

“
EoM

utuxx ` uxuxt “ B
Bxputuxq ” B

Bxp´jq ,
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and since the BCs for the sine-Gordon equation imply that utux Ñ 0 as x Ñ ˘8, we deduce
that energy is conserved:

dE

dt
“ 0 .

5.3 Conserved quantities for the KdV equation
Let us return to the KdV equation

ut ` 6uux ` uxxx “ 0 .

We can rewrite the KdV equation as a continuity equation

B
Btu ` B

Bxp3u2 ` uxxq “ 0

and since the BCs appropriate for KdV on the line R are that u, ux, uxx, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8,
we deduce that

Q1 “
! `8

´8
dx u (5.7)

is conserved. For the canal, this is the conservation of water1.

Next, we can ask whether ω “ u2 is a conserved charge density. Let’s compute:

pu2qt “ 2uut “
KdV

´12u2ux ´ 2uuxxx “ ´4pu3qx ´ 2uuxxx

“ p´4u3 ´ 2uuxxqx ` 2uxuxx “ p´4u3 ´ 2uux ` u2
xqx ,

where to go from the !rst to the second line we used the trick familiar from integration by
parts, fgx “ pfgqx ´ fxg. (We say that fgx and ´fxg are equal up to a total x-derivative.)
Hence we deduce that

Q2 “
! `8

´8
dx u2 (5.8)

is also conserved. This is interpreted as the momentum of the wave.

Next, what about ω “ u3? Using the notation ““” to mean “equal up to a total x-derivative”
and striking out terms which are total derivatives (t.d.), we !nd

pu3qt “ 3u2ut “
KdV

´18!!!" t.d.
u3ux ´ 3u2uxxx ““” 6uuxuxx

“
KdV

´utuxx ´ #####$ t.d.
uxxxuxx ““” utxux “ 1

2
pu2

xqt ,
1(5.7) is the (net) area under the pro!le of the wave, taking u “ 0 ("at water surface) as zero. Assuming that

water has constant density (mass per unit area) and choosing units so that the density is 1, (5.7) is also the mass
of the wave.
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so rearranging we !nd a third conserved charge

Q3 “
! `8

´8
dx

ˆ
u3 ´ 1

2
u2
x

˙
, (5.9)

which is interpreted as the energy of the wave.

It turns out that the conservation laws (5.7)-(5.9) of mass, momentum and energy follow,
by a theorem of Emmy Noether’s, from the “obvious” symmetries

u !Ñ u ` c ùñ mass conservation
x !Ñ x ` c1 ùñ momentum conservation
t !Ñ t ` c2 ùñ energy conservation

of the KdV equation, so they are expected. But then surprisingly Miura, Gardner and Kruskal
Miura et al. (1968) found (by hand!) eight more conserved charges, all (but one, see [Ex 23])
of the form

Qn “
! `8

´8
dx pun ` . . . q ,

e.g.

Q4 “
! `8

´8
dx

ˆ
u4 ´ 2uu2

x ` 1

5
u2
xx

˙

Q5 “
! `8

´8
dx

ˆ
u5 ´ 5u2u2

x ` uu2
xx ´ 1

14
u2
xxx

˙

...

Q10 “
! `8

´8
dx

ˆ
u10 ´ 60u7u2

x ` (29 terms) ` 1

4862
u2
xxxxxxxx

˙
.

(5.10)

˚ EXERCISE: Calculate Q6, . . . , Q9 as well and the 29 missing terms in Q10. 2

This surprising result raises two natural questions:

1. Are there in!nitely many more conserved charges?

2. If so, is there a systematic way to !nd them?

2Just kidding.



CHAPTER 5. CONSERVATION LAWS 45

5.4 The Gardner transform
The answer to both questions is a#rmative, and is based on a very clever (though at !rst sight
unintuitive) method devised by Gardner, reported in the paper Miura et al. (1968).

First, let us suppose that the KdV !eld upx, tq can be expressed in terms of another function
vpx, tq as

u “ ε ´ v2 ´ vx , (5.11)

where ε is a real parameter. Substituting (5.11) into the KdV equation we !nd

0 “ pε ´ v2 ´ vxqt ` 6pε ´ v2 ´ vxqpε ´ v2 ´ vxqx ` pε ´ v2 ´ vxqxxx
“ . . . [Ex 27]

“ ´
ˆ
2v ` B

Bx

˙ “
vt ` 6pε ´ v2qvx ` vxxx

‰
“ 0 . (5.12)

So
KdV for u "ñ (5.12) for v ,

and in particular, if v solves

vt ` 6pε ´ v2qvx ` vxxx “ 0 , (5.13)

then u given by (5.11) solves KdV.

For ε “ 0, (5.13) is the “wrong sign” mKdV equation that you encountered in [Ex 14], and

u “ ´v2 ´ vx (5.14)

is known as theMiura transform, found by Miura earlier in 1968 Miura (1968).

Gardner’s idea was to change Miura’s transformation by setting

v “ ϑw ` 1

2ϑ

ε “ 1

4ϑ2

(5.15)

for some non-vanishing real constant ϑ. Then

ε ´ v2 “ 1

4ϑ2
´

ˆ
ϑw ` 1

2ϑ

˙2

“ ´w ´ ϑ2w2 ,

which implies that u and w are related by the Gardner transform (GT)

u “ ´w ´ ϑwx ´ ϑ2w2 . (5.16)
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We will use the free parameter ϑ to great advantage below.

In terms of w, the KdV equation for u, or equivalently equation (5.12) for v, becomes
ˆ
2ϑw ` 1

ϑ
` B

Bx

˙ “
ϑwt ´ 6pw ` ϑ2w2qϑwx ` ϑwxxx

‰
“ 0 ,

or equivalently

ˆ
1 ` ϑ

B
Bx ` 2ϑ2w

˙ “
wt ´ 6pw ` ϑ2w2qwx ` wxxx

‰
“ 0 . (5.17)

In particular, any w that solves the simpler equation

wt ´ 6pw ` ϑ2w2qwx ` wxxx “ 0 (5.18)

produces a u that solves the KdV equation by the Gardner transform (5.16).

Now we are going to think about this backwards: let’s view u as a !xed solution of KdV, while
w varies with ϑ so that (5.16) holds. Then

• For ϑ “ 0, equation (5.17) is nothing but the KdV equation with a reversed middle term.
Indeed the Gardner transform reduces to u “ ´w in this case.

• For ϑ ‰ 0, we encounter two problems:

1. To obtain w in terms of u, we need to solve a di$erential equation (5.16);

2. The di$erential operator 1 ` ϑ B
Bx ` 2ϑ2w in (5.17) is non-trivial. It might have a

non-vanishing kernel, so we can’t immediately conclude that (5.18) holds.

Gardner’s key insight was that we can solve both problems at once by viewing w as a formal
power series in ϑ:3

wpx, tq “
8ÿ

n“0

wnpx, tqϑn “ w0px, tq ` w1px, tqϑ ` w2px, tqϑ2 ` . . . (5.19)

3By a formal power series we mean that we don’t worry about the convergence of the series. (5.19) is actually
an asymptotic expansion, for those who know what that is.
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1. To solve the !rst problem, we substitute (5.19) in the Gardner transform (5.16)

u “ ´pw0 ` w1ϑ ` w2ϑ
2 ` . . . q ´ ϑpw0 ` w1ϑ ` w2ϑ

2 ` . . . qx
´ ϑ2pw0 ` w1ϑ ` w2ϑ

2 ` . . . q2
“ ´w0 ´ϑw1 ´ϑ2w2 ´ϑ3w3 ` . . .

´ϑw0,x ´ϑ2w1,x ´ϑ3w2,x ` . . .
´ϑ2w2

0 ´ϑ32w0w1 ` . . .

and invert it to determine w in terms of u. Since u is !xed, it is of order ϑ0. Comparing
order by order we obtain:

ϑ0 : w0 “ ´u (5.20)
ϑ1 : w1 “ ´w0,x “ ux (5.21)
ϑ2 : w2 “ ´w1,x ´ w2

0 “ ´uxx ´ u2 (5.22)
ϑ3 : w3 “ ´w2,x ´ 2w0w1 “ uxxx ` 4uux (5.23)

...

which in principle determines recursively all the coe#cients wn of the formal power
series (5.19) in terms of u.

2. Since w is a formal power series in ϑ, so is the expression inside the square brackets in
(5.17):

“
wt ´ 6pw ` ϑ2w2qwx ` wxxx

‰
” zpx, tq “

8ÿ

n“0

znpx, tqϑn “ z0 ` z1ϑ ` z2ϑ
2 ` . . .

The same applies to the di$erential operator

A ” 1 ` ϑ
B

Bx ` 2ϑ2w ” 1 `
8ÿ

n“1

Anϑ
n ,

where 1 is the identity operator, and An are linear (di$erential) operators:

A1 “ B
Bx , A2 “ 2w0¨ , A3 “ 2w1¨ , A4 “ 2w2¨ , . . .

where I wrote the dots tomake clear which operators act bymultiplication by a function.
Then (5.17) becomes the formal power series equation

0 “
˜
1 `

8ÿ

n“1

Anϑ
n

¸ ˜ 8ÿ

k“0

zkϑ
k

¸

“ z0 `ϑz1 `ϑ2z2 `ϑ3z3 ` . . .
`ϑA1z0 `ϑ2A1z1 `ϑ3A1z2 ` . . .

`ϑ2A2z0 `ϑ3A2z1 ` . . .
`ϑ3A3z0 ` . . .

` . . .
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which we can solve order by order as follows:

ϑ0 : z0 “ 0

ϑ1 : z1 “ ´A1z0
ϑ2 : z2 “ ´A1z1 ´ A2z0 “ 0 (5.24)
ϑ3 : z3 “ ´A1z2 ´ A2z1 ´ A3z0 “ 0

...

Thus we have shown that, order by order in the formal power series in ϑ, equation (5.18)
holds! But – punchline ahead – (5.18) is a continuity equation

B
Btw ` B

Bx
`
´3w2 ´ 2ϑ2w3 ` wxx

˘
“ 0 . (5.25)

Since w,wx, wxx, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 order by order in powers of ϑ, this means that the
charge

Q̃ “
! `8

´8
dx w (5.26)

is conserved.

Now comes the important point: since w “ "8
n“0 wnϑn is a formal power series in ϑ, so is the

conserved charge Q̃ :4

Q̃ “
! `8

´8
dx

8ÿ

n“0

wnϑ
n “

8ÿ

n“0

ϑn
! `8

´8
dx wn ”

8ÿ

n“0

ϑnQ̃n .

And since Q̃ is a conserved charge for all values of the free parameter ϑ, it must be that the
charges

Q̃n “
! `8

´8
dx wn pn “ 0, 1, 2, . . . q (5.27)

are all separately conserved!
4Strictly speaking the middle equality assumes convergence, but we are working with a formal expansion, so

we don’t need to worry about this subtlety.
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Going back to (5.22), we !nd that the !rst few conserved charges are

Q̃0 “ ´
! `8

´8
dx u ” ´Q1

Q̃1 “ `
! `8

´8
dx ux “ rus`8

´8 “ 0

Q̃2 “ ´
! `8

´8
dx puxx ` u2q “ ´

! `8

´8
dx u2 ” ´Q2

Q̃3 “ `
! `8

´8
dx puxxx ` 4uuxq “ ruxx ` 2u2s`8

´8 “ 0

...

(5.28)

As you might have guessed, the general pattern is as follows:

Q̃2n´1 “
! `8

´8
dx ptotal derivativeq “ 0

Q̃2n´2 “ const ˆ Qn “ const ˆ
! `8

´8
dx pun ` . . . q ‰ 0 .

See Drazin and Johnson (1989) for a general proof.

The existence of in!nitely many conserved charges makes the KdV equation integrable. As
you’ll see in the exercises for this chapter, these unexpected conservation laws give us a lot of
information about multi-soliton solutions of the KdV equation, see [Ex 29] and [Ex 30].

5.5 Extra conservation laws for relativistic!eld equations
(bonus material)

Let’s return to our other main example, the sine-Gordon model. We’ve already seen that en-
ergy is conserved, but this is not particularly surprising. In fact for any relativistic !eld theory
of a single (‘scalar’) !eld u in 1 space (x) + 1 time (t) dimensions (e.g. Klein-Gordon, sine-
Gordon, “ϖ4”, . . . ), the quantity

E “
! `8

´8
dx E “

! `8

´8
dx

„
1

2
u2
t ` 1

2
u2
x ` V puq

#
(5.29)

is conserved, provided the equation of motion

utt ´ uxx “ ´V 1puq (5.30)

is satis!ed.
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˚ EXERCISE: Check this statement.

The so-called scalar potential V puq determines the theory. For instance

V puq “

$
’’’&

’’’%

1
2m

2u2 (Klein-Gordon)
1 ´ cos u (sine-Gordon)
ω
2 pu2 ´ a2q2 (“ϖ4”)
. . .

A deep theorem due to Emmy Noether, already mentioned in passing above, shows that the
conservation of energy follows from the invariance of the theory under arbitrary time trans-
lations t !Ñ t ` c. Similarly, invariance under space translations x !Ñ x ` c1 implies the
conservation of momentum P .

We will not delve into Noether’s theorem, but you might encounter it in other courses. In
any case, it is of limited help for our purposes: our main interest will be in more surprising,
‘bonus’, charges, similar to those already seen for the KdV equation in the last section. The
question that we would like to answer is:

Can there be more conserved quantities, in addition to energy and momentum?

We will answer this question constructively.

The !rst step is to switch to light-cone coordinates

x˘ “ 1

2
pt ˘ xq "ñ

#
t “ x` ` x´

x “ x` ´ x´ , (5.31)

which are so called because the trajectories of light rays are x` “ const or x´ “ const for
left-moving or right-moving rays respectively. By the chain rule we calculate

B˘ ” B
Bx˘ “ Bt

Bx˘
B
Bt ` Bx

Bx˘
B

Bx “ B
Bt ˘ B

Bx ” Bt ˘ Bx

ùñ B`B´ “ B2
t ´ B2

x ,

so the EoM can be written as
u`´ “ ´V 1puq , (5.32)

where we used the shorthand notation f˘ ” Bf
Bx˘ ” B˘f .

Now suppose that a couple of densities T andX can be found such that given the equation of
motion (5.32),

B´T “ B`X . (5.33)
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Converted back to the original space and time coordinates x and t, this is nothing but the
continuity equation (5.3)

Bt pT ´ Xqlooomooon
ε

´Bx pT ` Xqlooomooon
´j

“ 0 .

with ω “ T ´ X and j “ ´T ´ X . Provided that the limiting values of ´T ´ X as x Ñ ˘8
agree so that (5.4) holds, this means that

$8
´8pT ´ Xqdx will be a conserved quantity.

The goal is to construct examples of such pT,Xq pairs, and to simplify life I’ll suppose that T
is a polynomial in x`-derivatives of u: this means we are looking for polynomial conserved
densities. Wewill also (mostly) disregard total x`-derivatives in T , or in other words consider
two polynomial conserved densities which di$er by a total x`-derivative to be equivalent: if
pT,Xq solves (5.33) and T 1 “ T ` B`U , then

B´T
1 “ B´T ` B´B`U “ B`X

1

where X 1 “ X ` B´U . Hence pT 1, X 1q is another solution to (5.33), but so long as the limits
of U as x Ñ ˘8 are equal, it leads to exactly the same conserved quantity as before:
! 8

´8
pT 1 ´ X 1q dx ´

! 8

´8
pT ´ Xq dx “

! 8

´8
pB`U ´ B´Uq dx “

! 8

´8
2BxU dx “ r2U s8

´8 “ 0 .

Onemore concept is useful: the rank, or Lorentz spin of a single term in a general polynomial
in u and its light-cone derivatives is the number of B` derivatives minus the number of B´
derivatives. For instance pu`q3u´u``´ has Lorentz spin 3 ´ 1 ` p2 ´ 1q “ 3. According
to the theory of special relativity, objects of di$erent spins transform di$erently under the
“Lorentz group” of symmetries of relativistic !eld equations. If you would like to know more
about Lorentz transformations and Lorentz spin, you can read this optional note. Terms with
di$erent Lorentz spins will never cancel against each other in (5.33), since using the equation
of motion (5.32) to convert an occurance of u`´ into ´V 1puq does not a$ect the rank. As a
result, each spin can be considered separately and so, for s “ 0, 1, 2 . . . , we will look for
solutions pTs`1, Xs´1q to (5.33), where Ts`1 is a polynomial in the x`-derivatives of u with
Lorentz spin s ` 1. Via (5.33), Xs´1 must then have spin s´1. The corresponding conserved
charge will be written as Qs:

Qs “
! `8

´8
dx pTs`1 ´ Xs´1q (5.34)

As x Ñ ˘8 we’ll assume that all derivatives of u tend to zero, but (to allow for topolog-
ical lumps) u itself might tend to other, possibly unequal, values. Notice also that for each
pair pTs`1, Xs´1q the roles of x` and x´ can be swapped throughout to !nd a partner pair
pT´s´1, X´s`1q where T´s´1 is a polynomial in x´ derivatives, with Lorentz spin ´s´1.
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Proceeding spin by spin:

s “ 0 T1 “ u`

is the unique polynomial density of spin 1, up to an irrelevantmultiplicative factor which
can be absorbed in the normalisation of the charge. It solves (5.33) with X´1 “ u´,
since B´u` “ u´` “ u`´ “ B`u´. The corresponding spin zero conserved charge is
the topological charge

Q0 “
! `8

´8
dx pu` ´ u´q “ 2

! `8

´8
dx ux “ 2rus`8

´8 .

Note: T1 di$ers from zero by a total x`-derivative, T1 “ 0 ` B`U with U “ u, so by
the rules above we might want to discard it. That would be too hasty, since this U could
have di$erent limits as x Ñ ˘8, in fact, this happens precisely in those cases where
the topological charge is non-trivial.

s “ 1 T2 # u``, u2
`,

which is a shorthand for: T2 is a linear combination of u`` and u2
`. However u`` “

pu`q` is a total derivative, and since u` Ñ 0 as x Ñ ˘8 we can disregard this term
without loss of generality, and consider T2 “ u2

`. Then

B´T2 “ B´u
2
` “ 2u`u`´ “

EoM
´2V 1puqu` “ ´2B`V puq ” B`X0

with X0 “ ´2V puq. Therefore

Q1 “
! `8

´8
dx pT2 ´ X0q “

! `8

´8
dx ru2

` ` 2V puqs (5.35)

is conserved, for any V . Swapping x` and x´, T´2 “ u2
´ is another conserved density,

with the same X0, leading to

Q´1 “
! `8

´8
dx pT2 ´ X0q “

! `8

´8
dx ru2

´ ` 2V puqs (5.36)

Taking the sum and di$erence and choosing a convenient normalization, we !nd two
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conserved charges

1

4
pQ1 ` Q´1q “

! `8

´8
dx

„
1

4
pu2

` ` u2
´q ` V puq

#

” E “
! `8

´8
dx

„
1

2
u2
t ` 1

2
u2
x ` V puq

#
(5.37)

1

4
pQ´1 ´ Q1q “

! `8

´8
dx

1

4
pu2

´ ´ u2
`q

” P “ ´
! `8

´8
dx utux , (5.38)

which are interpreted as the energy E and the momentum P .

s “ 2 T3 # u```, u``u`, u3
`,

but u``` “ pu``q` and u``u` “ 1
2pu2

`q` are total derivatives of functions which
vanish at spatial in!nity, hence they can be disregarded. So without loss of generality
we can take T3 “ u3

` and then

B´T3 “ B´u
3
` “ 3u2

`u`´ “
EoM

´3V 1puqu2
` .

The RHS of the previous equation cannot be a total x`-derivative, because the highest
x` derivative of u (in this case u`) does not appear linearly.

˚ EXERCISE: Convince yourself that this statement is correct. Suppose that Bn
`u is the

highest x`-derivative of u appearing in a function Y of u and its x`-
derivatives. How does the highest x`-derivative of u appear in B`Y then?

s “ 2 We learn therefore that there is no conserved chargeQ2 of spin 2 built out of polynomial
conserved densities.

s “ 3 T4 # u````, u```u`, u2
``, u``u2

`, u
4
`,

but we can drop the !rst and fourth term as they are total derivatives of functions which
vanish at spatial in!nity. Moreover u```u` “ ´u2

`` ` pu``u`q`, so we can also dis-
regard one of u```u` and u2

`` without loss of generality. The most general expression
for T4 up to an irrelevant total x`-derivative is therefore

T4 “ u2
`` ` 1

4
ε2u4

` , (5.39)

where ε is a constant to be determined below and the factor of 1{4was inserted for later
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convenience.5 Then

B´T4 “ 2u``u``´ ` ε2u3
`u`´

“
EoM

´2u`` pV 1puqq` ´ ε2u3
`V

1puq
“ ´2u``u`V

2puq ´ ε2u3
`V

1puq .

This may not seem very promising, but the highest derivative in the !rst term occurs lin-
early, allowing a total derivative to be extracted using the trick familiar from integration
by parts:

“ ´pu2
`V

2puqq` ` u3
`V

3puq ´ ε2u3
`V

1puq
“ ´pu2

`V
2puqq` ` u3

`
“
V 3puq ´ ε2V 1puq

‰
. (5.40)

We are hoping to obtain a total x`-derivative. The !rst term in (5.40) is a total x`-
derivative, but in the second term the highest derivative, which is u`, does not appear
linearly but rather to the third power. By the previous argument which was the topic of
the exercise, the second term is a total x`-derivative if and only if

V 3puq ´ ε2V 1puq “ 0 . (5.41)

If (5.41) holds, we have X2 “ ´u2
`V

2puq and

Q3 “
! `8

´8
dxpT4 ´ X2q “

! `8

´8
dx

„
u2

`` ` 1

4
ε2u4

` ` u2
`V

2puq
#

(5.42)

is a conserved charge of spin 3. If instead (5.35) does not hold, there is no extra (poly-
nomial) conserved charge of spin 3.

To summarize, the relativistic !eld theories of a single scalar !eld u which have an extra
conserved charge of spin 3 are those with a scalar potential V puq which satis!es equation
(5.41) for some value of the constant ε. Let us examine the various possibilities:

1. ε2 “ 0 : V puq “ A ` Bpu ´ u0q2,
where A and B are constants. Up to a linear rede!nition of u, this scalar potential leads
to the Klein-Gordon equation. This is a linear equation which describes a free !eld (i.e.
a !eld free from interactions) and is therefore not interesting from the point of view of
solitons.

5To be precise, T4 should be written as a linear combination of u2
`` and u

4
`. It turns out that the coe#cient

of u`` must be non-vanishing, hence we can normalise it to 1.
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2. ε2 ‰ 0 : V puq “ A ` Beωu ` Ce´ωu,

where A,B and C are constants.

a) If only one of B,C is non-vanishing, the EoM is either

C “ 0 : u`´ “ ´Bεeωu or B “ 0 : u`´ “ Cεe´ωu .

By a linear rede!nition of u, we can always rewrite the EoM as the Liouville
equation

u`´ “ eu . (5.43)

b) If neither B or C vanish, then by a linear rede!nition of u we can write the EoM
as the sine-Gordon equation

u`´ “ ´ sin u (5.44)

if ε2 $ 0, or as the sinh-Gordon equation

u`´ “ ´ sinh u (5.45)

if ε2 % 0.

Equations (5.43)-(5.45) are special: they have “hidden” conservation laws that generic inter-
acting relativistic !eld equations of the form u`´ “ ´V 1puq lack. More can be done in this
direction – in particular, it is possible to show that the extra charge just found for Sine-Gordon
is the !rst of an in!nite sequence, just like for KdV – but instead the next chapter will return
to the sine-Gordon kink and antikink solutions, and look into how they scatter against each
other.


