26. (a) Show that the pair of equations

$$
(u - v)_{+} = \sqrt{2} e^{(u+v)/2}
$$

$$
(u + v)_{-} = \sqrt{2} e^{(u-v)/2}
$$

provides a Bäcklund transformation linking solutions of $v_{+-} = 0$ (the wave equation in light-cone coordinates) to those of $u_{+-} = e^u$ (the Liouville equation).

- (b) Starting from d'Alembert's general solution $v = f(x^+) + g(x^-)$ of the wave equation, use the Bäcklund transformation from part (a) to obtain the corresponding solutions of the Liouville equation for *u*. [Hint: Set $u(x^+, x^-) = 2U(x^+, x^-) +$ $f(x^+) - g(x^-)$. You might simplify the notation by setting $f(x^+) = \log(F'(x^+))$ and $g(x^-) = -\log(G'(x^-))$, where prime means first derivative.]
- 27. Consider the Bäcklund transformation

$$
v_x + \frac{1}{2}uv = 0
$$

$$
v_t + \frac{1}{2}u_xv - \frac{1}{4}u^2v = 0.
$$

- (a) Show that these equations taken together imply that *v* satisfies the linear heat equation $v_t = v_{xx}$, while *u* satisfies Burgers' equation $u_t + uu_x - u_{xx} = 0$. [Hint: for *v*, solve the first equation for *u* and substitute in the second; for *u*, start by cross-differentiating.]
- (b) Find the *general* travelling-wave solution for $v(x, t)$ and, via the Bäcklund transformation, re-obtain the travelling-wave for Burgers' equation found in question 13 (e).
- (c) $*$ The linear equation satisfied by $v(x, t)$ allows for the linear superposition of solutions. Use this fact, and your answers to part (b), to construct solutions for *v* and then *u* which describe the interaction of *two* travelling waves.
- (d) [↓] Sketch your solutions functions of *x* at fixed times both before and after the interaction, and also draw their trajectories in the (x, t) plane, perhaps starting with the help of a computer. Are the travelling waves of Burgers' equation true solitons, in the sense given in lectures?

[Hints: Examine the asymptotics of the solution viewed from frames moving at various velocities *V* (that is, set $X_V = x - Vt$ and consider $t \to \pm \infty$ keeping X_V finite). This should allow you to isolate various travelling waves in these limits, and to decide whether they preserve their form under interactions. For definiteness, consider the case $c_1 > c_2 > 0$, where c_1 and c_2 are the velocities of the two separate travelling waves before they were superimposed. A further hint: as well as the 'expected' special values for *V*, namely c_1 and c_2 , be careful about what happens when $V = c_1 + c_2.$

28. (a) Show that the two equations

$$
v_x = -u - v2
$$

$$
v_t = 2u2 + 2uv2 + u_{xx} - 2u_xv
$$

are a Bäcklund transformation relating solutions of the KdV equation

$$
u_t + 6uu_x + u_{xxx} = 0
$$

and the wrong sign modified KdV (mKdV) equation

$$
v_t - 6v^2 v_x + v_{xxx} = 0.
$$

(Note the appearance of the Miura transform in the Bäcklund transformation.)

- (b) Taking $u = c^2$, where *c* is a constant, as a seed solution of the KdV equation, find the corresponding solution of the wrong sign mKdV equation.
- 29. The 2-soliton solution of the sine-Gordon equation with Bäcklund parameters a_1 and a_2 is

$$
u(x,t) = 4 \arctan\left(\mu \frac{e^{\theta_1} - e^{\theta_2}}{1 + e^{\theta_1 + \theta_2}}\right), \qquad \theta_i = \varepsilon_i \gamma_i (x - v_i t - \bar{x}_i)
$$

where $\mu = (a_2 + a_1)/(a_2 - a_1)$, $v_i = (a_i^2 - 1)/(a_i^2 + 1)$, $\gamma_i = 1/\sqrt{1 - v_i^2}$, $\varepsilon_i = \text{sign}(a_i)$, and \bar{x}_1 and \bar{x}_2 are constants, as in the lectures. Rewriting *u* as a function of $X_V \equiv x - Vt$ and *t*, show that, for $V \neq v_1, v_2$ (and $v_1 \neq v_2$)

$$
\lim_{\substack{t \to \infty \\ X_V \text{ finite}}} u = 2n\pi ,
$$

where *n* is an integer. If $v_2 > v_1 > 0$ and $\varepsilon_i = 1$, how does the parity of *n* (whether it is even or odd) depend on the value of *v* relative to v_1 and v_2 ?

[Hints: First show that $|\theta_i| \to +\infty$ as $t \to \pm\infty$; then consider each of the four possible options $(\theta_1, \theta_2) \rightarrow (+\infty, +\infty), (-\infty, -\infty), (+\infty, -\infty), (-\infty, +\infty)$. Remember that $arctan(0) = m\pi$ and $arctan(\pm\infty) = \pm \pi/2 + m\pi$, where the ambiguities of $m\pi$, $m \in \mathbb{Z}$, encode the multivalued nature of the arctan function.]

- 30. Find the asymptotics of the 2-soliton sine-Gordon solution defined in problem 29, in the case $a_2 > a_1 > 0$, as $t \to \pm \infty$ with $X_{v_2} \equiv x - v_2 t$ held finite.
- 31. Show by direct analysis (as in the lectures) that taking a_1 and a_2 of opposite signs in problem 29 results in a two-kink, or two-antikink, solution to the sine-Gordon equation.
- 32. (a) The argument of the arctangent in the sine-Gordon 2-soliton solution of problem 29 is a continuous function of *x* for all $x \in \mathbb{R}$. In particular, it is never infinite. What does this imply about the range of *u*? [Hint: consider the graph of tan *u/*4.]
	- (b) By taking the limits of this function as $x \to \pm \infty$ (with $t = \bar{x}_1 = \bar{x}_2 = 0$ for simplicity), show that the topological charge of this two-soliton solution is 0 if $sign(a_1) = sign(a_2)$, and ± 2 if $sign(a_1) = -sign(a_2)$, in units where the topological charge of a kink is 1.
- Solitons III 2024-25 Problems: page 11
- 33. Consider the two-soliton solution of the sine-Gordon equation from problem 29 with complex Bäcklund parameters $a_1 = a_2^* := a \in \mathbb{C}$ and with vanishing integration constants, as is appropriate to find the breather solution. Show that

$$
Re(\theta_1) = +Re(\theta_2) = \gamma(x - vt) \cos \varphi,
$$

\n
$$
Im(\theta_1) = -Im(\theta_2) = \gamma(vx - t) \sin \varphi,
$$

where $\varphi = \arg(a)$ and

$$
v = \frac{|a|^2 - 1}{|a|^2 + 1}
$$

$$
\gamma = \frac{1}{\sqrt{1 - v^2}} = \frac{1 + |a|^2}{2|a|}.
$$

34. The *stationary* breather solution of the sine-Gordon equation (that is the breather solution with $v = 0$) has the form

$$
\tan\frac{u}{4} = \frac{\cos\varphi}{\sin\varphi} \cdot \frac{\sin(t\sin\varphi)}{\cosh(x\cos\varphi)}.
$$

Show that in the limit $\varphi \to 0$, in which the kink and antikink that form the breather are very loosely bound, the time period τ of a single oscillation of the breather scales like $\tau \sim |\varphi|^{-1}$, and the spatial size x_{max} of the breather scales like $x_{\text{max}} \sim -\log \varphi$. [Hint: You could define x_{max} as the value of x at which $tan(u/4) = 1$ when the oscilla-

tory factor in the numerator is at its maximum. Focus only on the parametric dependence on φ , ignoring all numerical factors.

35. We have seen in lectures that the KdV equation $u_t + 6uu_x + u_{xxx} = 0$ for the field $u(x, t)$ that describes the profile of a wave translates into the following equation for the new variable $w(x, t) = \int dx u$:

$$
w_t + 3w_x^2 + w_{xxx} = 0.
$$

Let $w = 2 \frac{\partial}{\partial x} \log f = 2f_x/f$ where $f(x, t)$ is a nowhere vanishing function of *x* and *t*, so that $u = 2 \frac{\partial^2}{\partial x^2} \log f$. The aim of this exercise is to rewrite the equation for *w* as an equation for *f*.

- (a) Express w_t , w_x , w_{xx} and w_{xxx} in terms of f and its derivatives.
- (b) Show that the equation for $w_t + 3w_x^2 + w_{xxx} = 0$ can be rewritten as

$$
f f_{xt} - f_x f_t + 3 f_{xx}^2 - 4 f_x f_{xxx} + f f_{xxxx} = 0,
$$

which is known as the *quadratic form* of the KdV equation.

36. The Hirota bilinear differential operator $D_t^m D_x^n$ is defined for any pair of natural numbers (m, n) by

$$
D_t^m D_x^n(f \cdot g) = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'}\right)^m \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'}\right)^n f(x, t)g(x', t')\Bigg|_{\substack{x'=x\\t'=t}}
$$

and maps a pair of functions $(f(x, t), g(x, t))$ into a single function.

(a) Prove that the Hirota operators $B_{m,n} := D_t^m D_x^n$ are bilinear, *i.e.* for all constants *a*1, *a*²

$$
B_{m,n}(a_1f_1 + a_2f_2 \cdot g) = a_1B_{m,n}(f_1 \cdot g) + a_2B_{m,n}(f_2 \cdot g) ,
$$

\n
$$
B_{m,n}(f \cdot a_1g_1 + a_2g_2) = a_1B_{m,n}(f \cdot g_1) + a_2B_{m,n}(f \cdot g_2) .
$$

(b) Prove the symmetry property

$$
B_{m,n}(f\cdot g) = (-1)^{m+n} B_{m,n}(g\cdot f) .
$$

- (c) Compute the Hirota derivatives $D_t^2(f \cdot g)$ and $D_x^4(f \cdot g)$, and verify that your expression for the latter is consistent with the result for $D_x^4(f \cdot f)$ given in lectures.
- 37. Define a "not-Hirota" bilinear differential operator $\tilde{D}_t^m \tilde{D}_x^n$ by

$$
\tilde{D}_t^m \tilde{D}_x^n(f \cdot g) = \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial t'}\right)^m \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x'}\right)^n f(x, t)g(x', t')\Big|_{\substack{x'=x\\t'=t}}
$$

(note the plus signs!).

- (a) Compute $\tilde{D}_x(f \cdot g)$ and $\tilde{D}_t(f \cdot g)$, verifying that in both cases the answer is given by the corresponding 'ordinary' derivative of the product $f(x, t)g(x, t)$.
- (b) How does this result generalise for arbitrary not-Hirota differential operators? Prove your claim.
- (c) Compare your answer with the Hirota operators defined above.
- 38. (a) If $\theta_i = a_i x + b_i t + c_i$, prove that

$$
D_t D_x(e^{\theta_1} \cdot e^{\theta_2}) = (b_1 - b_2)(a_1 - a_2)e^{\theta_1 + \theta_2}.
$$

- (b) Prove the corresponding result for $D_t^m D_x^n(e^{\theta_1} \cdot e^{\theta_2})$, as quoted in lectures.
- 39. Prove that

$$
D_t^m D_x^n(f \cdot 1) = \frac{\partial^m}{\partial t^m} \frac{\partial^n}{\partial x^n} f.
$$

40. Consider the function *f*, such that $u = 2 \frac{\partial^2}{\partial x^2} \log f$ is the KdV field, which corresponds to a 2-soliton solution:

$$
f = 1 + \epsilon f_1 + \epsilon^2 f_2 = 1 + \epsilon (e^{\theta_1} + e^{\theta_2}) + \epsilon^2 \left(\frac{a_1 - a_2}{a_1 + a_2}\right)^2 e^{\theta_1 + \theta_2},
$$

where $\theta_i = a_i x - a_i^3 t + c_i$, with a_i and c_i constants. Check that $B(f_1 \cdot f_2) = 0$ and $B(f_2 \cdot f_2) = 0$, where $B = D_x(D_t + D_x^3)$, and show that this implies that the above expansion, which is truncated at order ϵ^2 , is a solution of the bilinear form of the KdV equation.

41. Derive the solution of the bilinear form of the KdV equation $D_x(D_t + D_x^3)(f \cdot f) = 0$ which represents the 3-soliton solution, in the form

$$
f = 1 + \epsilon f_1 + \epsilon^2 f_2 + \epsilon^3 f_3
$$

where $f_1 = \sum_{i=1}^{3} e^{\theta_i}$. [This includes proving that the higher order terms in the ϵ expansion can be consistently set to zero, as in problem 40.]

42. Show that the Boussinesq equation

$$
u_{tt} - u_{xx} - 3(u^2)_{xx} - u_{xxxx} = 0
$$

can be written in the bilinear form

$$
(D_t^2 - D_x^2 - D_x^4)(f \cdot f) = 0
$$

where $u = 2 \frac{\partial^2}{\partial x^2} \log f$.

43. Show that the following higher-dimensional version of the KdV equation,

$$
(u_t + 6uu_x + u_{xxx})_x + 3\sigma^2 u_{yy} = 0
$$

for the field *u*(*x, y, t*), also known as the Kadomtsev-Petviashvili (KP) equation, can be written in the bilinear form

$$
(D_t D_x + D_x^4 + 3\sigma^2 D_y^2)(f \cdot f) = 0
$$

where $u(x, y, t) = 2 \frac{\partial^2}{\partial x^2} \log f(x, y, t)$.

44. It is given that the system of Hirota equations

$$
\begin{cases} (D_x^2-D_t^2-1)(f\cdot g)=0\\ (D_x^2-D_t^2)(f\cdot f)=(D_x^2-D_t^2)(g\cdot g) \end{cases}
$$

yields solutions $u = 4 \arctan(g/f)$ of the sine-Gordon equation. Let $\theta_i = a_i x + b_i t + c_i$, where a_i, b_i, c_i are constants.

(a) Take

$$
f=1\,,\qquad g=\epsilon e^{\theta_1}
$$

and work order by order in powers of ϵ to find the one-soliton solution of the sine-Gordon equation.

(b) Taking e^{θ_i} as in the solution of the previous part, repeat the exercise for

$$
f = 1 + \epsilon^2 f_2 , \qquad g = \epsilon (e^{\theta_1} + e^{\theta_2}) ,
$$

and check that the Hirota equations are satisfied to all orders in ϵ .