
Chapter 2

Waves, dispersion and dissipation

The main reference for this chapter is §1.1 of the book Drazin and Johnson (1989).

2.1 Dispersion
Usually, localised waves spread out (“disperse”) as they travel. This prevents them from
being solitons. Let’s understand this phenomenon !rst.

EXAMPLES:

1. ADVECTION EQUATION (linear, 1st order):

1

v
ut ` ux “ 0 (2.1)

!Ñ Solution
upx, tq “ fpx ´ vtq for any function f ,

i.e. a wave moving with velocity v (right-moving if v " 0, left-moving if v # 0). The
wave keeps a !xed pro!le fpωq and moves rigidly at velocity v (indeed ω “ x ´ vt):

12



CHAPTER 2. WAVES, DISPERSION AND DISSIPATION 13

So in this case there is no dispersion, but nothing else happens either.

2. “THE”WAVE EQUATION or D’ALEMBERT EQUATION (linear, 2nd order):

1

v2
utt ´ uxx “ 0 pv " 0 wlogq (2.2)

!Ñ Solution

upx, tq “ fpx ´ vtq ` gpx ` vtq for any functions f, g ,

i.e. the superposition of a right-moving and a left-moving wave with velocities ˘v:

All waves move at the same speed, so there is no dispersion, but there is no interaction
either, so this is also not very interesting for our purposes.

3. KLEIN-GORDON EQUATION1 (linear, 2nd order):

1

v2
utt ´ uxx ` m2u “ 0 , (2.3)

where we take v " 0 wlog.
This is a more interesting equation. Let us try a complex “plane wave” solution2

upx, tq “ eipkx´ωtq . (2.4)

Substituting the plane wave (2.4) in the Klein-Gordon equation (2.3), we !nd:

´ ε2

v2
eipkx´ωtq ` k2eipkx´ωtq ` m2eipkx´ωtq “ 0

ùñ ´ε2

v2
` k2 ` m2 “ 0 .

1This is the !rst relativistic wave equation (with v the speed of light). It was introduced independently
by Oskar Klein Klein (1926) and Walter Gordon Gordon (1926), who hoped that their equation would describe
electrons. It doesn’t, but it describes massive elementary particles without spin, like the pion or the Higgs boson.

2This is called a “plane wave” because its three-dimensional analogue upωx, tq “ expripωk ¨ωx´εtqs has constant
u along a plane ωk ¨ ωx “ const at !xed t. Unless speci!ed, in this course we are interested in real !elds u. It is
nevertheless convenient to use complex plane waves (2.4) and eventually take the real or imaginary part to !nd
a real solution, rather than working with the real plane waves cospkx ´ εtq and sinpkx ´ εtq from the outset.



CHAPTER 2. WAVES, DISPERSION AND DISSIPATION 14

So the plane wave (2.4) is a solution of the Klein-Gordon equation (2.3) provided that ε
satis!es

ε “ εpkq “ ˘ v
?
k2 ` m2 . (2.5)

We will usually ignore the sign ambiguity and only consider the ` sign in (2.5) and
similar equations.3

VOCABULARY:

k wavenumber

ε angular frequency

ϑ “ 2ε
k wavelength (periodicity in x)

ϖ “ 2ε
ω period (periodicity in t)

A formula like (2.5) relating ε to k: dispersion relation.

The maxima of a real plane wave, like for instance Re eipkx´ωpkqtq or Im eipkx´ωpkqtq, are
called “wave crests”. By a slight abuse of terminology, we will refer to the wave crests
of the real or imaginary part of a complex plane wave like (2.4) simply as the wave crests
of the complex plane wave.

By rewriting the complex plane wave solution (2.4) of the Klein-Gordon equation as
eikpx´cpkqtq, we see that its wave crests move at the velocity

cpkq “ εpkq
k

“ v

c
1 ` m2

k2
signpkq .

Plane waves with di"erent wavenumbers move at di"erent velocities, so if we try
to make a lump of real Klein-Gordon !eld by superimposing di"erent plane waves

upx, tq “ Re

! `8

´8
dk fpkq eipkx´ωpkqtq , (2.6)

it will disperse.

In fact, there are two di"erent notions of velocity for a wave:

- PHASE VELOCITY

cpkq “ εpkq
k

, (2.7)

which is the velocity of wave crests.
3We do not lose generality here, since we can obtain the plane wave solution with opposite ε by taking the

complex conjugate plane wave solution and sending k Ñ ´k.
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- GROUP VELOCITY

cgpkq “ dεpkq
dk

, (2.8)

which is the velocity of the lump of !eld while it disperses.

We will understand better the relevance of the group velocity in the next section.

REMARK:

The energy (and information) carried by a wave travels at the group velocity, not at the
phase velocity. For a relativistic wave equation with speed of light v, no signals can be
transmitted faster than the speed of light. So it should be the case that |cgpkq| $ v for all
wavenumbers k, but there is no analogous bound on the phase velocity. For example, for the
Klein-Gordon equation (2.3), we can calculate

- |Group velocity|:

|cgpkq| “
ˇ̌
ˇ̌dεpkq

dk

ˇ̌
ˇ̌ “ vb

1 ` m2

k2

$ v

consistently with the principles of relativity.

- |Phase velocity|:

|cpkq| “
ˇ̌
ˇ̌εpkq

k

ˇ̌
ˇ̌ “ v

c
1 ` m2

k2
% v ,

which is faster than the speed of light v for all k, but this is not a problem.

2.2 Example: the Gaussian wave packet
The simplest example of a localised !eld con!guration obtained by superposition of plane
waves is the “GAUSSIAN WAVE PACKET”, which is obtained by choosing a Gaussian

fpkq “ e´a2pk´k̄q2 pa " 0, k̄ P Rq

in the general superposition (2.6). This represents a lump of !eld with

average wavenumber k̄

spread of wavenumber „ 1{a ,

see !g. 2.1.
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Figure 2.1: Gaussian wavepacket in Fourier space.

Then upx, tq “ Re zpx, tq is a real solution of the Klein-Gordon equation, where

zpx, tq “
! `8

´8
dk e´a2pk´k̄q2eipkx´ωpkqtq , (2.9)

provided that εpkq “ v
?
k2 ` m2.4

Since most of the integral (2.9) comes from the region k « k̄, we can obtain a good approxi-
mation to (2.9) by Taylor expanding εpkq about k “ k̄. Expanding to !rst order in pk ´ k̄q we
obtain

εpkq “ εpk̄q ` ε1pk̄q ¨ pk ´ k̄q ` Oppk ´ k̄q2q
“ εpk̄q ` cgpk̄q ¨ pk ´ k̄q ` Oppk ´ k̄q2q
« εpk̄q ` cgpk̄q ¨ pk ´ k̄q ,

where in the second line we used (2.8) and in the third line we introduced a short-hand « to
4
zpx, tq is a complex solution of the Klein-Gordon equation. Since the Klein-Gordon equation is a linear

equation with real coe#cients, the complex conjugate zpx, tq˚ is also a solution of the Klein-Gordon equation,
as are Re zpx, tq and Im zpx, tq.
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avoid writing Oppk ´ k̄q2q every time. Substituting in (2.9), we !nd

zpx, tq «
! `8

´8
dk e´a2pk´k̄q2eitkx´rωpk̄q`cgpk̄q¨pk´k̄qstu

“ eirk̄x´ωpk̄qts
! `8

´8
dk e´a2pk´k̄q2eipk´k̄qrx´cgpk̄qts

“
kÑk`k̄

eirk̄x´ωpk̄qts
! `8

´8
dk e´a2k2`ikrx´cgpk̄qts

“
complete
the square

eirk̄x´ωpk̄qtse´ 1
4a2

rx´cgpk̄qts2
! `8

´8
dk e´a2tk´ i

2a2
rx´cgpk̄qtsu2

“
Gaussian
integral

eirk̄x´ωpk̄qtsloooomoooon
CARRIER WAVE

¨
?
ϱ

a
e´ 1

4a2
rx´cgpk̄qts2

loooooooooomoooooooooon
ENVELOPE

,

where in the second line we factored out a plane wave with k “ k̄, in the third line we
changed integration variable replacing k by k ` k̄, in the fourth line we completed the square
Ak2 ` Bk “ Apk ` B

2Aq2 ´ B2

4A , and in the last line we used the Gaussian integral formula
! `8`ic

´8`ic

e´Ak2 “
c

ϱ

A
,

which holds for all A " 0 and c P R. The !nal result is the product of a:

1. “CARRIERWAVE”:
a plane wave moving at the phase velocity

cpk̄q “ εpk̄q
k̄

2. “ENVELOPE”:
a localised pro!le (or “wave packet”) mov-
ing at the group velocity

cgpk̄q “ ε1pk̄q .

Click here to see an animation of a Gaussian wavepacket with a (Gaussian) envelope and a
carrier wave moving at di"erent velocities. In the animation the phase velocity is much larger
than the group velocity.

To this order of approximation, the spatial width of the lump has the parametric dependence
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WIDTH „ a ,

meaning that the width doubles if a is doubled, and is constant in time. (Indeed, a simultaneous
rescaling of x ´ cgpk̄qt and a by the same constant ϑ leaves the envelope invariant.)

˚ EXERCISE: Improve on the previous approximation by including the 2nd order in k´ k̄.
Show that [Ex 10]

WIDTH2 „ a2 ` ω2pk̄q
4a2 t2

and that the amplitude of the wave packet also decreases as time increases.

This leads to the phenomenon of DISPERSION, whereby the pro!le of the wave packet
changes as it propagates. In particular, starting from a localised wave packet, dispersionmakes
the wave packet spread out: the width of the initial wave packet grows and the amplitude de-
creases as time increases. See this animation of the time evolution of the Gaussianwave-packet
up to second order in pk ´ k̄q.

2.3 Dissipation
So far we have consideredwave equationswhich lead to a real dispersion relation, soεpkq P R.
If instead εpkq P C, then a new phenomenon occurs: DISSIPATION, where the amplitude
of the wave decays (or grows) exponentially in time. For a plane wave

upx, tq “ eipkx´ωpkqtq “ eipkx´Reωpkq¨tqqe Imωpkq¨t (2.10)

and we have two cases:

• Imεpkq # 0: “PHYSICAL DISSIPATION”
The amplitude decays exponentially with time.

• Imεpkq " 0: “UNPHYSICAL DISSIPATION”
The amplitude grows exponentially with time (physically unacceptable).

EXAMPLES:

1.
1

v
ut ` ux ` ςu “ 0 pς " 0, v " 0q (2.11)

Sub in a plane wave u “ eipkx´ωtq:

´i
ε

v
` ik ` ς “ 0 ùñ εpkq “ vpk ´ iςq ,
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leading to a complex dispersion relation. The plane wave solution is therefore

upx, tq “ eikpx´vtqe´ϑvt

and the wave decays exponentially, or “dissipates”, to zero as t Ñ `8. This is an
example of physical dissipation. (ςv # 0 would have led to unphysical dissipation.)

2. HEAT EQUATION:
ut ´ ςuxx “ 0 pς " 0q (2.12)

˚ EXERCISE: Sub in a plane wave and derive the dispersion relation εpkq “ ´iςk2.

So the plane wave solution of the heat equation is

upx, tq “ eikxe´ϑk2t

and the waves dissipates as time passes.

2.4 Summary
• Linear wave equation !Ñ (Complex) plane wave solutions u “ eipkx´ωtq .

Sub in to get ε “ εpkq dispersion relation.

• Wave crests move at cpkq “ εpkq{k phase velocity.

(If εpkq P C, then we de!ne the phase velocity as cpkq “ Reεpkq{k.)

• Lumps of !eld
/wave packets

move at cgpkq “ ε1pkq group velocity.

(If εpkq P C, then we de!ne the group velocity as cgpkq “ Reε1pkq.)

• Dispersion (realε, width increases and amplitude decreases) and dissipation (complex
ε, amplitude decreases exponentially) smooth out and destroy localised lumps of energy
in linear wave (or !eld) equations.

• Non-linearity can have an opposite e"ect (steepening and breaking, see chapter 1).

• For solitons the competing e"ects counterbalance one another precisely, leading to
stable lumps of energy, unlike for ordinary waves.


