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1.

2.

Numerical results seen in the lectures suggest that the KdV equation
up + 6uly + Upgy = 0

has an exact solution of the form
2

1) = ———
u(@ 1) cosh?(x — vt)

for some constant velocity v. Verify this by direct substitution into the KdV equation
and determine the value of v.

(a) Show that if u(z,t) = v(z,t) solves the KdV equation then so does Av(Bz, Ct),
provided that the constants B and C' are related to A in a specific way (which you
should determine).

(b) Apply this transformation to the basic KdV solution found in problem 1 to construct
a one-parameter family of one-soliton solutions of the KdV equation.

(c) Find a formula relating the velocities to the heights for solitons in this one-parameter
family. How does the width of a soliton in this family change if its velocity is
rescaled by a factor of 4?

. Show that if u(x, ) solves the KdV equation and ¢ is a constant, then v(z,t) := u(z,t)

€

solves the rescaled KdV equation
Vp 4+ 6€vv, + Vypr = 0,
while w(zx,t) := eu(x, et) solves the differently-rescaled KdV equation

w; + 6ww, + €Wgpr = 0.

. Consider a pair of solitons with velocities m and n in the ball and box model, with

m > n and the faster soliton to the left of the slower one, with separation [ > n (i.e.
there are [ > n empty boxes between the two solitons). Evolve various such initial
conditions forward in time using the ball and box rule, for different values of m, n and
[. start the solitons at least m boxes apart, so that interactions don’t start until after the
first time-step. Prove that the system always evolves into an oppositely-ordered pair of
the same two solitons, and find a general formula for the phase shifts' of the solitons in
terms of m and n.

[Optional:] What can go wrong if [ < n? [Hint: Evolve the system backwards. . . ]

. In the two-colour (blue and red) ball and box model, we’ll call a row of n consecutive

balls a soliton if it keeps its form over time, so that after each time-step its only change
is a possible (fixed) translation. There’s no need for both colours to be represented, so a
row of n blue balls, or a row of n red balls, is also a potential soliton. How many solitons
of length n are there? What are their speeds?

IThe phase shift of a soliton is defined to be the shift of its position, at a time in the far future, relative to

the position it would have had at the same time if the other soliton hadn’t been there.
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10.

. The ball and box model can be further generalised to the M -colour ball and box model.

The balls now come in M colours, 1, 2, ..., M, and the time-evolution rule is generalised
to say that first all balls of colour 1 are moved, then all of colour 2, and so on, with a
single time-step being completed once all balls of all colours have been moved. How
many solitons of length n are there in this model? Again, there is no need for every
colour to be present in a given soliton. You might start by classifying the ‘top-speed’
solitons of length n, that is, those that move at speed n.

. Investigate the scattering of solitons in the two-colour ball and box model. You should

find that the lengths of top-speed solitons are preserved under collisions, but their forms
can change. Try to formulate a general rule for this behaviour. Can you generalise it to
the M -colour model?

(a) Express d’Alembert’s general solution of the wave equation u;; — u,, = 0 in terms
of the initial conditions u(z,0) = p(x) and w(z,0) = ¢(x).
(b) Find a relation between p(x) and ¢(x) which produces a single wave travelling to

the right.

The wave profile
¢(z,t) = cos(krx — w(ky)t) + cos(ker — w(ke)t)

is a superposition of two plane waves. Rewrite ¢ as a product of cosines, and use this to
sketch the wave profile when |k; — ko| < |k1|. Find the velocity at which the envelope
of the wave profile moves (the group velocity), again for k; ~ k»; in the limit &1 — ko
verify that this reduces to dw/dk, consistent with the general result obtained in lectures.

(a) Completing the square, derive the formula

+o0 _ ) _ T
/ dk e—A(k—k)Qez(k—k)B — /Z e—BQ/(4A) .

You can quote the result fj;odk e~ =\ /7 /A for Re(A) > 0, A # 0.
(When A is complex, the square root should be defined by writing A = | A| € with
—7/2 < ¢ < w/2, and setting /A = /] A] ¢'%/2.)

(b) For the Gaussian wavepacket (where Re again denotes the real part)

+oo _
U(.I',t) — Re/ dk efa2(kfk)26i(kz7w(k)t) ’

o

expand w(k) to second order in k — k, and then use the result of part (a) to derive
a better approximation for u(x, t) than that obtained in lectures.

(c) Given that a function of the form e~ (@=20)*/C" describes a profile centred at xg
with width~2 equal to the real part of C~!, show that the result of part (b) is a
wave profile moving at velocity w’(k), with width? increasing with time as 4a? +
W"(k)2t?/a®. (Hence, for w” # 0, the wave disperses.)
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11. Find the dispersion relation and the phase and group velocities for:

(@) U + Uy + QUgge = 0

(b) Utg — a2uzx = 52uttxx .

12. For which values of n does the equation

n

o"u

admit “physical” dissipation? (A wave is said to have physical dissipation if the ampli-
tude of plane waves decreases with time.)

13. Find (if possible) real non-singular travelling wave solutions of the following equations,
satisfying the given boundary conditions:

(a) Modified KdV (mKdV) equation:

U + 6uty + Upge = 0

u—0, upy =0, Uy, — 0 asx — +o00.
(b) “Wrong sign’ mKdV equation:

Up — 6u2ux 4+ Uppe = 0

u—0, upy =0, uy, —+ 0 asx — £o00.
(c) ¢* theory:

utt—um—l—Qu(UQ—l):O
u — 0, up >0, u—> —1 asz = —o0
u — 0, up >0, u = +1 asz — 400 .

(d) ¢S theory:

Uy — Ugy +u(u? —1)(3u* — 1) =0
u — 0, up >0, u—=0 asz = —0
u — 0, u, -0, u—1 asz — +00.

(e) Burgers equation:

U + Uy — Uy = 0

U — Uy, Uy = 0 asx = —o0

U — U, Uy — 0 asx — 400,
where ug and u; are real constants with ug > uq > 0.

[Hint: Start by showing that the boundary conditions relate the velocity v of the
travelling wave to the sum of the constants ug and u;.]



