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1 A quick sketch of Lagrangian mechanics

Ex 1 The real-valued and continuous function f(t), defined for t ∈ [t1, t2], is such that∫ t2

t1

dt f(t)δu(t) = 0 (1.1)

for all real-valued and continuous (infinitesimal) functions δu(t) with δu(t1) =
δu(t2) = 0. Prove that f(t) is identically zero for all t ∈ [t1, t2]. This is sometimes
called the fundamental lemma of the calculus of variations.
[Hint: consider δu(t) = ϵ(t− t1)(t2 − t)f(t) for 0 < ϵ ≪ 1.]

Solution 1 Note that the suggestion for δu(t) does indeed satisfy δu(t1) = δu(t2) = 0. Taking
this option, we have that

0 = ϵ

∫ t2

t1

dt (t− t1)(t2 − t)f(t)2

Now (t− t1)(t2 − t) > 0 ∀t ∈ (t1, t2), while f(t)
2 ≥ 0 ∀t ∈ (t1, t2). So the only way

for the integral to vanish is for the integrand to be everywhere zero, which in turn
requires f(t) = 0 ∀t ∈ (t1, t2) (and, since f is continuous, the same must also be
true at the end points t1 and t2).

Ex 2 The position u = u(t) of a point particle is a function of time t. The particle is
described by the action

S[u] =

∫ t2

t1

dt L(u, ut) , (1.2)

where the Lagrangian L(u, ut) does not depend explicitly on time. Therefore the
Lagrangian depends on time only through the time dependence of u(t) and ut(t).

1. Use the chain rule to compute the total time derivative of the Lagrangian

d

dt
L(u(t), ut(t)) =

∂L

∂u
ut +

∂L

∂ut

utt . (1.3)

2. Show that the Euler-Lagrange equation for u implies the Beltrami identity

d

dt

(
ut

∂L

∂ut

− L

)
= 0 , (1.4)

which states the conservation of the total energy (or Hamiltonian)

E = ut
∂L

∂ut

− L . (1.5)
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3. For a particle described by the Lagrangian

L = T − V , (1.6)

where T (ut) = m
2
u2
t is the kinetic energy and V (u) is the potential energy,

show that the conserved total energy is E = T + V .

Solution 2 1.
d

dt
L(u(t), ut(t)) =

∂L

∂u

du

dt
+

∂L

∂ut

dut

dt
=

∂L

∂u
ut +

∂L

∂ut

utt

as claimed.

2.
d

dt

(
ut

∂L

∂ut

− L

)
= utt

∂L

∂ut

+ ut
d

dt

∂L

∂ut

− ∂L

∂u
ut −

∂L

∂ut

utt

= ut
d

dt

∂L

∂ut

− ∂L

∂u
ut

= ut

(
d

dt

∂L

∂ut

− ∂L

∂u

)
= 0

with the final equality following from the Euler-Lagrange equation.

3. With
L = T − V =

m

2
u2
t − V (u)

we have

E = ut
∂L

∂ut

− L = mu2
t −

(m
2
u2
t − V (u)

)
=

m

2
u2
t + V (u) = T + V .

Ex 3 1. Consider a field theory described by a field w(x, t). If the Lagrangian density
L is a function of w, wx, wxx, and wt, and if

δS[w] = δ

∫∫
dxdt L(w,wx, wxx, wt) = 0 ,

derive the (generalised) Euler-Lagrange equation (or equation of motion)

d

dt

∂L
∂wt

+
d

dx

∂L
∂wx

− d2

dx2

∂L
∂wxx

− ∂L
∂w

= 0 . (1.7)

[Hint: mimic the derivation in the notes, taking into account the extra term
involving (∂L/∂wxx)δwxx that appears in the variation of S.]

2. What happens if L also depends on wxxx? And if L depends on ∂nw/∂xn?
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3. If L = 1
2
wxwt + w3

x − 1
2
w2

xx, use the result of part 1 to find the equation of
motion for w, and verify that if w is satisfies this equation, then u ≡ wx solves
the KdV equation.

Solution 3 1. Arguing as in the notes,

δS[w] = S[w + δw]− S[w]

=

∫∫
dxdt (L(w+δw,wx+δwx, wxx+δwxx, wt+δwt)− L(w,wx, wxx, wt))

=

∫∫
dxdt

(
∂L
∂w

δw +
∂L
∂wx

δwx +
∂L
∂wxx

δwxx +
∂L
∂wt

δwt

)
=

∫∫
dxdt

(
∂L
∂w

− d

dx

∂L
∂wx

+
d2

dx2

∂L
∂wxx

− d

dt

∂L
∂wt

)
δw .

To go from the third line to the fourth, we integrated the term proportional
to δwx once by parts with respect to x, the term proportional to δwxx twice
by parts with respect to x (so the minus sign turned back into a plus), and
the term proportional to δwt once by parts with respect to t. Requiring the
final line to be zero for all δw implies the generalised Euler-Lagrange equation
quoted in the question. (As usual, we’re assuming suitable conditions on w
at infinity so that the boundary terms in the integrations by parts vanish.)

2. If L also depends on wxxx, the same argument with now three integrations
by parts for the (new) term proportional to δwxxx gives

d

dt

∂L
∂wt

+
d

dx

∂L
∂wx

− d2

dx2

∂L
∂wxx

+
d3

dx3

∂L
∂wxxx

− ∂L
∂w

= 0 .

Likewise, if L depends on ∂nw/∂xn, there will be an extra term

(−1)n+1 dn

dxn

∂L
∂wx...x

in the Euler-Lagrange equation, where wx...x ≡ ∂nw/∂xn.

3. With L = 1
2
wxwt + w3

x − 1
2
w2

xx we have

∂L
∂w

= 0 ,
∂L
∂wx

= 1
2
wt + 3w2

x ,
∂L
∂wxx

= −wxx ,
∂L
∂wt

= 1
2
wx

and so the generalised Euler-Lagrange equation is

d

dt
1
2
wx +

d

dx
(1
2
wt + 3w2

x) +
d2

dx2
wxx = wxt + 6wxwxx + wxxxx = 0

and so u = wx does indeed satisfy the KdV equation.
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Ex 4 1. “ϕ4 theory”

A field u(x, t) has kinetic and potential energies

T =

∫ +∞

−∞
dx

1

2
u2
t

V =

∫ +∞

−∞
dx
[1
2
u2
x +

λ

4
(u2 − a2)2

]
.

(1.8)

Write down the Lagrangian density for the system, and use the Euler-Lagrange
equations to show that u(x, t) must satisfy the equation of motion

utt − uxx + λu(u2 − a2) = 0 . (1.9)

2. “ϕ6 theory”

Repeat the exercise for a field with kinetic and potential energies

T =

∫ +∞

−∞
dx

1

2
u2
t

V =

∫ +∞

−∞
dx
[1
2
u2
x +

λ

6
u2(u2 − a2)2

]
,

(1.10)

and derive the equation of motion

utt − uxx + λu(u2 − a2)(u2 − a2

3
) = 0 . (1.11)

Solution 4 The Lagrangian densities are

Lϕ4 =
1

2
u2
t −

1

2
u2
x −

λ

4
(u2 − a2)2

for ϕ4, and

Lϕ6 =
1

2
u2
t −

1

2
u2
x −

λ

6
u2(u2 − a2)2

for ϕ6. The equations of motion follow in the standard way; the only slightly tricky
calculation is

∂Lϕ6

∂u
=

λ

6

(
2u(u2−a2)2 + 4u2(u2−a2)u

)
=

λ

3
u(u2−a2)

(
u2−a2−4u2

)
and this leads to the given equation of motion.
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2 Adding boundaries

Ex 5 A field u(x, t) on the half-line x ∈ (−∞, 0] has kinetic energy T and potential
energy V , where

T =

∫ 0

−∞
dx

1

2
u2
t ,

V =

∫ 0

−∞
dx
[1
2
u2
x +

λ

4
(u2 − a2)2

]
+ µ(u− u0)

2
∣∣
x=0

,

(2.1)

and a > 0, λ > 0, µ and u0 are real constants. (This is a version of the ϕ4 theory
with boundary.)

1. Write down the bulk Lagrangian density for the system, and use the boundary
version of the Euler-Lagrange equations to derive the equation of motion and
boundary condition for u(x, t).

2. Using the equations derived in part 1, show that the total energy Eboundary =
T + V is conserved.

Solution 5 1. Bulk Lagrangian density:

L =
1

2
u2
t −

1

2
u2
x −

λ

4
(u2 − a2)2

Bulk (x < 0) equation of motion:

0 = −∂L
∂u

+
∂

∂t

∂L
∂ut

+
∂

∂x

∂L
∂ux

= λ(u2 − a2)u+ utt − uxx

Boundary contributions to the kinetic and potential energy are

A(ut(0, t)) = 0 and B(u(0, t)) = µ(u(0, t)− u0)
2

so the boundary contribution to the action is −M = A−B with

M(u(0, t), ut(0, t)) = µ(u(0, t)− u0)
2 .

The boundary contribution to the infinitesimal variation of the action, δS, is∫ ∞

−∞
dt

(
∂L
∂ux

∣∣∣∣∣
x=0

− ∂M

∂u
+

∂

∂t

∂M

∂ut

)
δu(0, t)
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(if you forget this, you can derive it as in the notes). This must be zero for
all δu(0, t) and hence the x = 0 boundary condition (bc) is

0 =
∂L
∂ux

∣∣∣∣∣
x=0

− ∂M

∂u
+

∂

∂t

∂M

∂ut

= −ux(0, t)− 2µ(u(0, t)− u0)

or equivalently 1
2µ
ux(0, t)+u(0, t) = u0, which is a Robin boundary condition.

2. We have

Eboundary = T + V =

∫ 0

−∞

[1
2
u2
t +

1

2
u2
x +

λ

4
(u2 − a2)2

]
dx+ µ(u− u0)

2
∣∣
x=0

,

Taking the time derivative,

d

dt
Eboundary =

∫ 0

−∞

[
ututt + uxuxt + λ(u2 − a2)2uut

]
dx+ 2µ(u− u0)ut

∣∣
x=0

=

∫ 0

−∞

[
uxuxt + ut

(
utt + λ(u2 − a2)2u

) ]
dx+ 2µ(u− u0)ut

∣∣
x=0

=

∫ 0

−∞

[
uxuxt + utuxx

]
dx− uxut

∣∣
x=0

(using bulk EoM and bc)

=

∫ 0

−∞

∂

∂x

(
uxut

)
dx− uxut

∣∣
x=0

=
[
uxut

]0
−∞

− uxut

∣∣
x=0

= uxut

∣∣
x=0

− uxut

∣∣
x=0

(using ux, ut → 0 as x → −∞)

= 0 .

Hence the total energy is conserved, as claimed.

Ex 6 A field u(x, t) satisfies the sine-Gordon equation for x < 0 with a Dirichlet bound-
ary condition u(0, t) = u0 imposed at x = 0. The kinetic energy density T and
the potential energy density V are

T =
1

2
u2
t ,

V =
1

2
u2
x + 1− cosu =

1

2
u2
x + 2 sin2 u

2
.

(2.2)

1. If a field configuration is to have finite total energy, what values can the field
u(x, t) take as x → −∞?
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2. For the case u(−∞, t) = 0, complete a square in the integral for the to-
tal energy to derive a Bogomol’nyi bound on the energy of solutions. If
|u0| ≤ π, find the solution which saturates this bound, either by solving the
Bogomol’nyi equation directly, or (equivalently) by ‘parking’ a single kink or
antikink at a suitable location to match the boundary condition.

3. ∗ Adapt the considerations of parts 1 and 2 to a field satisfying the sinh-
Gordon equation utt − uxx + sinhu = 0 for x < 0, again with a Dirichlet
boundary condition u(0, t) = u0 imposed at x = 0. Note that for half-line
problems, singular full-line solutions can be physically relevant, as long as the
singularity stays on the discarded (x > 0) half of the full line.

Solution 6 1. The total energy in this case is

E =

∫ 0

−∞

[1
2
u2
t +

1

2
u2
x + 2 sin2 u

2

]
dx .

(Note, since we have a Dirichlet boundary condition and the field at x = 0
is fixed, the extra boundary term seen in the previous question is not needed
here.) As in the situation with no boundaries, for the integral of 2 sin2 u

2
out

to −∞ to be finite, we need 2 sin2 u
2
→ 0, which implies u(x, t) → 2nπ, as

x → −∞, where n is an integer.

2. This goes much as in the no-boundary case:

E =

∫ 0

−∞

[1
2
u2
t +

1

2
u2
x + 2 sin2 u

2

]
dx

≥
∫ 0

−∞

[1
2
u2
x + 2 sin2 u

2

]
dx

=

∫ 0

−∞

[1
2

(
ux ± 2 sin

u

2

)2
∓ 2 sin

u

2
ux

]
dx

=

∫ 0

−∞

1

2

(
ux ± 2 sin

u

2

)2
dx±

[
4 cos

u

2

]0
−∞

≥ 4
(
1− cos

u0

2

)
.

(Note, in passing to the last line the lower set of signs was chosen to give the
best possible bound, taking into account the fact that | cos u0

2
| ≤ 1 for all u0.)

To saturate the bound, we need ut = 0 for all x < 0 and t, so the field is
static, and then ux = 2 sin u

2
for all x < 0. This is exactly the equation that

was solved in the full-line case, so the general solution can be “borrowed’ from
that:

u(x) = 4 arctan ex−x0 .
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On the full line, x0 is a free parameter, but in this case u has to satisfy the
boundary condition imposed at x = 0, and this fixes x0 :

u0 = 4arctan e−x0 ⇒ x0 = − log tan
u0

4
.

(A more ‘friendly’ question might pick some specific value for u0 for which
the value of x0 turns out to be a nice number.)

3. This is a ‘starred’ question so a little harder than would appear in an exam
without rather more hints, but the idea is much the same as just described.
The first part goes through as before, with hyperbolic functions instead of
trigonometric ones. The only tricky point is at the end: for the sinh-Gordon
model there are no nontrivial smooth static solutions to the Bogomolnyi equa-
tion on the full line, but there are singular ones, and provided the singularity
occurs for x > 0 such a solution will work fine for the half-line problem, where
we only care about negative values of x. For enthusiasts interested in explor-
ing further (but not for exam preparation!), some of these ideas were used in
papers concerned with the interaction of quantum solitons with boundaries:
see for example section 8 of https://arxiv.org/pdf/hep-th/9407148 (but
beware that the notation used in that paper is a little different from the one
used here).


