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1 A quick sketch of Lagrangian mechanics

Ex 1 The real-valued and continuous function f(t), defined for t ∈ [t1, t2], is such that∫ t2

t1

dt f(t)δu(t) = 0 (1.1)

for all real-valued and continuous (infinitesimal) functions δu(t) with δu(t1) =
δu(t2) = 0. Prove that f(t) is identically zero for all t ∈ [t1, t2]. This is sometimes
called the fundamental lemma of the calculus of variations.
[Hint: consider δu(t) = ε(t− t1)(t2 − t)f(t) for 0 < ε� 1.]

Ex 2 The position u = u(t) of a point particle is a function of time t. The particle is
described by the action

S[u] =

∫ t2

t1

dt L(u, ut) , (1.2)

where the Lagrangian L(u, ut) does not depend explicitly on time. Therefore the
Lagrangian depends on time only through the time dependence of u(t) and ut(t).

1. Use the chain rule to compute the total time derivative of the Lagrangian

d

dt
L(u(t), ut(t)) =

∂L

∂u
ut +

∂L

∂ut
utt . (1.3)

2. Show that the Euler-Lagrange equation for u implies the Beltrami identity

d

dt

(
ut
∂L

∂ut
− L

)
= 0 , (1.4)

which states the conservation of the total energy (or Hamiltonian)

E = ut
∂L

∂ut
− L . (1.5)

3. For a particle described by the Lagrangian

L = T − V , (1.6)

where T (ut) = m
2
u2t is the kinetic energy and V (u) is the potential energy,

show that the conserved total energy is E = T + V .
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Ex 3 1. Consider a field theory described by a field w(x, t). If the Lagrangian density
L is a function of w, wx, wxx, and wt, and if

δS[w] = δ

∫∫
dxdt L(w,wx, wxx, wt) = 0 ,

derive the (generalised) Euler-Lagrange equation (or equation of motion)

d

dt

∂L
∂wt

+
d

dx

∂L
∂wx

− d2

dx2
∂L
∂wxx

− ∂L
∂w

= 0 . (1.7)

[Hint: mimic the derivation in the notes, taking into account the extra term
involving (∂L/∂wxx)δwxx that appears in the variation of S.]

2. What happens if L also depends on wxxx? And if L depends on ∂nw/∂xn?

3. If L = 1
2
wxwt + w3

x − 1
2
w2

xx, use the result of part 1 to find the equation of
motion for w, and verify that if w is satisfies this equation, then u ≡ wx solves
the KdV equation.

Ex 4 1. “φ4 theory”

A field u(x, t) has kinetic and potential energies

T =

∫ +∞

−∞
dx

1

2
u2t

V =

∫ +∞

−∞
dx
[1

2
u2x +

λ

4
(u2 − a2)2

]
.

(1.8)

Write down the Lagrangian density for the system, and use the Euler-Lagrange
equations to show that u(x, t) must satisfy the equation of motion

utt − uxx + λu(u2 − a2) = 0 . (1.9)

2. “φ6 theory”

Repeat the exercise for a field with kinetic and potential energies

T =

∫ +∞

−∞
dx

1

2
u2t

V =

∫ +∞

−∞
dx
[1

2
u2x +

λ

6
u2(u2 − a2)2

]
,

(1.10)

and derive the equation of motion

utt − uxx + λu(u2 − a2)(u2 − a2

3
) = 0 . (1.11)
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2 Adding boundaries

Ex 5 A field u(x, t) on the half-line x ∈ (−∞, 0] has kinetic energy T and potential
energy V , where

T =

∫ 0

−∞
dx

1

2
u2t ,

V =

∫ 0

−∞
dx
[1

2
u2x +

λ

4
(u2 − a2)2

]
+ µ(u− u0)2

∣∣
x=0

,

(2.1)

and a > 0, λ > 0, µ and u0 are real constants. (This is a version of the φ4 theory
with boundary.)

1. Write down the bulk Lagrangian density for the system, and use the boundary
version of the Euler-Lagrange equations to derive the equation of motion and
boundary condition for u(x, t).

2. Using the equations derived in part 1, show that the total energy Eboundary =
T + V is conserved.

Ex 6 A field u(x, t) satisfies the sine-Gordon equation for x < 0 with a Dirichlet bound-
ary condition u(0, t) = u0 imposed at x = 0. The kinetic energy density T and
the potential energy density V are

T =
1

2
u2t ,

V =
1

2
u2x + 1− cosu =

1

2
u2x + 2 sin2 u

2
.

(2.2)

1. If a field configuration is to have finite total energy, what values can the field
u(x, t) take as x→ −∞?

2. For the case u(−∞, t) = 0, complete a square in the integral for the to-
tal energy to derive a Bogomol’nyi bound on the energy of solutions. If
|u0| ≤ π, find the solution which saturates this bound, either by solving the
Bogomol’nyi equation directly, or (equivalently) by ‘parking’ a single kink or
antikink at a suitable location to match the boundary condition.

3. ∗ Adapt the considerations of parts 1 and 2 to a field satisfying the sinh-
Gordon equation utt − uxx + sinhu = 0 for x < 0, again with a Dirichlet
boundary condition u(0, t) = u0 imposed at x = 0. Note that for half-line
problems, singular full-line solutions can be physically relevant, as long as the
singularity stays on the discarded (x > 0) half of the full line.


